MATH 136 The Inverse Function Theorem Exercises 1. Let f (x) = 9 − 4 15 − 2x , for x ≤ 7.5 . Use the Inverse Function Theorem to compute ( f −1)′ (−11) . Then find a function formula for f −1(x) and use it to compute ( f −1)′ (−11) . 12 € −10 , for x ≠ 10 . Use the Inverse Function Theorem to compute 6− x ( f −1 )′(−16) . Then find a function formula for f −1(x) and use it to compute ( f −1 )′(−16) . 2. € Let f (x) = € € 3. Let f (x) = cos x for 0 ≤ x ≤ π . Compute ( f −1)′ ( 2 / 2) and ( f −1)′ (− 3 / 2) . € 4. Let f (x) = sin x for −π /2 ≤ x ≤ π /2 . Compute ( f −1)′ ( 3 / 2) and ( f −1)′ (−1/ 2) . € € 5. Let f (x) = tan x for –π/2 < x < π/2. Compute ( f −1)′ (1) and ( f −1)′ (−1/ 3) . € € € € Solutions 1. Solve 9 − 4 15 − 2x = –11 to get 20 = 4 15 − 2x , then 25 = 15 − 2x , and x = –5. 1 4 4 5 and f ′(–5) = ; thus, ( f −1)′ (−11) = = . f ′(–5) 15 − 2x 5 € 4 € € 2 − ( x − 9) − 15 (x − 9) ( x − 9 )2 15 4 −1 Also f (x) = =− , so ( f −1)′ (x ) = − and ( f −1)′ (−11) + 16 −2 32 2 ( −20) 5 =− = . 4 16 ------------------------------------------------------------------------------------------------------------------12 12 2. First solve −10 = –16, which gives = −6 , then −2 = 6 − x , and x = 8 . 6− x 6− x 1 12 Next, f ′(x) = and f ′(8) = 3 . Thus, ( f −1 )′(−16) = . 2 3 (6 − x) € € € € 12 12 1 12 −1 ′ Also f −1(x) = 6 −€ . So ( f −1)′€(x ) = , and = = . ( f ) (−16) 2 x + 10 36 3 (x + 10) € € ------------------------------------------------------------------------------------------------------------------3. First solve cos x = Then f ′(x) = −sin x and 2 / 2 , to get x = π /4 . € 1 −2 2 € ( f −1)′ ( 2 / 2) = . Thus, =€ . f ′(π / 4)€= −sin(π / 4) = − f ′(π / 4) 2 2 € € € Next solve cos x = – 3 / 2 , to get x = 5π /6 . Then f ′(x) = −sin x and 1 1 = –2. f ′(5π / 6) = −sin(5π / 6) = − . Thus, ( f −1)′ (− 3 / 2) = f ′(5π / 6) 2 ------------------------------------------------------------------------------------------------------------------€ € Then f ′(x) = € 4. First solve sin x = Then 3 / 2 , to get x = π /3. 1 1 = 2. f ′(π / 3) = cos(π / 3) = . Thus, ( f −1)′ ( 3 / 2) = f ′(π / 3) 2 and € = –1/2, to get x = −π /6 . Then f ′(x) = cosx and 1 2 3 . Thus, ( f −1)′ (−1/ 2) = = . f ′(−π / 6) = cos(–π / 6) = f ′(−π / 6) 3 2 ------------------------------------------------------------------------------------------------------------------€ € 1 5. First solve tan x = 1, to get x = π /4 . Then f ′(x) = sec 2 x and ( f −1)′ (1) = = f ′(π / 4) 1 1 = cos 2 (π / 4) = . 2 2 sec (π / 4) € € 1 Next solve tan x = –1/ 3 , to get x = −π /6 . Then ( f −1)′ (−1/ 3) = = f ′(−π / 6) 1 3 = cos 2 (−π / 6) = . 2 4 sec (− π / 6) € € Next € solve f ′(x) = cosx sin x
© Copyright 2026 Paperzz