10/12/2015 Chapter 11 – Trigonometric (Applications) Q1 The bearing of B from A is S 30o W The bearing of A from B is N 30o E N A 30o Chapter 11 – Trigonometric (Applications) Q2 b 3 = sin 60o = , a :b = 2: 3 a 2 c 1 = sin 30o = , a : c = 2 : 1 a 2 a : b : c = 2 : 3 :1 N 30o B Option A Option C Chapter 11 – Trigonometric (Applications) Q3 a = tan θ , a = p tan θ p With the notation in the figure a = r sin( 270o − α ) = − r cos α b = q − a = q − p tan θ b = tan θ CD b q CD = = −p tan θ tan θ Option E Chapter 11 – Trigonometric (Applications) Q4 The required distance = r − r cos α = r (1 − cos α ) 270o - α θ b a Option C a r Chapter 11 – Trigonometric (Applications) Q5 r Chapter 11 – Trigonometric (Applications) Q6 π c = 180o o x 180 x x c = ×180 o = π π With the notation in the figure PC = (a + 1) cosθ , QC = a cosθ PQ = (a + 1) cosθ − a cosθ = coaθ Option A Option B a 1 10/12/2015 Chapter 11 – Trigonometric (Applications) Q7 Chapter 11 – Trigonometric (Applications) Q8 With the notation in the figure 2 2 2 2 With the notation in the figure a b = cos θ , a = p cos θ , = sin φ , b = q sin φ p q 2 a = 1 + 1 = 2, b = a + 1 = 3 , c = b + 1 = 2 cosθ = 3 2 AB = a + b = p cosθ + q sin φ c b Option D Option D a a Chapter 11 – Trigonometric (Applications) Q9 b Chapter 11 – Trigonometric (Applications) Q10 With the notation in the figure a = sin α , a = h sin α h a a h sin α = tan β , CD = = CD tan β tan β With the notation in the figure 16 a= =8 2 102 − a 2 3 cosθ = = = 0.6 10 5 Option B Option E a a Chapter 11 – Trigonometric (Applications) Q11 Chapter 11 – Trigonometric (Applications) Q12 With the notation in the figure h θ = 20o , = tan 20o a h a= m tan 20 o With the notation in the figure a = tan β , a = r tan β r a a r tan β = cos α , AC = = AC cos α cos α 20o h Option E Option E a θ a 2 10/12/2015 Chapter 11 – Trigonometric (Applications) Q14 Chapter 11 – Trigonometric (Applications) Q13 q− p = cos θ BC q− p BC = cos θ With the notation in the figure d = tan 45o , a = d a d −h h = tan θ , d − h = d tan θ , d = a 1 − tan θ A p B θ D C q q–p Option E h Option E a Chapter 11 – Trigonometric (Applications) Q15 BC = cos θ a CD = sin θ BC CD = cos θ sin θ a CD = a cos θ sin θ Option D Chapter 11 – Trigonometric (Applications) Q16 1 ( AB )( AC ) sin 30o = 64 cm 2 2 ( AB ) 2 = 256 cm 2 A a B θ θ p−q tan θ 2 The required area 1 = × ( p + q) × h 2 ( p + q )( p − q ) = tan Aθ 1 2 4 2 = ( p − q ) tan θ h 4 Option D θ h AB = 16 cm B C D Option C Chapter 11 – Trigonometric (Applications) Q18 a AB = sin(180 o − 20 0 − 50 o ) sin 50 o = tan θ , h = D 30o C Chapter 11 – Trigonometric (Applications) Q17 p −q 2 A AB = q a sin 50o a sin 50o = sin(180o − 70o ) sin 70o B Option E θ p C 3 10/12/2015 Chapter 11 – Trigonometric (Applications) Q19 GB = cos θ , GB = q cos θ q BF = sin θ , BF = p sin θ p C G D q CE = GB + BF = p sin θ + q cos θ Option E Chapter 11 – Trigonometric (Applications) Q20 p X θ E F Y A h = tan 45o , OC = h OC h = tan 30o , OB = 3h OB OC = tan θ B OB 1 o tan θ = = tan 30 3 Option B 3 θ Option A Chapter 11 – Trigonometric (Applications) Q23 x 2 = 32 x = 32 = 5.66 Option D B C D A h O 45o 30o θ C Chapter 11 – Trigonometric (Applications) Q24 AC = A x 30o 70o 35o 10 Chapter 11 – Trigonometric (Applications) Q22 4 1 × x × 2 x sin 30o = 16 2 B Option B cos θ = 2 A B Chapter 11 – Trigonometric (Applications) Q21 2 2 + 32 − 4 2 2(2)(3) −1 = 4 θ ∠BAC = 70o − 35o =35o ext ∠s of ∆ ∴ AC = BC = 10 AD = sin 70o AC AD = 10 sin 70o p2 + q2 ∠ACB = 180o − θ 2x cos(180o − θ ) = C cos θ = −q p2 + q2 A q 2 p p + q2 B θ q C Option E 4 10/12/2015 Chapter 11 – Trigonometric (Applications) Q25 a 2 a P AP 2 cos θ a a a = sin θ , BP = BP sin θ B θ Q a a AB = AP + PB = + sin θ 2 cos θ 1 1 = a + sin θ 2 cos θ Option C = cos θ , AP = Chapter 11 – Trigonometric (Applications) Q26 A θ S a 2 C R p−q BC = sin(180o − 70o − 50o ) sin 70o ( p − q ) sin 70o BC = sin 60o A Option C p D C BC = 2 2 + 52 − 2(2)(5) cos 60o = 19 A 2 60o 5 B B C 60o A 30o Chapter 11 – Trigonometric (Applications) Q29 1 × AC × 6 cm × sin 30o = 15 cm 2 2 AC = 10 cm 70o 50o Chapter 11 – Trigonometric (Applications) Q28 sin A sin B sin C = = a b c a > b > c , ∠A > ∠ B > ∠ C (b + c ) 2 − a 2 = b 2 + 2bc + c 2 − (b 2 + c 2 − 2bc cos A) = 2bc (1 + cos A) > 0 b+c > a Option C B 70o Chapter 11 – Trigonometric (Applications) Q27 ∠ B + ∠ C = ∠A q C Option E Chapter 11 – Trigonometric (Applications) Q30 AB 1 = sin(180o − 30o ) sin 20o sin150o AB = sin 20o 1 = 2 sin 20o Option C B A 1 30o 20o C X Option D 5 10/12/2015 Chapter 11 – Trigonometric (Applications) Q32 Chapter 11 – Trigonometric (Applications) Q31 p p = tan β , BD = BD tan β AB α ,α = 2 AC = 2 π −α π β= = −1 2 2 p p = tan α , CD = CD tan α 1 p p 1 − = p − BC = tan β tan α tan β tan α C β A Option E β B O Option C Chapter 11 – Trigonometric (Applications) Q33 AC = BC cos α = 2 cos α BD = BC tan β = 2 tan β The required area 1 1 = AC × BC sin α + BC × BD 2 2 = 2(sin α cos α + tan β ) 1 , ∠C = 30o 2 ∠A : ∠B : ∠C = 90o : (180o − 90o − 30o ) : 30Co = 3 : 2 :1 sin ∠C = B D 2 α Option E Chapter 11 – Trigonometric (Applications) Q34 ∠A = 90o A β Option C B C Chapter 11 – Trigonometric (Applications) Q35 180o − 120o = 30o 2 AB AD = sin α sin 20 o sin 30o 1 AB = = o sin 20 2sin 20o B 1 A Chapter 11 – Trigonometric (Applications) Q36 α = 37 o α= Option B α The required bearing is S 37 o W light house α A 20o C α 120o 37o α D Option D observer 6 10/12/2015 Chapter 11 – Trigonometric (Applications) Q37 Chapter 11 – Trigonometric (Applications) Q38 AD tan B AD DC = tan C AD BD tan tan C = ADB = DC tan C tan B sin C sin B 34 1 = = = 2 3 3 4 1 sin C = 2 1 3 2 cos C = 1 − sin 2 C = 1 − ( ) 2 = 2 A4 A 3 2 Option E BD = B C Option C B C D Chapter 11 – Trigonometric (Applications) Q40 Chapter 11 – Trigonometric (Applications) Q39 α =θ With the notation in the figure 60o θ= = 30o , a = 18 − r 2 r r = sin θ , = sin 30o a 18 − r 3 r = 9, r = 6 2 PR = sin θ x TR = tan θ PR TR = sin θ tan θ x TR = x sin θ tan θ Option D Option D a r θ T P α R x θ Q Chapter 11 – Trigonometric (Applications) Q41 2α = 180o − 75o − 45o α = 30o BD CD = sin 30o sin 45o 1 BD sin 30o 1 = = 22 = o CD sin 45 2 2 Option B Chapter 11 – Trigonometric (Applications) Q42 3 4 α = 36.87o The required angle = 2α = 74o cor. to nearest degree tan α = A D 75 o B 45o 3 α α 4 α C Option D 7 10/12/2015 Chapter 11 – Trigonometric (Applications) Q43 Area of I : Area of II : Area of III 1 1 1 = BC 2 sin 60o : AC 2 sin 60o : AB 2 sin 60o 2 2 2 2 2 AB sin α AB sin β 2 = : : AB C sin γ sin γ II γ 2 2 2 α = sin α : sin β : sin γ β Chapter 11 – Trigonometric (Applications) Q44 XD = sin θ , XD = p sin θ p YC = cos(180o − φ ), YC = − q cos φ q I A CB = XD − YC = p sin θ + q cos φ D p θ Option D Chapter 11 – Trigonometric (Applications) Q45 B X 1 DF = CD = BC sin 30o = BC 2 BC DB = = 2 BC cos 60o DF 12 BC 1 D sin θ = = = DB 2 BC 4 B 12 A Chapter 11 – Trigonometric (Applications) Q46 α =θ BC = 132 − 12 2 = 5 5 cos θ = 13 C φ III Option C Y q B θ C α A O 13 Option B Chapter 11 – Trigonometric (Applications) Q47 F C Option A ∠DHG = 90o AB = 4 k , BC = 5k , CA = 6k ∠AHG = 90o AB 2 + CA2 − BC 2 2( AB )(CA) (4k ) 2 + (6k ) 2 − (5k ) 2 = 9 2(4 k )(6k ) = 16 Option D A 60o 30o B Chapter 11 – Trigonometric (Applications) Q48 AB : BC : CA = 4 : 5 : 6 cos A = E θ ∠BEH = 90o B C A F Option E E D G H 8 10/12/2015 Chapter 11 – Trigonometric (Applications) Q49 Chapter 11 – Trigonometric (Applications) Q50 1 × AC × AB × sin 30o = 15 cm 2 2 AC ( AC − 4cm) = 60cm 2 AC 2 − 4cmAC − 60cm 2 = 0 AC = 10 cm or −C6 cm (rejected) AB = h tan θ AC = h tan 2θ AC tan 2θ = AB tan θ D θ h θ A Option C B C Chapter 11 – Trigonometric (Applications) Q51 B A Chapter 11 – Trigonometric (Applications) Q52 a AB = o o sin(180 − 20 − 50 ) sin 50o a sin 50o a sin 50o AB = = sin(180 o − 70o ) sin 70o PQ 1 = tan 30o = SQ 3 tan θ = 30o Option C o MQ 12 PQ 1 3 = = = SQ SQ 6 2 3 P A M o 30 θ S Option B Q 50o 20o Option D B Chapter 11 – Trigonometric (Applications) Q53 AD = tan θ x AD = tan φ y AD x tan φ y = = AD y tan θ x Option C a C Chapter 11 – Trigonometric (Applications) Q54 tan θ = 3 =3 1 V A 3 cm D B θ x φ D y C Option E A 2 cm C θ 1 cm 2 cm B 9 10/12/2015 Chapter 11 – Trigonometric (Applications) Q55 Chapter 11 – Trigonometric (Applications) Q56 1 = tan 45o , a = 1 a b 1 1 = cos 60 o , b = a = a 2 2 The required area 1 = 10 × = 5 cm 2 2 10 2 = (2 x ) 2 + (3 x ) 2 − 2(2 x )(3 x ) cos θ 2 4 x = 100 x 2 = 25 x=5 2x 10 θ N AC = a 2 + a 2 = 2a AC a AH = = 2 2 sin θ sin α C 1 α Option A 2 D C a H θ A V a VH = AV − AH = 2 a 1 2 sin ∠VAH = = a 2 2 D 1m o 45 a Chapter 11 – Trigonometric (Applications) Q58 XC 1 = sin θ sin α Option C B X Chapter 11 – Trigonometric (Applications) Q59 A B Chapter 11 – Trigonometric (Applications) Q60 α + α + β + β = 180o 3α = 360o , α = 120o α + β = 90o The required different 2 = 2π (1) − 3 × 12 + 12 − 2(1)(1) cos120o AC = (5 + 5) − 6 = 8 1 Area of ∆ABC = × 6 × 8 = 24 2 = 2π − 3 3 C β α 6 α β A 5 M 5 1 α α 1 α 1 5 Option C Wall Option B Chapter 11 – Trigonometric (Applications) Q57 2 10 m b 3x Ray of sunlight S 60o E Option D AD = XC = Ray of sunlight B Option E 10 10/12/2015 Chapter 11 – Trigonometric (Applications) Q61 Chapter 11 – Trigonometric (Applications) Q62 ∠HAC = 90o BD = 32 + 42 − 2(3)(4) cos(180o − 60o ) ∠ABC = 90o = 37 H NORTH ∠HBC = 90o A D A 3 60 o Option E B Option E C 4 B Chapter 11 – Trigonometric (Applications) Q63 Chapter 11 – Trigonometric (Applications) Q64 α = 90o AB = 2r AC = AB cos 30o = 3r C α o BC = AB sin 30 = r 1 3 2 ( AC )( BC ) = r = 3A 2 2 r= 2 30o B Option C Chapter 11 – Trigonometric (Applications) Q65 YZ XY = o sin 60 sin 45o XY sin 45o 2 = = o YZ sin 60 3 2 A1 12 π ( XY2 ) 2 XY 2 = 1 YZ 2 = = A2 2 π ( 2 ) 3 YZ Y A2 A1 60 Option C X o 45 AB AC = sin α sin 30o DE CD = sin α sin120o AB AC sin120o sin α = DE CD sin 30o sin α AB = 3 DE Option D E D 120o α α C A 30o B Chapter 11 – Trigonometric (Applications) Q66 Q P C o Z AC BC = o sin120 sin 30o AC sin120o = = 3 BC sin 30o 1 1 BCh1 = ACh2 2 2 h1 AC = = 3 h2 BC Option B h1 B 120o 30o A h2 C 11 10/12/2015 Chapter 11 – Trigonometric (Applications) Q67 Chapter 11 – Trigonometric (Applications) Q68 (35o + α ) + 75o = 180o XO = 2a (2b) 2 + (2c) 2 = b2 + c2 2 EX = XO 2 + EO 2 o α = 70 The required bearing N N 70o E B A 35o 75o B H 2a G 2c O E 0 Option B Option D Chapter 11 – Trigonometric (Applications) Q69 E F 2b Chapter 11 – Trigonometric (Applications) Q70 XO = 2a h = 3h tan 30o h b= ,b = h tan 45o a 2 + b 2 = 3h 2 + h 2 = 302 a 2 + b 2 = 3h 2 + h 2 = 900 h = 15 a= 2 2 (2b) + (2c) = b2 + c2 2 XO tan θ = A EO 2a = 2a b2 + c2 D EO = Option E C X = (2a) 2 + b 2 + c 2 α A D EO = E C X B H θ G 2c O h 45 bo a 30 East 0 o 30 m Option B F 2b P South Chapter 11 – Trigonometric (Applications) Q71 Chapter 11 – Trigonometric (Applications) Q72 10 = 10 2 cm sin 45o BC 10cm = , BC = 10 cm o o o o sin(180 − 45 − 75 − 30 ) sin30o AD = AB = (10 2)2 + 102 − 2(10 2)(10) cos 75o = 15 cm cor. to nearest cm A D 45o 10 cm 32 + 42 − 22 7 = 2(3)(4) 8 3 B 30 Option B cos θ = 75o 2 θ o Option D 4 C 12 10/12/2015 Chapter 11 – Trigonometric (Applications) Q73 sin θ sin135o 1 = ,sin θ = 3 3 2 cos 2 θ + sin 2 θ = 1 8 8 cos θ = = 9 3 sin θ 1 tan θ = = cos θ 8 Chapter 11 – Trigonometric (Applications) Q74 4 =2 2 2 4 + 22 + 4 2 OB = =3 2 θ XB 2 sin = = 2 OB 3 XB = 2 135o θ H G F E 4 O θ 3 C D Option B A Option A Chapter 11 – Trigonometric (Applications) Q75 2 B X Chapter 11 – Trigonometric (Applications) Q76 O AM = AN = OM = ON N 2 cm AM 2 + OM 2 = 22 , AM = 2 cm M A ON MN 2 cm C = , MN = 2 cm 2 cm 2 2cm OC 2 2 cm B ∆AMN is equilateral with sides 2 cm The required area 1 3 = ( 2)2 sin 60o = cm 2 2 2 Option D Chapter 11 – Trigonometric (Applications) Q77 B c=6 A 30o B c=6 a A C a 30o C Option C Chapter 11 – Trigonometric (Applications) Q78 a = 52 + 82 − 2(5)(8)( −54 ) = 153 With the