b . ,'() * +, -(. , ( 5 x0 f g : S ;! R b ;< ! " # $ % b +, % / 01 2 3%4 .' 5 .- - 67 0 )8 9: =+, -() > . (1-15) :3 @ (f + g ) (x0 ) = f (x0 ) + g (x0 ) 0 0 . (f g ) (x0 ) = f (x0 )g (x0 )+ f (x0 )g (x0 ) . 0 0 . S 0 0 b ;< 2 0 x0 f g x0 - ( ) > . 0 x0 f g f +g (BC (9 DE ) (G S = fx 2 S j g (x) 6= 0g x0 : S ;! R 0 - = (H +, 3 @ ( fg ) (x0 ) = f (x0 )g (x0 ) ; f2(x0 )g (x0 ) g(x0 ) 0 0 0 I J K - L ) 5 ' M L f g x f g x0 ) x x0 ( + )( );( + )( ; = f (xx) xf 0(x0 ) + g(xx) gx(0x0 ) ; ; ; ; (B C) . .N K =-L IJK 1 (G) f g)(x) (f g)(x0 ) x x0 ( ; ; = f (x)g(x)x fx(0x0 )g(x0 ) ; ; = f (x)g(xx) xf0(x0 )g(x) + f (x0 )g(xx) xf0(x0 )g(x0 ) , = 1 x0 ; ; ; ; = ( f (xx) xf 0(x0 ) )g (x) + f (x0 )( g(xx) xg(0x0 ) ) g ; ; ; ; , x0 g . ,8-14 01 % S ) - ( ) , I J K G T$ @ L I J K - L M ( 5 ' M L . x ;! x0 g(x) ;! g(x0 ) 9 .N K -L GT$@L (H) x f x0 ) x x0 f = f (x(x)g(xx00))g(fx)(gx(0x)0g)(x) ( g )( );( g )( ; ; ; = ( f (xx) xf 0(x0 ) )g (x0 ) ; f (x0 ) g(xx) xg(0x0 ) ] g(x)1g(x0 ) 2 ; ; ; ; x0 .N K GT$@L IJK -L g U 5 'ML 1 K( J-(. +, 2 . (2-15) p(x) = a0 + a1 x + + am xm , ak xk (1) J 2 , = ) ' - 2-5-14 1-5-14 =X Y 1-15 , 9 .' ) - / C + x 0 0 b ( q(x0 ) 6= 0 , 1 q -() > XL 3 @ 0-N B *, +, ) N , U ( 5 S 0 . 2 (2) q (x) = b0 + b1 x + + bn xn f (x) = pq((xx)) -() , .) %[ 1-15 2J) / b J= 0U/ , k = 0 1 : : : m ; K (H) 1-15 5 .-N U J-(. 2 S = fx 2 R j q (x) 6= 0g , = 5 J-(. ,(BC) p (x) = a1 + 2a2 x + + mamxm .- U Z 7 b ( \< b J= b ;< 2 q (x) 6= 0 S ' 1 0 5 x0 x0 b ;< = ) 21 = x cos sin , , ,YY =+, ) '- 10 ^ 5 4-10 0 b 1 . (3-15) =+, '= csc sec cot tan () .-(= 7 B *, b ( 2 = , , .' / "/ =X -(= 1 3 @ U + , " . 5 N 4 _ ( ) _( , , 7 B *, b ( ) 1-15 01 :' Z _( +, D,, - .-N B *, =+, J H7 x h h sin( + );sin x x = h h = (sin x) cos hh 1 ; .' ) 4 limh 0 ! 1;cos h h x h (sin )(cos )+(cos )(sin );sin = 0 limh ! sin 0 h h =1 x + (cos x) sinh h , Y Y - L 2-7-13 ( lim sin(x + hh) ; sin x = cos x h 0 ! x = 5 sin +, ,U sin x = cos x 0 x = 5 (3) cos +, ) N 4 D,, J= cos x = ; sin x 0 1 cot = cos tan = sin csc = sin1 sec = cos sin cos , ( , , (4) +, ) N 4 (H) 1-15 5 0# XL # @ 0- ( ( ) B * , 3 % c H ) = x 5 ( * ) B * , b ( x = 5 :-N K 5 =X - tan x = sec2 x = 1 + tan2 x 0 cot x = ; csc2 x = ;(1 + cot2 x) 0 sec x = (tan x)(sec x) 0 3 (5) (6) (7) csc x = ;(cot x)(csc x) 0 / 0 b 5- ec ) ' 5 (8) 67 5 ^ 0 b -J .- U (4-15) , f (x0 ) > 0 0 C L .- N S x0 5 b ; < .'