Sxyz −→ xz(yz) Kxy −→ x M M (ψ,m) = ( 1 m ψ 0 ψ m m m

Sxyz
Kxy
!
!
xz(yz)
x
M
(
1
M ( , m) =
0
m
m
m
m
p(m)
m
m
p (m) = 2
H(m)
H(m)
m
O (m)
m
O(m) =
m
: M ( , m) = 1 ^ L( ) = min (L( i ) : M ( i , m) = 1)
i
p(m)
O (m)
m
m
O (m)
m
m
L (O (m)) ⌧ L (m)
(
1
C (m, m ) =
0
0
C
m0
m
M
m0
m
4Hm0
= H(m0 |m)
= H(m0 )
H(m0 : m)
= H(m0 )
H(m)
m
m0
m
4Hm0 > 0
4Hm0 = 0
m
m0
4Hm0 > 0
(4Hm0 = 0)
0
100
4Hm0 > 0
O (m)
4Hm0 > 0
4Hm0 ⌧ H (m)
L(O (m)) ⌧ L(m)
m
m
p(m1 |m) / 2
4Hm1
4Hm1 6= 4Hm2
O (m)
F ({hx | i : x = 1 · · · N } , R) = {hk | i : k = 1 · · · R}
hx | i
N
1
F
m
hk | i
R
({hk | i : k = 1 · · · R} , N ) = {hx | i : x = 1 · · · N }
O(m)
O (m)
= Fmin (m)
= F (m, Rmin ) : Rmin = min
R=1···N
m1 , m2
m1
F
1
m
(F(m, R), N ) , m
m2
R
R
m
N
{|xi}
{|ki}
t
m : {hx, t | i : x = 1 · · · N }
hk | i =
hx, t | i =
N
X
x=1
R
X
k=1
hk | x, ti i hx, ti | i
hx, t | ki hk | i
m
R
R⌧N t
m
O (m)
ti
t0
t
hx, t0 | i =
X
{|x, ti : x = 1 · · · Nt }
hx, t0 | x, ti hx, t | i
x
O (m)
| , ti = aei(kx
a
f
f t)⌧
⌧
t
@
| , ti =
@t
x
if ⌧ | , ti
@
| , ti = ik⌧ | , ti
@x
O (m)
mi
{mi : i = 1 · · · n}
mi
mi
{|
m
| i = cm |
¬m i
|
mi
|
m1 , t
0
0
m, t i
=
0
mi
i,...,|
n
X
i=1
mi i
m
+ c¬m |
¬m i
m
{|
|
mi i , | ¬mi i}
| i
c¬m |
t0
m
ci |
mn , t
mi , t
0
0
i , |D, t0 i}
i + cn+1 |D, t0 i
p(mi |m) =
=
1
2
Z
1
2
Z
Hi
=
H(mi )
=
1
2
Z
(L(F min (mi )) L(F min (m)))
2
2
L(F min (mi ))
L(F min (mi ))
+2
L(F min (m¬i ))
Z
h
p(mi |m) =
1
h(mi )
Z
|
| i
m
mi
| ii
2
p(mi |m) / |h i | i|
| i
| , ti
Û
| 0 , t0 i = Û | , ti
| , ti
| 0 , t0 i
m
t
t
{| 1 , t0 i , . . . , | n , t0 i , |D, t0 i}
| 0 , t0 i =
n
X
i=1
ci | i , t0 i + cn+1 |D, t0 i
t0
| i
| ii
2
p( i | ) / |h i | i|
t0
mi , t
0
i