notation in the figure o θ + φ = 180 AC = OX − r sin φ , BD = OX + r sin φ AC + BD = 2OX AC × BD = OX 2 − r 2 sin 2 φ 6sin 30o < a < 6 3< a < 6 r B r r a 8 Option D C Option A 5 A X 13 10/12/2015 Chapter 11 – Trigonometric (Applications) Q79 CB = BA and BP // AX CP = PX , AX = 2 BP PX 1 tan θ = = AX 2 Chapter 11 – Trigonometric (Applications) Q80 The required perimeter 1 1 = 3 +1+1+ o tan 30o tan 30 1 = 6 1 + o tan 30 A θ B θ 1 X P Option E 3 2 5 + 12 2 = 3 13 30o B : CA : BC AB = ∠A : ∠B : ∠C = 1: 2 : 3 BC : CA : AB ≠ a : b : c E D F a : b : c = sin A : sin B : sin C 3 G Option C A Chapter 11 – Trigonometric (Applications) Q82 Chapter 11 – Trigonometric (Applications) Q81 tan θ = 1 1 C Option C C θ C 12 A 5 B Chapter 11 – Trigonometric (Applications) Q83 The bearing of B from A = 180o + θ = 180o + 75o = 255o Option A Chapter 11 – Trigonometric (Applications) Q84 θ = 180o − 120o = 60o AC = 22 + 52 − 2(2)(5) cos 60o A = 19 θ B D 120o C A 75o 2 5 θ B Option E Option A 14 10/12/2015 Chapter 11 – Trigonometric (Applications) Q85 BC = AC sin 30o = 3 PC 5 tan θ = = BC 3 P Chapter 11 – Trigonometric (Applications) Q86 3 π = cos AB 6 3 AB = =2 3 cos π6 C 5 3 6 A C B π 6 O θ 30o A Option C Option D B Chapter 11 – Trigonometric (Applications) Q87 AC AB = sin B sin C sin B 5 2 AC = 8 × = 8× = 6 sin C 6 3 A 8 B C Option B Chapter 11 – Trigonometric (Applications) Q89 a 2 = b 2 + c 2 − 2bc cos150o Chapter 11 – Trigonometric (Applications) Q88 BD = cos θ AB BD = p cos θ BD = tan θ CD p cos θ sin θ = CD cos θ p cos 2 θ CD = sin θ Option E A D p θ 90o - θ C Chapter 11 – Trigonometric (Applications) Q90 α = 30o β = 45o − 30o = 15o The bearing of B from A a 2 = b 2 + c 2 + 3bc = 180o − 15o = 165o A c 150o θ B A N 30o α β b O B Option E a C B Option D 15 10/12/2015 Chapter 11 – Trigonometric (Applications) Q91 BD AD = o o sin(180 − 44 − 91 ) sin 44o BD sin 45o = > 1, BD > AD AD sin 44o DC AD = o o sin(91 − 47 ) sin 47o DC sin 44o = < 1, DC < AD AD sin 47o Chapter 11 – Trigonometric (Applications) Q92 BC 3 o BF = BC tan 60 = 3BC AB 1 tan θ = = BF 3 AB = BC tan 30o = o A C 30o 60o B A H θ 91o 44o B Option C D 47o C D Chapter 11 – Trigonometric (Applications) Q93 Option A E G F Chapter 11 – Trigonometric (Applications) Q94 ∠ACF = 90 o BD = d sin θ PD = DB tan θ ∠BDF = ∠ACE P PB = d sin θ tan θ ∠DEG = 60o D θ A θ d B Option B Option B Chapter 11 – Trigonometric (Applications) Q95 With the notation in the figure 2 2 x = 2 + 3 − 2 × 2 × 3 × cos 70 = 2.98 o Chapter 11 – Trigonometric (Applications) Q96 With the notation in the figure a = tan 35o , a = tan 35o b 2a tan(θ + 35o ) = = 2 tan 35o b θ + 35o = 54.5o θ o = 19.5o a Option B Option B a b 16 10/12/2015 Chapter 11 – Trigonometric (Applications) Q97 Chapter 11 – Trigonometric (Applications) Q98 With the notation in the figure o o o θ = 20 + (180 − 130 ) = 70 o o φ = 80 − 20 = 60 With the notation in the figure a=2 o o b = 4 2 + 32 = 5 400 m LB = sin60 o sin 70 o LB = tan θ = θ 400 