Mathematica Moravica Vol. 12 -2 (2008), 35–43 Sequence with K1 , K2 , Kn , Kn+1 Mutually Tangent Circles Milorad R. Stevanović Abstract. In this article is given the formula for radius of circle Kn , where in sequence {Kj }, four circles K1 , K2 , Kn , Kn+1 , for all n ≥ 3, are mutually tangent. Radius rn is expressed in terms of radii r1 , r2 , r3 . Four circles K1 , K2 , K3 , K4 , with centers and radii Oj , rj (j = 1, 2, 3, 4) are mutually tangent what means that each of them is tangent to other three. From Descartes-Soddy formula 1 1 1 1 = + + +2 r4 r1 r 2 r 3 (1) r 1 1 1 + + r1 r2 r2 r3 r3 r1 we get r4 = f (r1 , r2 , r3 ). If we, as in Fig. 1, inscribe circles K5 , K6 , . . . , Kn−1 , Kn then we have rk = f (r1 , r2 , rk−1 ) for all k = 4, . . . , n. The following problem appeares: Is it possible to express rn in closed form as a function of first radii r1 , r2 , r3 ? Theorem 1. (2) 1 1 1 + + + r 1 r2 r3 r 1 1 1 + 2(n − 3) + + , r1 r2 r 2 r 3 r 3 r 1 1 = (n − 3)2 rn (n ≥ 4). 2000 Mathematics Subject Classification. Primary: 51M99, 51M04. Key words and phrases. Sequences of circles, arbelos, Pappus chain. 35 c 2008 Mathematica Moravica 36 Sequence with K1 , K2 , Kn , Kn+1 Mutually Tangent Circles Fig. 1. Proof. Formula (2) can be proved by induction. For n = 4 we have DescartesSoddy formula. Also, we have r 1 1 1 1 1 1 1 = + + +2 + + = rk+1 r1 r2 rk r 1 r 2 r2 rk rk r1 1 1 1 1 1 2 = + + (k − 3) + + + r1 r2 r1 r2 r3 s r 1 1 1 1 1 1 + 2(k − 3) + + +2 + + M= r1 r2 r 2 r 3 r 3 r 1 r1 r2 r1 r2 r 1 1 1 1 1 1 2 = [(k − 3) + 1] + + + 2(k − 3) + + + r1 r2 r3 r 1 r 2 r2 r3 r 3 r 1 r 1 1 1 1 1 + 2 (k − 3) + + + + = r1 r 2 r1 r 2 r 2 r 3 r3 r1 r 1 1 1 1 1 1 2 = (k − 2) + + + 2(k − 2) + + , r 1 r2 r3 r 1 r 2 r 2 r 3 r3 r1 37 Milorad R. Stevanović where 2 M = (k − 3) 1 1 + r1 r 2 r 1 1 1 1 + + 2(k − 3) + + , r3 r1 r2 r2 r3 r3 r1 which proves formula (2). Formula (2) can be used in finding radii rn in various configurations. Some Arbelos configurations of inscribed circles will be considered. Case 1. (Fig. 2): r 1 + r2 = r 0 , 1 1 1 1 + = + , r 3 r0 r1 r2 r 1 1 1 1 1 + + = + , r 1 r 2 r 2 r 3 r3 r1 r1 r2 1 1 1 1 2 = (n − 2) + − . rn r1 r 2 r0 Fig. 2. Case 2. (Fig. 3): r 1 + r2 = r 0 , 1 1 1 1 + = + , r 3 r0 r1 r2 r 1 rk+1 1 1 1 1 1 − − = − , r 1 r 3 r 3 r 0 r0 r1 r1 r0 r 1 1 1 1 1 1 = − + +2 − − , r 1 r0 r k r1 rk r k r0 r 0 r 1 (k ≥ 3). Formula similar to formula (2) with r12 → − r10 in this case is r 1 1 1 1 1 1 1 2 0 (2 ) = (n − 3) − + + 2(n − 3) − − . rn r1 r0 r3 r1 r3 r 3 r 0 r 0 r 1 38 Sequence with K1 , K2 , Kn , Kn+1 Mutually Tangent Circles which leads to the formula for radius of n-th left circle 1 1 1 1 2 = (n − 2) − + , rn r1 r 0 r2 and formula for radius of n-th right circle is 1 = (n − 2)2 rn 1 1 − r2 r 0 + 1 . r1 Fig. 3. Case 3. (Fig. 4): r 1 + r2 = r 0 , r 1 1 1 = + , r3 r1 r2 1 1 1 − − = r 1 r 3 r3 r 0 r 0 r 1 s 1 r1 1 1 − , r 1 r0 From the same recurrence relation as in Case 2 and from formula (20 ) we get formula for radius of n-th left circle 1 = rn r 2 r 1 1 1 1 − + + . (n − 3) r1 r0 r1 r2 Similar is the formula for radius of n-th right circle 1 = rn r r 2 1 1 1 1 (n − 3) − + + . r2 r0 r2 r1 39 Milorad R. Stevanović Fig. 4. Case 4. (Fig. 5): 1 1 1 = + , r3 r1 r2 s s 1 1 2 1 1 1 1 2 1 + + = + + . 