() 2 = ) 0 < e < f (x0 ) 0 %S , ) ' ( ) 7 S :' e f : S ;! R f (x0 ) = 0 f (x0 ) < 0 0 f (x0 ) > 0 0 - c . 0 < jx ; x0 j < - ( ) > 0 - ( ) > >0 ) ,-L B *, ;e < f (xx) ;; fx(x0 ) ; f (x0 ) < e 0 0 f7E f (x) ; f (x0 ) > f (x ) ; e > 0 0 x ; x0 0 (9) : ) ) 'ML , -(N ec '= - h. J ) H 3 @ ( x0 < x < x0 + 0 U / , ) >0 f (x) x0 - < , ), $ b M .-N f (x0 ) X - ( ) < , 'ML ) -= x0 5 M.) 2 1 f (x) x0 x f (x) , 0U/ , x 5 1 2 1 = , x0 . *@ 0 XL 0 b 5 j= 4 0 5 M.) 21 = f f (x0 ) f (x) > f (x0 ) U x f (x0 ) - < i < ' M L ) XL 2.) 0 b 5 2 f (0) > 0 MC ( (1-4-15) , f (x0 ) > 0 0 U / , - < *T 1 $MN . 0 x0 ; < x < x0 f (x) < f (x0 ) . 5 1 f (x0 ) > 0 0 U / , 0 f +, *@ ) 1-4-15 b ( ) C 1 kk*@ b 7N \ " - " 0 M1 +, J $MN *@ C 1 = 7N 5 (= ' N 21 0 ) '= - = C N 2.) l -, "/ .) '=7 m *, (. B *, [ @ 3%c 0-(/ .- 0 nS 0 < e < ;f (x0 ) 0 0 U / , ) ' U S e K ( . :' 0 < jx ; x0 j < f (x0 ) < 0 0 C L ) >0 ;e < f (xx) ;; xf (x0 ) ; f (x0 ) < e 0 0 f7E f (x) ; f (x0 ) < f (x) + e < 0 x ; x0 0 (10) :N K / 5 ) -(N N B ec - h. J ) H 3 @ ( x0 < x < x0 + 0 U / , ) >0 f (x) > f (x0 ) . x0 5 M.) 21 x f (x) < f (x0 ) , f (x0 ) < 0 0 U / , 0 x0 ; < x < x0 0U/ , ' ,-N x0 , 5 1 21 . , f : S ;! R x f (x) < f (x0 ) K( f (x) > f (x0 ) b b f (x) f (x0 ) . x0 M.) U nS D , , ) 'N N x0 f (x0 ) b jx ; x0 j < * T ( J) ( ( ) 5 M J ) x2S b ; < 5 1 x0 S x0 5 b ;< = ) -N N -N N *T b (J) ( + , - ( ) > XL .( 0 * T 5 2 j = 3 @ nS 2 - +, -< ,2-4-15 1-4-15 S x0 5 >0 f (x) f (x0 ) f f (x0 ) < 0 f (x0 ) > 0 0 2 :!E D,, - .-N f ,-N +, 2 .N $@L ", DC K 2-4-15 1-4-15 5 ' ( D,, ) (2-4-15) b ;< f : S ;! R f (x0 ) = 0 . 5 0 f (x0 ) 5 +, (3-4-15) 0U/ ,-N x0 i 7 ,- N _ J i 7 + , ) * T ( J ) ( \ < D , , - f 1C - _J .(2 $MN) -N < f 1C _J i7 -N < ) )8 !5E X . *T b (J) ( i7 ) x4 C , * T b ( x2 , * T b (J) x3 x1 b , 5 p @ =XY .*T (J) 0-N =q *T ( - b \ < ,2 $ M N , < _J .-(= D; x = 5 + , . 0- N B * , f (x) = x4 ; x3 3 @ :' .'() N #@ f : R ;! R + , .1 / ) S< . f (x) = 4x3 ; 3x2 = x2 (4x ; 3) 0 x4 ; x3 = x3 (x ; 1) -,J x=0 ec , .N #@ 9 , #( -N (J) - 0 1] 0<x<1 %Y f (x) = x4 ; x3 x = 34 x = 0 x< 0 f b ;< -< ) N ZLe b +, . .-N *T b (J) ( b ;< 2 - (J) b ;< ( .-N #( - (J) -< , #( ,-N #@ - b (J) U S 5 . . 0-N 0 ^J (BC) 3 $MN ) f (x) = 1 ; cos x 0 f f (0) = f (1) = 0 ]0 1 ) 5 -N f 1C J . (J) 2 ' .' Z + , * T ( J ) ( 9 f (x) = x ; sin x \ < 5 2 j = . N # @ 2 +, -< 0 1] x = 34 ;< 9 + , .2 p [ @ G r .((G) 3 $MN) b L .' 5 05 2 ec #( %Y -* ! .N -=7 1 U = ) ) \ " U r ) D( .'