sin 70o m sin 60o Option D a 2 = b 5 θ = 22o a b θ Option A φ Chapter 11 – Trigonometric (Applications) Q99 Chapter 11 – Trigonometric (Applications) Q100 With the notation in the figure a sin θ = c a tan θ = b a a sin θ + tan θ = + c b With the notation in the figure 52 + 4 2 − 7 2 cos θ = = −0.2 2(5)( 4) Option A Option C θ = 102o Chapter 11 – Trigonometric (Applications) Q101 Chapter 11 – Trigonometric (Applications) Q102 With the notation in the figure 3a tan θ = =3 3a − a − a 1 ×10 × 5 × sin ∠ABC = 18 2 sin ∠ABC = 0.72 θ = 72o ∠ABC = 46o or 134o a 3a Option E Option C a 17 10/12/2015 Chapter 11 – Trigonometric (Applications) Q103 Chapter 11 – Trigonometric (Applications) Q104 With the notation in the figure r r = sin α , a = a sin α DC a r sin β = , DC = sin β sin γ sin α sin γ With the notation in the figure 1m = tan 45o , a = 1 m, b = a 2 + 12 = 2 m a 1 tan θ = , θ = 35o 2 a θ Option C b a Chapter 11 – Trigonometric (Applications) Q105 Option A Chapter 11 – Trigonometric (Applications) Q106 With the notation in the figure With the notation in the figure 30o πa 2 Area of sector OXY = ( 2a) π × = 3600 3 1 a2 o Area of ∆OXZ = (a)(2a) sin 30 = 2 2 a 2 πa 2 The ratio = : = 3 : 2π 2 3 a = 90o − 50o = 40o 2 b = 180o − 40o − 60o = 80o The bearing of B from A is 080o b 2a a Option D a a Chapter 11 – Trigonometric (Applications) Q107 Option B Chapter 11 – Trigonometric (Applications) Q108 With the notation in the figure AD = sin 60o , AD = 4 sin 60o = 2 3 cm 4 cm AD = tan 30o DC AD 2 3 DC = = 6 cm tan 30o 33 With the notation in the figure 7 2 + 82 − 9 2 2 cos x o = = 2(7)(8) 7 Option A Option E x o = 73.4o 18 10/12/2015 Chapter 11 – Trigonometric (Applications) Q109 Chapter 11 – Trigonometric (Applications) Q110 With the notation in the figure With the notation in the figure SX = 6 cm, XR = 10 − 5 = 5 cm, ∠SXR = 60 o a = 40o , b = 20 o , ∠RPS = 20o + 40o = 60o c = 90o − 40o = 50o PR 5m = sin 50o sin60o x = 6 2 + 52 − 2(6)(5) cos 60o = 5.57 PR = Option B b a Option B X Chapter 11 – Trigonometric (Applications) Q111 θ 2 2 b = 2 2 − 12 = 3 , a = = 1 2 θ a 1 sin = = 2 b 3 c Chapter 11 – Trigonometric (Applications) Q112 Let X , Y be the mid - points of AB and CD respectively. Z be the mid - point of XY ∠XVY = θ , ∠ZVY = 5 sin 50o m sin 60o With the notation in the figure a = 20o , b = 30 o , ∠BAC = 20 o + 30o = 50 o 180o − 50o c=d = = 65o 2 e = 180o − 30o − 65o = 85o ab The required bearing is S 85o W b d Option C X Z a Chapter 11 – Trigonometric (Applications) Q113 x = 12 + 12 − 2(1)(1) cos 80o (or 2 ×1sin 40o ) = 1.29 Y Option E c e Chapter 11 – Trigonometric (Applications) Q114 AC AB = sin 60o sin(180o − 60o − 75o ) AC sin 60o 6 = = AB sin 45o 2 Option B Option D 19 10/12/2015 Chapter 11 – Trigonometric (Applications) Q115 With the notation in the figure 4 2 + 52 − 6 2 1 cos a = = 2( 4)(5) 8 a = 82.819o With the notation in the figure 1 tan a = , a = 26.565o 2 2 tan( x o + a) = = 1, x o + a = 45o 2 x = 45 − 