MCS101,EX5

MCS101,EX5
(Logarithmic and Exponential Functions)
Q1. Simplify;
√
23π‘₯+5
a) π‘₯βˆ’2
b) log 10000 βˆ’ 6 log 10
8
d) log2 1 + log 1 2 + log2 16 + 2 log4 8
c)
log 27 + log 20 βˆ’ log 36
log 40 βˆ’ log 8 + log 3
2
Q2. Solve ;
a) logπ‘₯ (6 βˆ’ 4π‘₯ βˆ’ π‘₯2 ) = 2
b) log2 (π‘₯ + 3) = βˆ’2
c) 𝑒2 ln(2π‘₯) = 4
log(π‘₯2 βˆ’ 12 ) + log 2
e)
=2
log(π‘₯ + 2)
d) log3 (log9 81) = log√3 π‘₯
Q3. Solve
a) 𝑒ln(3π‘₯+4) = 10
Q5. Write
b)𝑒ln(4π‘₯) = 20
c) ln(𝑒5π‘₯βˆ’4 ) = 11
d) ln(𝑒π‘₯
2 βˆ’2π‘₯+1
)=4
1
[ln π‘₯ βˆ’ 2(ln 𝑦 + 2 ln 𝑧)] as a single logarithm.
6
Q6. Solve
a) log(π‘₯ + 3)4 = 4
b)10log π‘₯ = 5
Q7. If ln 2 = 0.7 and ln 5 = 1.6
then find log2 5.
(b)ln(π‘₯ + 1) βˆ’ ln π‘₯ = ln 2
Q10. Solve;
a) 22π‘₯+1 = 8π‘₯βˆ’3
d) 5log5 π‘₯ = 5
then find ln(π‘₯𝑦 2 ).
Q8. If ln π‘₯ = 2 and ln 𝑦 = 7
Q9. Solve;
a) 2log2 π‘₯+log2 4 = 8
c) 3log3 π‘₯ = 5
3
b) 10log π‘₯ = 27
(c)log2 (π‘₯ βˆ’ 4) + log4 3 = log8 π‘₯
βˆ’2
9
c) logπ‘₯ ( =
4
3
d) log(3π‘₯2 + 2π‘₯ βˆ’ 4) = 0
Q11. Write as a sum of logarithms;
√
√
4
βˆ’3 2
π‘₯3
𝑒π‘₯
2
a) log π‘Ž 𝑏 4 𝑐 3
b) ln( √
)
c)
ln(
)
4
𝑒3π‘₯βˆ’1
𝑦3
Q12. Consider the equation 𝐴 = (1000)(1.03)4 . Taking logarithm with base 10 of both sides,
we get
log 𝐴 = log 1000 + 4 log 1.03
or
log 𝐴 = log 103 + 4 log 103
100 .
Therefore we obtain
log 𝐴 = 3 log 10 + 4(log 103 βˆ’ 3 log 10)
1
and so we get
log 𝐴 = 3 + 4(log 103 βˆ’ 2).
Thus we obtain
log 𝐴 = 4 log 103 βˆ’ 5.
Now making the similar computations write
a) log 𝐴 from the equation; 𝐴 = (10000)(1.02)5 .
b) log 𝐴 from the equation; 𝐴 = (105 )(1.25)3 .
2