() 4 n * X r ) r 5 @7 CL e 6 \ < b J = ) * , a<c<b ) , c , f : a b] ;! R ; < 3 @ . - ( ) > f (a) = f (b) = 0 . e ! (5-15) - N . Z c f (x) > 0 +, . b ;< #@ ;< = / f (x) 6= 0 f Y , -() > e ) f - < , % Y ;< 2 $-L 05 b ;< 2 - ( f (x) < 0 , a b] f (a) = f (b) = 0 b ;< 9 , f (c) = 0 D,, J= . 0 x a b] f a b] f (c) = 0 0 . ;< -() > XL . ) K / 5 ( a b] f b U S 5 .-N %Y - ( ' 3-4-15 %S XL . 2 c ) -N #@ a<c<b ) c f Y ,-N e .'() - Z b ;< , (J) 5 0# 5 J _ J ) b a c ; < ) E b r %* , 2 f < , 5 r . J " $@ i7 5 .) %*, b \ < b J= ) * , 0<c<b ) , f : a b] ;! R , c - ( ) > ."#$ b ;< 3 @ .-N ; f (a) f (c) = f (bb) ; a 0 : 5 b C* ! (6-15) a b] (11) (b f (b)) (a f (a)) $@ i7 . ; f (a) (x ; a) y = f (a) + f (bb) ; a B *, , S .' X b r *T '() ') e f (x) 5 J -< -() ; f (a) (x ; a)] g(x) = f (x) ; f (a) + f (bb) ; a 7 5 . = t + , I J K ) 5 ]a b a b] g + , :U S g(a) = 0 g (c) = 0 :(* , 0 g (b) = 0 a<c<b ) , c ;< X b r %S 9 ; f (a ) = 0 f (c) ; f (bb) ; a 0 2 . r 'ML ) y = f (x) 08 2 M % S . a b] 5 x u .' ) 0 N r - ( = % * , 2 5 0 b 5 08 i c f (b) f (a) b a ; ; ,' ( ) > x 5 v [ c 5 / 08 c ) )L 5 I N 5 c 5 , r J , 3 @ 6-15 = ) J" + . X S i f * C 7 ' = 7 / f- * ) - = 7 + , 2 J $ J M , ) - ( . e .' 5 ec (7-15) . 05 \< ) +, 2 . 4 I f (a) = f (b) f Y . -() > e 'ML f (b) f (a) b a ; ; f ' = f (c) = 0 0 0U/ , I x 5 I b a 5 f : I ;! R b ;< = 2 f (x) = 0 0 1J b ;< = '= ) b a c I -() > (1-7-15) ) . ; < U b r % S . 2 -N 05 2 a< b .- 3%4 I \< ) -(N +, f g : I ;! R . 4 2 8 f ;g -() > .'($ (2-7-15) 3 @ .- 0 (* , *@ I f I x 0U/ , 5 b ;< = . 2 .-(= ec '= f (b) ; f (a) b ; a (* , C 1 I f I 0U/ , 9 , x f (b) f (a) b a a b] \< K (11) 5 0 U / , ]a b f x = ' , 0 ; b ;< = . 0 = f (c) > 0 ; 2 f (a) < f (b) f (x) > 0 f : a b] ;! R jf (x)j M 0 a<b ) I b a = U b r %S . f (x) < 0 0 f (a) > f (b) (3-7-15) ' , (4-7-15) a<b ) I b a = -() > . )$ ")* (8-15) ) - N N M 0 . : ) N jf (b) ; f (a)j M jb ; aj U (12) .N G[ . x b ;< y = f (x) J w(=/ Y)-L 05 XS GT$@L 5 9 .-(= ^J y f (b) ; f (a) y (* , (12) J) u, w(=/ a b] J 0 b 5 x y f (x) 0 ) K/ 5 J ) * b;a x (* , J = : J j yj M j xj (13) ' = -= j sin ; sin j j ; j j cos xj 1 f (x) = cos x .N K (12) 5 'ML , 0 (14) f (x) = sin x ' , :' %Y j 1 1+ a ; 1 1+ b j ja ; bj 9 .1 b a ) K/ 5 = -= .2 (15) , ,0-N B *, +, 05 .' Z ] ; 1 +1 f (x) = 1+1 x +, :' ;1 (1 + x)2 jf (x)j < 1 f (x) = 0 .N $@L (15) 0 9 , 1 1 5 H , 10 x>0
© Copyright 2026 Paperzz