Fiscal Policy (204A -3e)-P.1 JMany issues in practice – not all suitable for representative agent modeling J*D8C01;48BBD4B - Effects of government spending – real spending on good & services - Optimal fiscal policy with regard to government spending - B4=27<0A:=4DCA0;8CHA4BD;CB>=58=0=28=6)820A380=neutrality/equivalence theorem - Effects of tax distortions – incentive effects JMore elaborate models needed for -)438BCA81DC8>=0;C0G0C8>= – requires model with heterogenous population - *C018;8I0C8>=?>;82H– requires model with stochastic disturbances - Government debt and social security – better with generational turnover J'DC;8=4 I. Effects of government spending assuming lump-sum taxes; with note on optimal policy II. )820A380=neutrality III. Examples with tax distortions – examples only. (204A -3e)-P.2 Fiscal Policy I: Government Spending JBBD<?C8>=(D1;82B?4=38=6 ?4A4558284=2HD=8C>5;01>A - Assume spending is tax-58=0=243+ ;D<?-sum. - Here abstract from productivity and population growth (could be added) - Best interpret as government consumption. [Public capital would require different model.] J)4B>DA242>=BCA08=C?4A-20?8C0 k = f ( k ) − δk − c − G - Phase diagram with c(k)-;8=4 c ( k ) = f ( k ) − δk − G . J(A454A4=24Butility over private consumption U = ∫0 e ∞ − ρt Higher G shifts the c(k)-line down. u (c)dt . - +A40C public spending as exogenous. *C0=30A3<02A> view. Endogenous in public finance.) !0<8;C>=80= H (c,k,λ ,t) = e−ρt u(c) + λ ⋅[ f (k) − δk − c − G] -&>C4 4=C4AB>=;H8=C>C742>=BCA08=C*0<4D;4A4@D0C8>=B0BF8C7>DC6>E4A=<4=C c = 1 ( f ' (k ) − δ − ρ ) c θ (C ) -*C403HBC0C42>=38C8>=B k = 0 c = 0 c* = f (k * ) − δk * − G* f ' (k * ) = δ + ρ -"<?;843?70B43806A0<B8G43:*-;8=4*785CB8=2:-line whenever G(t) changes. (204A -3e)-P.3 Application #1: Permanent Increase J8=3"=BC0=C9D<?C>C74=4FBC403HBC0C4 >E4A=<4=CB?4=38=670B=>8<?02C>=20?8C0;BC>2:=>8<?02C>= C748=C4A4BCA0C42A>F3B>DC?A8E0C42>=BD<?C8>=>=4-for-one. (204A -3e)-P.4 Application #2: Temporary Increase J A0?7B*44)><4A86=4GCB;834 J#4H8340>;;>F38554A4=CL0AA>FBM?70B43806A0<B0BC8<4?0BB4B - Until t02>=><H0CC748=8C80;BC403HBC0C4F8C7=>A<0; - Interval [t0C1/%>E4<4=CB8=C74?70B43806A0<5>;;>F2:5D=2C8>=F8C778674A - After t1%>E4<4=CB8=C74?70B4 diagram follow c(k) function with normal G. J*>;E4102:F0A3B -)4CDA=C>C74BC403HBC0C48=C74;>=6AD=%DBC14>=C74N=>A<0;OB033;4?0C70CC 1. - Determine c(0) such that movements during [t0C1] end on the saddle path at t1. J8=3+4<?orary increase government spending has -0C4<?>A0AH=460C8E445542C>=20?8C0;022D<D;0C8>=2A>F38=6>DC - a temporary negative impact on consumption. - a temporary positive impact on interest rates. Optional Exercise*D??