A Non-Trivial Integration by Parts Z arcsin2 x dx Without knowing the anti-derivative of arcsin x the only choice is integration by parts with u = du = Thus arcsin2 x. 2 arcsin x √ 1 1−x2 dx. dv = dx. v = x. 1 dx. 1 − x2 Now, recognizing that arcsin x and its derivative are in the resulting expression, we substitute as follows. Z arcsin2 x dx = x arcsin2 x − θ dθ x Now we have Z Z x2 arcsin x √ = arcsin x. 1 = √1−x . 2 = sin θ 2 Z 2 arcsin x dx = x arcsin x − 2 sin θ(θ) dθ. Now we solve the simpler integration by parts problem using u = θ. du = dθ. dv v = sin θ dθ. = − cos θ. Z Z θ sin θ dθ = −θ cos θ − − cos θ dθ = −θ cos θ + sin θ + C. Note √ if sin θ = x then the√opposite is x and the hypotenuse is 1. By the Pythagoran theorem the adjacent is 1 − x2 . Thus cos θ = 1 − x2 . Returning to the original problem. Z arcsin2 x dx = = p x arcsin2 x − 2 − arcsin x 1 − x2 + x + C p x arcsin2 x + 2 1 − x2 arcsin x − 2x + C. An alternate solution uses the following. u = arcsin x. 1 du = √1−x dx 2 dv v Z Z arcsin x = x arcsin x − = = √ dx. x. x dx. 1 − x2 The remaining integral can be solved using the substitution u = 1 − x2 and du = −2x dx. Z Z x √ arcsin x = x arcsin x − dx 1 − x2 Z 1 −2x √ = x arcsin x + dx 2 1 − x2 Z 1 = x arcsin x + u−1/2 du 2 = = Now we try R arcsin2 x dx using parts as follows. u = du = Z x arcsin x + u1/2 + C p x arcsin x + 1 − x2 + C. arcsin x. √ 1 dx. 1−x2 dv v = arcsin x dx. √ = x arcsin x + 1 − x2 . Z p p 1 2 √ arcsin x dx = arcsin x(x arcsin x + 1 − x ) − x arcsin x + 1 − x2 dx 1 − x2 Z p x arcsin x √ = arcsin x(x arcsin x + 1 − x2 ) − + 1 dx 1 − x2 Z p x arcsin x √ = x arcsin2 x + arcsin x 1 − x2 − x − dx 1 − x2 p p = x arcsin2 x + arcsin x 1 − x2 − x − − arcsin x 1 − x2 + x + C p = x arcsin2 x + 2 arcsin x 1 − x2 − 2x + C. 2 This used the same substitution (θ = arcsin x) as the first solution.
© Copyright 2025 Paperzz