HAAT - Mr. Hayes 7.2 - Verifying Trig Identities Retake Review Name: ___________________________________ Date: ______________________ As always, please show work when appropriate. See Mr. Hayes and your book if you need help. 3.0 Questions 5.0 Questions 8) Factor the trigonometric expression. sin2 x - 1 1) sin x + 1 2) 9) sec 4 x - tan 4 x = sec 2 x + tan 2 x csc x (sin 2 x + cos2 x tan x) sin x + cos x 10) Use the fundamental identities to simplify the expression. cos2 θ + csc θ sin θ 3) sin2 θ 4) sin x cos x tan x Verify that each equation is an identity. 5) csc2 t - cos t sec t= cot2 t 6) sec β + tan β = 7) tan x + cot x 1 = tan x - cot x 2 sin x - cos2 x cos β 1 - sin β sec θ - 1 tan θ = tan θ sec θ + 1 1 sin x + cos x 1 + 2 sin x cos x = sin x - cos x 2 sin 2 x - 1 Answer Key Testname: 7.2 1) sin x - 1 2) 1 3) csc2 θ 4) cos2 x 1 = csc2 t - 1 = 5) csc2 t - cos t sec t = csc2 t - cos t · cos t cot2 t 6) sec β + tan β = sin β 1 + sin β 1 + sin β 1 + = = · cos β cos β cos β cos β 1 - sin2 β cos2 β 1 - sin β = = = 1 - sin β cos β(1 - sin β) cos β(1 - sin β) cos β 1 - sin β 7) sec θ - 1 sec θ - 1 sec θ + 1 sec2 θ - 1 = · = = tan θ tan θ sec θ + 1 tan θ(sec θ + 1) tan θ tan2 θ = tan θ(sec θ + 1) sec θ + 1 8) sin x cos x + cos x sin x sin2 x + cos2 x cos x sin x tan x + cot x = = = sin x cos x tan x - cot x sin2 x - cos2 x - cos x sin x cos x sin x 1 sin2 x + cos2 xx = 2 2 2 sin x - cos2 x sin x - cos x 9) sec 4 x - tan 4 x = (sec 2 x + tan 2 x)(sec 2 x - tan 2 x) = (sec 2 x + tan 2 x)(1) = sec 2 x + tan 2 x. 10) sin x + cos x sin x + cos x sin x + cos x = = sin x - cos x sin x + cos x sin x - cos x sin 2 x + 2 cos x sin x + cos 2 x = sin 2 x - cos 2 x 1 + 2 sin x cos x 1 + 2 cos x sin x = . 2 2 2 sin 2 x - 1 sin x + sin x - 1 2
© Copyright 2025 Paperzz