>B40CC8<4C0C746>E4A=ment announces that spending will increase ?4A<0=4=C;HBC0AC8=60CC8<4C1. Determine the effects. (204A -3e)-P.5 )><4A86 (204A -3e)-P.6 Note on Preferences and Optimal Policy J*D??>B48=38E83D0;B70E4?A454A4=24B>E4A?A8E0C40=3?D1;822>=BD<?C8>= ∞ U = ∫ e−ρt u(c,G)dt 0 -*C0=30A30??A>0278=?D1;8258=0=24*>280;?;0==4A>?C8<8I4B>E4A -!0<8;C>=80= H (c,G,k,λ ,t) = e− ρt u(c,G) + λ ⋅[ f (k) − δk − c − G] -??;HC74%0G8<D<(A8=28?;4F8C7CF>27>824E0A801;4B ∂H = e − ρt ∂u − λ = 0 and ∂H = e − ρt ∂u − λ = 0 ∂c ∂c ∂G ∂G ∂ u ∂ u '?C8<0;8CHA4@D8A4B / = 1D=8C<0A68=0;A0C4>5BD1BC8CDC8>= ∂c ∂G J)4BD;C'?C8<0;C>38E834C>total consumption c˜ = c + G into private and public components such that each provides the same utility on the margin. JG?A4BBC74<>34;8=C4A<B>5C>C0;2>=BD<?C8>= - write c = c( c˜ ) G = G( c˜ ) 0=3 u˜ ( c˜ ) = u[c( c˜ ),G(c˜ )] ∞ -4;50A4?A>1;4<<0G8<8I4U = ∫ e 0 − ρt u˜ (c˜ )dt s.t. k = f (k ) − δk − c~ J"=C4A?A4C0C8>=+74>?C8<0;6A>FC7<>34;F8C7>DC6>E4A=<4=CB42C>A20=148=C4A?A4C43 as model in which public spending is subsumed into private spending. (204A -3e)-P.7 Fiscal Policy II: Government debt and deficits JBBD<?C8>= 8E4=?0C7>5B?4=38=620=1458=0=243F8C7C0G4B+>A341C - >E4A=<4=C1D364C4@D0C8>= -"=C46A0C4>E4AC8<4 D(t) = D(0) ⋅ e - Apply present value factors ∫ 0t r(v)dv p0,t = e t + ∫ (G(s) − T (s)) ⋅ e 0 − ∫ 0t r(v)dv t ∫ st r(v)dv ds t p0,t D(t) = D(0) + ∫ p0,sG(s)ds − ∫ p0,sT (s)ds 0 0 - Impose the transversality condition lim t→∞ p0,t D(t) = 0 . Obtain the J >E4A=<4=COB8=C4AC4<?>A0;1D364C2>=BCA08=C ∞ ∞ 0 0 D(0) + ∫ p0,sG(s)ds = ∫ p0,sT (s)ds -"=C4A?A4C0C8>=Initial debt and the present value of spending must be backed by the present value of taxes. J;08<)820A380==4DCA0;8CH8=0=28=6>5?D1;82B?4=38=63>4B=>C<0CC4A (204A -3e)-P.8 (A>>5>5)820A380==4DCA0;8CH J*C4?"=38E83D0;1D364C4@D0C8>=F8C7C0G4B "=C4AC4<?>A0;1D364C2>=BCA08=C ∞ ∞ ∞ 0 0 0 a(0) + ∫ p0,sw(s)ds = ∫ p0,sc(s)ds + ∫ p0,sT (s)ds J*C4?><18=4F8C7C746>E4A=<4=C1D364C2>=BCA08=C ∞ ∞ ∞ 0 0 0 a(0) + ∫ p0,sw(s)ds = ∫ p0,sc(s)ds + D(0) + ∫ p0,sG(s)ds J*C4?"=38E83D0;0BB4CB20?8C0;government bonds-A8C4 #0– D0BBD<8=6$ ∞ ∞ ∞ 0 0 0 K(0) + ∫ p0,sw(s)ds = ∫ p0,sc(s)ds + ∫ p0,sG(s)ds J8=3+0G4B0=36>E4A=<4=C1>=3B20=24;>DC PV of consumption = Private resources – PV of public spending J"=C4A?A4C0C8>= 1. )820A380==4DCA0;8CH 8E4=C74B?4=38=6?0C7C0G4B0=3345828CB70E4=>8<?0ct on individual decisions. 2. )820A380=4@D8E0;4=24+0G-financed and deficit-financed government spending have equivalent effects on individual decisions. 3. >E4A=<4=C1>=3BB7>D;3&'+142>=B834A43=4CF40;C7 (Barro) (204A -3e)-P. J(A02C820;A4;4E0=24Are budget deficits really irrelevant? 