de title m 48 pt ubtitle m 30 pt A compressive method for maintaining forwarding states in sdn controller Ying Zhang*, Sriram Natarajan$, Xin Huang^, Neda Beheshti*, Ravi Manghirmalani* Ericsson Research*, NTT$, CYAN^ de title m 32 pt 2 rows level 1 m 24 pt vel 2-5 m 20 pt YZ[\]^_`abcd £¤¥¦§¨©ª«¬®¯° ÕÖרÙÚÛÜÝ ÷øùúûüýþÿĀ ģĪīĮįİıĶķĹĺĻļĽ ŠšŢţŤťŪūŮů ẃẄẅỲỳ– ĞĠĠĢĢĪĪĮĮİĶĶĹ ŢŢŤŤŪŪŮŮŰŰ ΤΥΦΧΨΪΫΆΈΉΊ ΎΏ ЛМНОПРСТУ ЛМНОПРСТУ ЎЏѢѢѲѲѴѴҐ ects or er area Controller needs to maintain a copy of forwarding states › Forwarding states in SDN: tables on the switches › Most existing controllers do not maintain a copy of forwarding states › There is a need in real-world deployment scenario – Fast fault recovery from transient switch failures – Network state queries by multiple control applications – Consistency check on the switches’ actual states – Rule space analysis for optimization, debugging, etc. de title m 32 pt 2 rows level 1 m 24 pt vel 2-5 m 20 pt YZ[\]^_`abcd £¤¥¦§¨©ª«¬®¯° ÕÖרÙÚÛÜÝ ÷øùúûüýþÿĀ ģĪīĮįİıĶķĹĺĻļĽ ŠšŢţŤťŪūŮů ẃẄẅỲỳ– Need an efficient solution to store states in controller › Naïvely storing all the tables from all switches takes huge space › Explore correlation between switches – Intuition: because of topological properties, there exists dependency between actions of different switches a ĞĠĠĢĢĪĪĮĮİĶĶĹ ŢŢŤŤŪŪŮŮŰŰ ΤΥΦΧΨΪΫΆΈΉΊ ΎΏ ЛМНОПРСТУ ЛМНОПРСТУ ЎЏѢѢѲѲѴѴҐ ects or er area b dst = a, sent to S2 dst = b, sent to S2 dst = c, sent to S2 dst = a, sent to S3 dst = b, sent to S3 dst = c, sent to S3 c de title m 32 pt 2 rows level 1 m 24 pt vel 2-5 m 20 pt YZ[\]^_`abcd £¤¥¦§¨©ª«¬®¯° ÕÖרÙÚÛÜÝ ÷øùúûüýþÿĀ ģĪīĮįİıĶķĹĺĻļĽ ŠšŢţŤťŪūŮů ẃẄẅỲỳ– ĞĠĠĢĢĪĪĮĮİĶĶĹ ŢŢŤŤŪŪŮŮŰŰ ΤΥΦΧΨΪΫΆΈΉΊ ΎΏ ЛМНОПРСТУ ЛМНОПРСТУ ЎЏѢѢѲѲѴѴҐ ects or er area Use prediction tree to capture dependency Match fields S1 fwd to port S2 fwd to port S3 fwd to port 1.2.1.0 1 1 1 2.1.1.0 2 1 2 1.2.2.0 1 1 1 2.1.2.0 2 1 2 1.2.3.0 3 2 1 2.1.3.0 3 2 2 1.2.4.0 4 2 3 2.1.4.0 4 2 3 S1’s fwd port number <=2 y n S2’s port=1 S2’s port=2 S1’s fwd port number <3 n y Match field<2.0.0.0 y S3’s port=1 n S3’s port=3 S3’s port=2 de title m 32 pt 2 rows level 1 m 24 pt vel 2-5 m 20 pt YZ[\]^_`abcd £¤¥¦§¨©ª«¬®¯° ÕÖרÙÚÛÜÝ ÷øùúûüýþÿĀ ģĪīĮįİıĶķĹĺĻļĽ ŠšŢţŤťŪūŮů ẃẄẅỲỳ– ĞĠĠĢĢĪĪĮĮİĶĶĹ ŢŢŤŤŪŪŮŮŰŰ ΤΥΦΧΨΪΫΆΈΉΊ ΎΏ ЛМНОПРСТУ ЛМНОПРСТУ ЎЏѢѢѲѲѴѴҐ ects or er area System design and results Table combination - Handling empty entries - Handling multiple tables Dependency discovery - Use Bayesian network to identify dependencies between columns - Build classification and regression tree (CaRT) Compression - Divide columns to predicting and predicted sets - Support incremental update › Evaluation on Mininet with NOX › Using Bayesian network and C4.5 decision tree for dependency discovery › Results: – Regular topology: 1.77% of original size – Realistic topology: 2.8% of original size de title m 32 pt 2 rows level 1 m 24 pt vel 2-5 m 20 pt Q&A? YZ[\]^_`abcd £¤¥¦§¨©ª«¬®¯° ÕÖרÙÚÛÜÝ ÷øùúûüýþÿĀ ģĪīĮįİıĶķĹĺĻļĽ ŠšŢţŤťŪūŮů ẃẄẅỲỳ– ĞĠĠĢĢĪĪĮĮİĶĶĹ ŢŢŤŤŪŪŮŮŰŰ ΤΥΦΧΨΪΫΆΈΉΊ ΎΏ ЛМНОПРСТУ ЛМНОПРСТУ ЎЏѢѢѲѲѴѴҐ ects or er area 6
© Copyright 2026 Paperzz