4r1 r2 2 r1 r3 r2 r3 2 r1 r2 r2 r1 r 1 + r2 = r 0 , Formula for radius rn is given by formula (2) if we take r1 → 2r1 , r2 → 2r2 . s 2 1 (n − 3)2 + 2 1 1 1 2 1 = + + (n − 3) + + . rn 2 r1 r2 r1 r 2 r2 r1 Fig. 5. Case 5. (Fig. 6): r 1 + r2 = r 0 1 1 = r3 4 1 1 − r 1 r0 + 1 , r2 40 Sequence with K1 , K2 , Kn , Kn+1 Mutually Tangent Circles r 1 1 1 1 − − = r1 r3 r 3 r 0 r 0 r 1 2 1 1 − r1 r0 . From the same recurrence relation as in Case 2 and from formula (20 ) we get 1 = rn 5 n− 2 2 1 1 − r1 r0 + 1 . r2 Fig. 6. Case 6. (Fig. 7): 1 1 1 √ =√ +√ , r3 r1 r2 r 1 1 1 1 1 1 + + = + +√ . r 1 r 2 r 2 r 3 r3 r1 r 1 r2 r1 r2 Applying of formula (2) yields to 1 = (n − 2)2 rn 1 1 + r1 r2 + 2(n − 2) √ 1 . r1 r2 Milorad R. Stevanović 41 Fig. 7. Theorem 2 (Pappus). If the center of n-th circle with radius rn inscribed in arbelos (see Fig. 8) is on the distance dn of the base of arbelos then dn = 2n · rn . Fig. 8. Proof. n-th circle inscribed in arbelos in our notation has radius rn+2 and distance dn+2 from the base of arbelos.Semiperimeter of triangle O1 OOn is equal to r0 . From Archimedes-Heron formula for area of triangle, because 42 Sequence with K1 , K2 , Kn , Kn+1 Mutually Tangent Circles of r1 + r2 = r0 , we have p 2 r0 r1 rn (r2 − rn ) = r2 · dn ⇒ s 1 r0 r1 1 − = dn =2rn r2 rn r2 r r0 r1 r2 =2rn (n − 2)2 = 2(n − 2)rn . r2 r0 r1 In the proof is used the formula for radius of n-th left circle in arbelos. Theorem 3. If the circles Kn , Kn+1 , Kn+2 and Kn+3 are four consecutive circles from our sequence then for theirs radii we have 1 1 1 1 −3 +3 − = 0. rn rn+1 rn+2 rn+3 Proof. Radii of these circles are given by unique formula r 1 1 1 1 1 1 1 2 = (k − 3) + + 2(k − 3) + + , + rk r1 r 2 r3 r 1 r 2 r2 r3 r 3 r 1 (k = n, n + 1, n + 2, n + 3). The desired formula follows after elimination of r1 , r2 and r3 from upper four formulas. References [1] M.G. Gaba, Amer. Math. Monthly, Vol. 47, 1940,pp.19-24. [2] V. Thebault, Amer. Math. Monthly, Vol. 47, 1940, p.640. [3] L. Bankoff, How Did Pappus Do It, The Mathematical Gardner, Pridle, Weber & Schmidt, 1981, pp.112-118. [4] L. Bankoff, The Marvelous Arbelos,The Lighter Side of Mathematics, Mathematical Association of America, 1994, pp.247-253. [5] C.W. Dodge, Thomas Schoch, Peter Y. Woo, Paul Yiu, Those Ubiquitous Archimedean Circles, Mathematics Magazine of Mathematical Association of America, Vol. 72, No 3, June 1999, pp.202-213. [6] D. Klingens, http://www.pandd.demon.nl/arbelos.htm [7] T. Schoch, A Dozen More Arbelos Twins, http://www.biola.edu/academics/undergrad/math/woopy/arbel2.htm [8] E.W. Weisstein, http://mathworld.wolfram.com/arbelos.htm Milorad R. Stevanović 43 [9] P. Woo, The Arbelos, http://www.biola.edu/academics/undergrad/math/woopy/arbelos.htm Milorad R. Stevanović Technical Faculty Svetog Save 65 32000 Čačak Serbia E-mail address: [email protected]
© Copyright 2025 Paperzz