1. Good intuition – taxpayers own the government debt. Modifications needed with C0G38BC>AC8>=B58=8C4;8E4B2A438C<0A:4C8<?4A542C8>=BD=24AC08=CH01>DC 8=2834=24>55DCDA4C0G4B4C2;0C4A – all best understood as departures from the benchmark. 2. Key insight for more elaborate modelsif the income effects of tax policy 20=24;>DCthe substitution effects remain *hift of emphasisB8=24B to tax distortions / incentive / Lsupply sideM effects. 3. Property of representative 064=C<>34;Baccept or use different model. Fiscal Policy III: Tax Incentives JG0<?;4 from )><4A*D??>B4C0G4B0A48<?>B43>= capital income. -"=38E83D0;B0E8=6B a= w(t) + (1− τ ) ⋅ r(t) ⋅ a(t) − c(t) '?C8<0;8CH2>=38C8>= -*C403HBC0C42>=38C8>=B c* = f (k * ) − δk * − G* where G* = τ [ f ' (k * ) − δ ]k * (1− τ )[ f '(k * ) − δ ] = ρ -(70B43806A0<B:*-line shifts to the left; c(k) as before +0G4BF8C78=24=C8E445542CB3><0CC4A J&>C4>=3424=CA0;8I0C8>= -74=C0G4B0A438BC>AC8>=0AH<0A:4C4@D8;81A8D<8B=>C(0A4C>-optimal 0==>CDB4 planning problem to compute equilibrium (A3E0=243add Limplementability constraintsM) (204A -3e)-P.10 Example with labor-leisure choice JG0<?;4 not8=)><4Asetting with labor-leisure choice and τ(t)labor income tax rate ∞ U = ∫ e − ρt u(c,1− l)dt with unit time allocated to l = labor, (1-l) = leisure %0G8<8I4 BD1942CC> -!0<8;C>=80= 0 a= (1− τ (t))⋅ w(t) ⋅l(t) + r(t) ⋅ a(t) − c(t) H (c,l,a, λ ,t) = e − ρt u(c,1− l) + λ ⋅[(1− τ )wl + ra − c] -??;HC74%0G8<D<(A8=28?;4F8C7CF>27>824E0A801;4B ∂H = e − ρt ∂u(c,1−l) − λ = 0 and ∂H = e − ρt (− ∂u(c,1−l) ) + (1− τ )wλ = 0 ∂c ∂c ∂l ∂l ∂u(c,1−l) (1− τ )w = ) depends on the tax rates. Individual optimality2>=38C8>= ∂u(c,1−l) ∂c ∂l - >E4A=<4=CB?4=3B 70Brevenues T (t) = τ (t) ⋅ w(t) ⋅l(t) D = G + rD − τ ⋅ w ⋅l and K = a− D = w ⋅l + r ⋅ (a − D) − c − G = F(K,l) − δK − c − G = l ⋅[ f (k) − δk] − c − G +axes cancel out for20?8C0;022D<D;0C8>=1DC05542C;01>ABD??;H. 1 [ f ' (k) − δ − ρ ] J*D??>B4u() is separableEuler equation c = θ (C) c J*D??>B4 τ) are constant (:2;converge to a steady state with f ' (k * ) − δ = ρ ∂u(c * ,1−l* ) /∂l ∂u(c * ,1−l* ) /∂c = (1− τ ) ⋅ FL (K * ,l * ) = (1− τ ) ⋅ w(k * ) c* = l * ⋅[ f (k * ) − δk * ] − G . - *CA82C;H2oncave utility ∂c* / ∂τ < 0 ∂l * / ∂τ < 0 * * J>=CA0BCC>F4;50A4proble<<0G,BC K = F(K,l) − δK − c − G ∂u(c* ,1−l* ) /∂l = w(k * ) ∂u(c ,1−l ) /∂c +0G38BC>AC8>=BA43D24F4;50A4 as compared to an allocation with lump-sum taxes. (204A -3e)-P.11 Learning Objectives for Fiscal Policy J??;843 Ability to do fiscal policy applications - Determine the impact of government spending in the optimal growth model. Problem sets for practice. J>=24?CD0; - Know the impact of government spending in the optimal growth model. - #=>FF74=)820A380==4DCA0;8CH0??;84B. - Know that distortionary taxes create complications.
© Copyright 2026 Paperzz