NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 8-2 Study Guide and Intervention Adding and Subtracting Rational Expressions LCM of Polynomials To find the least common multiple of two or more polynomials, factor each expression. The LCM contains each factor the greatest number of times it appears as a factor. Example 1: Find the LCM of 16ππ ππr, 40pππ ππ, Example 2: Find the LCM of 3ππ β 3m β 6 and 16π2 π3 r = 24 · π2 · π3 · r 3π 2 β 3m β 6 = 3(m + 1)(m β 2) 40pπ4 π 2 = 23 · 5 · p · π4 · π 2 4π 2 + 12m β 40 = 4(m β 2)(m + 5) and 15ππ ππ. 4ππ + 12m β 40. 15π3 π 4 = 3 · 5 · π3 · π 4 LCM 4 3 LCM = 12(m + 1)(m β 2)(m + 5) 4 =2 ·3·5·π ·π ·π 4 = 240π3 π4 π 4 Exercises Find the LCM of each set of polynomials. 1. 14aπ2 , 42bπ 3 , 18π2 c 2. 8cdπ 3 , 28π 2 f, 35π4 π 2 3. 65π₯ 4 y, 10π₯ 2 π¦ 2 , 26π¦ 4 4. 11mπ5 , 18π 2 π3 , 20mπ4 5. 15π4 b, 50π2 π2 , 40π8 6. 24π7 q, 30π 2 π2 , 45pπ3 7. 39π2 π 2 , 52π4 c, 12π 3 8. 12xπ¦ 4 , 42π₯ 2 y, 30π₯ 2 y3 9. 56stπ£ 2 , 24π 2 π£ 2 , 70π‘ 3 π£ 3 10. π₯ 2 + 3x, 10π₯ 2 + 25x β 15 11. 9π₯ 2 β 12x + 4, 3π₯ 2 + 10x β 8 12. 22π₯ 2 + 66x β 220, 4π₯ 2 β 16 Chapter 8 11 Glencoe Algebra 2 NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 13. 8π₯ 2 β 36x β 20, 2π₯ 2 + 2x β 60 14. 5π₯ 2 β 125, 5π₯ 2 + 24x β 5 15. 3π₯ 2 β 18x + 27, 2π₯ 3 β 4π₯ 2 β 6x 16. 45π₯ 2 β 6x β 3, 45π₯ 2 β 5 17. π₯ 3 + 4π₯ 2 β x β 4, π₯ 2 + 2x β 3 18. 54π₯ 3 β 24x, 12π₯ 2 β 26x + 12 8-2 Study Guide and Intervention (continued) Adding and Subtracting Rational Expressions Add and Subtract Rational Expressions To add or subtract rational expressions, follow these steps. Step 1 Find the least common denominator (LCD). Rewrite each expression with the LCD. Step 2 Add or subtract the numerators. Step 3 Combine any like terms in the numerator. Step 4 Factor if possible. Step 5 Simplify if possible. π π Example: Simplify πππ + ππβ ππ β ππ β π. 6 2 2π₯ 2 + 2π₯ β 12 β π₯2 β 4 6 2 = 2(π₯ + 3)(π₯ β 2) β (π₯ β 2)(π₯ + 2) 6(π₯ + 2) 2 · 2(π₯ + 3) = 2(π₯ + 3)(π₯ β 2)(π₯ + 2) β 2(π₯ + 3)(π₯ β 2)(π₯ + 2) 6(π₯ + 2) β 4(π₯ + 3) = 2(π₯ + 3)(π₯ β 2)(π₯ + 2) 6π₯ + 12 β 4π₯ β 12 = 2(π₯ + 3)(π₯ β 2)(π₯ + 2) 2π₯ = 2(π₯ + 3)(π₯ β 2)(π₯ + 2) π₯ = (π₯ + 3)(π₯ β 2)(π₯ + 2) Factor the denominators. The LCD is 2(x + 3)(x β 2)(x + 2). Subtract the numerators. Distribute. Combine like terms. Simplify. Exercises Simplify each expression. 1. β7π₯π¦ 3π₯ Chapter 8 + 4π¦ 2 2π¦ 2. 2 π₯β3 β 1 π₯β1 12 Glencoe Algebra 2 NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 4π 15π 3 3. 3ππ β 5ππ 3π₯ + 3 4π₯ + 5 4. π₯ + 2 + 3π₯ + 6 π₯ β1 5. π₯ 2 + 2π₯ + 1 + π₯ 2 β 1 4 5π₯ 6. 4π₯ 2 β 4π₯ + 1 β 20π₯ 2 β 5 8-2 Skills Practice Adding and Subtracting Rational Expressions Find the LCM of each set of polynomials. 1. 12c, 6π 2 d 3. 2x β 6, x β 3 5. π‘ 2 β 25, t + 5 2. 18π3 bπ 2 , 24π2 π 2 4. 5a, a β 1 6. π₯ 2 β 3x β 4, x + 1 Simplify each expression. 3 5 3 7. π₯ + π¦ 9. 2π β 7 3 Chapter 8 5 8. 8π2 π + 4π2 π +4 2 5 10. π2π + π 12 Glencoe Algebra 2 NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 11. 12 5π¦ 2 β 2 2 12. 5π¦π§ 3 2 π π₯ 2π + 2 21. π β 3 + π2 β 2π β 3 Chapter 8 3π‘ 5 4π§ π§+4 18. π§ β 4 + π§ + 1 19. π₯ 2 + 2π₯ + 1 + π₯ + 1 π 2 16. 2 β π₯ + π₯ β 2 17. π β π β π β π 1 3 4β 2 14. 3π + π β 3ππ 15. π€ β 3 β π€ 2 β 9 π + 5 13. π + 2 β 2π 3 7 4πβ 20. 2π₯ + 1 π₯β5 3 4 β π₯ 2 β 3π₯ β 10 2 22. π¦2 + π¦ β 12 β π¦2 + 6π¦ + 8 12 Glencoe Algebra 2
© Copyright 2025 Paperzz