TABLE A4. Mass balance and energetics of methanogenic syntrophic degradation of toluene under experimental batch enrichment conditions1. Biochemical reaction Energy Organism and process Potential (V) 07 Eq. GROWTH YIELD-INDEPENDENT REACTIONS Eh Redox active components 7 Eh G rxn (kJ) 07 G 7 G Assimilatory reactions - - - Toluene assimilation per C-mole cells 1.1 (4/36)C7H8(36e ) + 0.22CO2(0e ) → CellC(4e ) Acetate assimilation per C-mole cells 1.2 (4/8)C2H3O2-(8e-) → CellC(4e-) 0.111C7H8 + 0.22CO2 → CellC 27 31 27 38 -21 40 148 -76 95 -3 -36 -39 -33 -9 0.060C7H8 + 0.12CO2 → 0.54CellC 15 17 (1-0.06)(C7H8 + 12H+ → 3C2H3O2- +CO2 + 6H2 ) 0.94C7H8 + 11.28H+ → 2.82C2H3O2- + 0.94CO2 + 5.64H2 C7H8 + 11.28H+ → 2.82C2H3O2- + 0.82CO2 + 5.64H2 + 0.54CellC 139 -71 154 -54 0.5C2H3O2- → CellC CO2 assimilation per C-mole cells - e acceptor: CO2 reduction to cell C - - e donor: H2 oxidation to protons 1.3.2 Assimilatory reaction per C-mole cells 1.3.3 - - 4e + CO2(0e ) → 1.3.1 - CellC(4e ) + - H2(2e ) → 2H (0e ) - - + 2H2(2e ) + CO2(0e ) → - -0.36 -0.3703 -0.4141 -0.2661 - 4H (0e ) + CellC(4e ) 4H+ + CellC 2H2 + CO2 → Dissimilatory reactions Toluene dissimilation e- donor: toluene oxidation to acetate & CO2 - 2.1.1 - - - C7H8(36e-) → 3C2H3O2 (8e ) + CO2(0e ) + 12e - + - - - e acceptor: proton reduction to H2 2.1.2 2e + 2H (0e ) → H2(2e ) Dissimilatory reaction per mole toluene 2.1.3 C7H8 + (12/2)2H+ → 3C2H3O2 + CO2 + (12/2)H2 -0.2862 -0.3314 -0.4141 -0.2661 C7H8 + 12H+ → 3C2H3O2 + CO2 + 6H2 Acetate dissimilation: reverse acetyl CoA e- donor: acetate oxidation to CO2 - 2.2.1 e acceptor: proton reduction to H2 2.2.2 Dissimilatory reaction per mole acetate 2.2.3 - - 2CO2(0e-) + 8e- C2H3O2 (8e ) → - + - 2e + 2H (0e ) → H2(2e-) + C2H3O2 (8e ) + (8/2)2H (0e ) → 2CO2(0e ) + (8/2)H2(2e ) + C2H3O2 + 8H → 2CO2 + 4H2 -0.2910 -0.2706 -0.4141 -0.2661 Acetate dissimilation: intramolecular fermentation Acetate to CO2 and methane per mole acetate 2.3 - - C2H3O2 (8e ) → CO2(0e-) + CH4(8e-) Hydrogen dissimilation e- donor: H2 oxidation o protons - H2(2e-) → 2H+(0e-) 2.4.1 e acceptor: CO2 reduction to methane 2.4.2 dissimilatory reaction per mole H2 2.4.3 -0.4141 -0.2661 8e + CO2(0e-) →CH4(8e-) -0.2447 H2(2e ) + (2/8)CO2(0e-) → 2H+(0e-) + (2/8)CH4 (8e-) H2 + 0.25CO2 → 2H+ + 0.25CH4 -0.2203 - GROWTH YIELD-DEPENDENT REACTIONS Syntroph 1 Toluene consuming, acetate, CO2, & H2 producer Growth reaction per mole toluene Assimilatory reaction per 0.54 C-mole cells Dissimilatory reaction per 0.54 C-mole cells Growth reaction per 0.54 C-mole cells 3.1 3.1.1 3.1.2 3.1.3 C7H8 + ?H+ → ?C2H3O2- + ?CO2 + 0.54CellC (0.54)(0.111C7H8 + 0.22CO2 → CellC) Biochemical reaction Energy Organism and process Potential (V) 07 Eq. Redox active components Eh 7 Eh G rxn (kJ) 07 7 G G Syntroph 2 Acetate consuming, CO2 & H2 producer Growth rxn per 1.41 mole acetate/mole toluene Assimilatory reaction per 0.04 C-mole cells 3.2 3.2.1 C2H3O2- + ?H+ → ?CO2 + ?H2 + 0.04CellC 0.04 (0.5C2H3O2- → 0.02C2H3O2- g Dissimilatory reaction per 0.04 C-mole cells Growth reaction per 0.04 C-mole cells 3.2.2 3.2.3 CellC) 1 2 132 -5 133 -3 1 2 -50 -54 -49 -52 -1 1 11.12H2 + 2.78CO2 g 22.24H+ + 2.78CH4 11.20H2 + 2.82CO2 g 22.40H+ + 2.78CH4 + 0.04CellC -364 -99 -364 -97 C7H8 g 2.17CO2 + 4.17CH4 + 0.66CellC -126 -207 0.04CellC (1.41-0.02)(C2H3O2- + 8H+ → 2CO2 + 4H2) 1.39C2H3O2- + 11.12H+ → 2.78CO2 + 5.56H2 1.41C2H3O2- + 11.12H+ → 2.78CO2 + 5.56H2 + 0.04CellC Syntroph 3 Acetate consuming, CO2 and methane producer Growth rxn per 1.41 mole acetate/mole toluene Assimilatory reaction per 0.04 C-mole cells 3.3 3.3.1 C2H3O2 → ?CO2 + ?CH4 + 0.04CellC 0.04(0.5C2H3O2 → 0.02C2H3O2 → Dissimilatory reaction per 0.04 C-mole cells Growth reaction per 0.04 C-mole cells 3.3.2 3.3.3 CellC) 0.04CellC (1.41-0.02)(C2H3O2 → CO2 + CH4) 1.39C2H3O2 →1.39CO2 + 1.39CH4 1.41C2H3O2 → 1.39CO2 + 1.39CH4 + 0.04CellC Syntroph 4 H2 and CO2 consuming, methane producer Growth rxn per 11.20 mole H2/mole toluene Assimilatory reaction per 0.04 C-mole cells 3.4 3.4.1 (5.64+5.56)H2 + ?CO2 → 0.04(2H2 + CO2 → 0.08H2 + 0.04CO2 → Dissimilatory reaction per 0.04 C-mole cells Growth reaction per 0.04 C-mole cells 3.4.2 3.4.3 ?CH4 + 0.04CellC 4H+ + CellC) 0.16H+ + 0.04CellC (11.20-0.08)(H2 + 0.25CO2 g2H+ + 0.25CH4) Consortium Toluene consuming, CO2 and methane producer Growth reaction per mole toluene 1 3.5 2 From Edwards and Grbic-Galic (1994) and Ficker et al. (1999). An anaerobic enrichment consortium of toluene degraders and methanogens consisted of 4 major types: 1) an organism oxidizing toluene and releasing acetate and/or one or more other oxidative or fermentation pathway intermediates (we chose toluene oxidation to acetate coupled to H+ reduction to H2); 2) an organism oxidizing a toluene degradation pathway intermediate, and releasing acetate and/or H 2 (we chose an organism capable of using the reversible acetyl CoA pathway, with acetate oxidation to CO2 and H + reduction to H2, or the reverse depending on metabolite concentrations (Zinder, 1994); 3) an acetate fermenting methanogen, producing CO2 and methane; and 4) an H2using methanogen reducing CO2 to methane. The consortium growth yield per mole toluene was 17.0 g (17.0*0.46/12 = 0.65 C-mole) cells. For illustration purposes we partition the yield as follows: Syntroph 1, 14.0 g (0.54 C-mole) cells; Syntrophs 2, 3, and 4, 1.0 g (0.04 C-mole) cells each. Concentration conditions: 0.1 mM toluene; 0.70 mM acetate; 0.20% atm CO2 gas; and, hypothesized by us, 10-5 atm H2 and 10-4 atm CH4. 2 Eq 3.5 = Eq 3.1.3 + Eq 3.2.3 + Eq 3.3.3 + Eq 3.4.3.
© Copyright 2026 Paperzz