MCS101,EX5 (Logarithmic and Exponential Functions) Q1. Simplify; β 23π₯+5 a) π₯β2 b) log 10000 β 6 log 10 8 d) log2 1 + log 1 2 + log2 16 + 2 log4 8 c) log 27 + log 20 β log 36 log 40 β log 8 + log 3 2 Q2. Solve ; a) logπ₯ (6 β 4π₯ β π₯2 ) = 2 b) log2 (π₯ + 3) = β2 c) π2 ln(2π₯) = 4 log(π₯2 β 12 ) + log 2 e) =2 log(π₯ + 2) d) log3 (log9 81) = logβ3 π₯ Q3. Solve a) πln(3π₯+4) = 10 Q5. Write b)πln(4π₯) = 20 c) ln(π5π₯β4 ) = 11 d) ln(ππ₯ 2 β2π₯+1 )=4 1 [ln π₯ β 2(ln π¦ + 2 ln π§)] as a single logarithm. 6 Q6. Solve a) log(π₯ + 3)4 = 4 b)10log π₯ = 5 Q7. If ln 2 = 0.7 and ln 5 = 1.6 then ο¬nd log2 5. (b)ln(π₯ + 1) β ln π₯ = ln 2 Q10. Solve; a) 22π₯+1 = 8π₯β3 d) 5log5 π₯ = 5 then ο¬nd ln(π₯π¦ 2 ). Q8. If ln π₯ = 2 and ln π¦ = 7 Q9. Solve; a) 2log2 π₯+log2 4 = 8 c) 3log3 π₯ = 5 3 b) 10log π₯ = 27 (c)log2 (π₯ β 4) + log4 3 = log8 π₯ β2 9 c) logπ₯ ( = 4 3 d) log(3π₯2 + 2π₯ β 4) = 0 Q11. Write as a sum of logarithms; β β 4 β3 2 π₯3 ππ₯ 2 a) log π π 4 π 3 b) ln( β ) c) ln( ) 4 π3π₯β1 π¦3 Q12. Consider the equation π΄ = (1000)(1.03)4 . Taking logarithm with base 10 of both sides, we get log π΄ = log 1000 + 4 log 1.03 or log π΄ = log 103 + 4 log 103 100 . Therefore we obtain log π΄ = 3 log 10 + 4(log 103 β 3 log 10) 1 and so we get log π΄ = 3 + 4(log 103 β 2). Thus we obtain log π΄ = 4 log 103 β 5. Now making the similar computations write a) log π΄ from the equation; π΄ = (10000)(1.02)5 . b) log π΄ from the equation; π΄ = (105 )(1.25)3 . 2
© Copyright 2026 Paperzz