26.565 = 18.4 Option B ∠ABC = 180o − 82.819o = 97 o Option B a Chapter 11 – Trigonometric (Applications) Q117 With the notation in the figure 2 Chapter 11 – Trigonometric (Applications) Q116 a Chapter 11 – Trigonometric (Applications) Q118 With the notation in the figure 1 1 (10)(8) sin θ = (5)(4) sin 30o 2 2 1 sin θ = 8 θ = 7.2o 2 DM = 9 + 12 = 15 cm DM 15 5 cos ∠EMD = = = EM 36 12 ∠EMD = 65o Option C Option A Chapter 11 – Trigonometric (Applications) Q119 With the notation in the figure a 6 = sin 50o sin(180o − 50 o − 60o ) 6 sin 50o a= sin 70o 1 1 sin 50o sin 60o Area = ( a)(6) sin 60o = 6 2 = 12.7 cm2 2 2 sin 70o Chapter 11 – Trigonometric (Applications) Q120 With the notation in the figure a 2 = 6 2 + 52 − 2(6)(5) cos x o = 7 2 + 7 2 − 2(7)(7) cos 66o cos x o = 0.04767 x = 87.3 a cm Option C Option D a cm 20 10/12/2015 Chapter 11 – Trigonometric (Applications) Q121 Chapter 11 – Trigonometric (Applications) Q122 With the notation in the figure With the notation in the figure k = b sin θ , h = a cos θ BC = 2a tan 20o BC tan θ = = 2 tan 20o a CF = h + k = a cos θ + b sin θ θ h cm k cm Option D Chapter 11 – Trigonometric (Applications) Q123 Option A a a Chapter 11 – Trigonometric (Applications) Q124 With the notation in the figure With the notation in the figure a = sin α , b = cos α , c = b sin β = cos α sin β , d = b cos β = d cos α cos β The required volume a = 40o , b = 90o − a = 50o , c = b = 50o The required bearing 310o a 1 1 = adc = sin α cos 2 α sin β cos β m3 3 3 b a cm c cm b cm Option D c Option E d cm Chapter 11 – Trigonometric (Applications) Q125 Chapter 11 – Trigonometric (Applications) Q126 With the notation in the figure 2 With the notation in the figure 2 x = 2 2 + 32 − 2(2)(3) cos 60o a = (3k ) + (4k ) = 5k sin θ = = 7 ≈ 2.65 4k 4 = a 5 a 4k Option E Option A 3k 21 10/12/2015 Chapter 11 – Trigonometric (Applications) Q127 With the notation in the figure 6 2 + 6 2 − (6 3 ) 2 − 1 cos θ = = 2(6)(6) 2 o θ = 120 arc ABC = Chapter 11 – Trigonometric (Applications) Q128 With the notation in the figure θ = 180o − 54o − 66o = 60o 15 − 5 x = sin θ sin 54o 10 sin 54o x= ≈ 9.34 sin 60o 120o × (2π (6)) = 4π cm 360o θ θ Option B Option B Chapter 11 – Trigonometric (Applications) Q129 Chapter 11 – Trigonometric (Applications) Q130 A With the notation in the figure 6 3 tan θ = = 8 4 8 km θ ≈ 36.9o The required bearing S 36.9o E L With the notation in the figure θ 6 km B Option E Chapter 11 – Trigonometric (Applications) Q131 With the notation in the figure x AC = sin 48o sin(180o − 48o − 55o ) x sin 77o AC = sin 48o Option A AB = 32 + 4 2 = 5 m AB × CD AC × BC 3× 4 = , CD = = 2.4 m 2 2 5 5 25 tan θ = = 2.4 12 Option D Chapter 11 – Trigonometric (Applications) Q132 1 Area of ∆AEB = (3)( 2) sin 50o = 3 sin 50o cm 2 2 Area of ABCD = 4 × Area of ∆AEB o = 12 sin 50o = 9.2 cm2 Option C 22 10/12/2015 Chapter 11 – Trigonometric (Applications) Q133 Chapter 11 – Trigonometric (Applications) Q134 22 = x 2 + (2 x ) 2 − 2( x )(2 x ) cos 70 o x2 = 4 5 − 4 cos 70o x= 4 ≈ 1.05 5 − 4 cos 70o With the notation in the figure 20 tan 50o − 9 20 θ ≅ 36.6o tan θ = θ 9m Option B Option C 50o 20 m Chapter 11 – Trigonometric (Applications) Q135 With the notation in the figure a b=c= = 2a sin 30o FH = a 2 + a 2 = 2a cos ∠FBH = Chapter 11 – Trigonometric (Applications) Q136 a With the notation in the figure a c θ = 90o − 38o = 52o The bearing is N 52o W b ( 2a ) 2 + ( 2a ) 2 − ( 2 a ) 2 3 = 2(2a )(2a ) 4 ∠FBH ≈ 41o Option B Chapter 11 – Trigonometric (Applications) Q137 With the notation in the figure 152 + 16 2 − 132 3 = cos θ = 2(15)(16) 20 θ Option B Chapter 11 – Trigonometric (Applications) Q138 ∠CAF = 90o ∠DHG = 90o ∠AGC ≠ 90o Option B Option A 23 10/12/2015 Chapter 11 – Trigonometric (Applications) Q139 With the notation in the figure PS ( y − x) cm = sin β sin(180 o − α − β ) Chapter 11 – Trigonometric (Applications) Q140 With the notation in the figure AC = 82 + 10 2 − 2(8)(10) cos 60o = 84 ≈ 9.17 ( y − x) sin β PS = cm sin(α + β ) Option D Option B Chapter 11 – Trigonometric (Applications) Q141 With the notation in the figure 12 a = = 6, b = 10 2 − 6 2 = 8 2 b 8 4 sin x = = = 10 10 5 Chapter 11 – Trigonometric (Applications) Q142 With the notation in the figure a = 12 + 12 = 2 , b = 2 2 XY = 2 2 + 2 = 6 cm b b a a Option D Option D Chapter 11 – Trigonometric (Applications) Q143 With the notation in the figure 10 tan α = = 1.125 8 10 tan β = =1 6 2 + 82 10 10 tan γ = = ≈ 1.17 2 2 73 3 +8 10 tan δ = =2 32 + 4 2 Chapter 11 – Trigonometric (Applications) Q144 With the notation in the figure θ = 90o − 27 o = 63o The required bearing is S 63o E θ Option D α δ γ β Option D 24 10/12/2015 Chapter 11 – Trigonometric (Applications) Q145 Chapter 11 – Trigonometric (Applications) Q146 With the notation in the figure sin θ sin 30o = 5 3 5 sin 30o 5 sin θ = = 3 6 o θ ≈ 56 With the notation in the figure Option C Option C cos θ = Chapter 11 – Trigonometric (Applications) Q147 With the notation in the figure 6 2 + 6 2 − 32 7 = 2(6)(6) 8 Chapter 11 – Trigonometric (Applications) Q148 With the notation in the figure AB AB = AB, BC = = 3 AB tan 45o tan 30 o AB 1 tan ∠BCD = = 3 AB 3 ∠BCD = 30o 3 a = EB sin 30o = 2 cos 30o × sin30o = cm 2 1 3 3 The required area = × 2 × = cm 2 2 2 2 BD = a Option B Option B Chapter 11 – Trigonometric (Applications) Q149 With the notation in the figure a VA = VB = = 2a cos 45o Chapter 11 – Trigonometric (Applications) Q150 With the notation in the figure 42o + 28o ∠AQP = = 35o 2 θ = 35o − 28o = 7 o AB = 2a cos 45o = 2a The required bearing is N 7 o E ∆VAB is an equilateral triangle. θ ∠AVB = 60o Option B a Option A 25 10/12/2015 Chapter 11 – Trigonometric (Applications) Q151 Chapter 11 – Trigonometric (Applications) Q152 With the notation in the figure 2 With the notation in the figure The required angle is ∠BDF 2 a = 4 + (7 − 4) = 5 4 sin x = 5 a Option C Option B Chapter 11 – Trigonometric (Applications) Q153 Let M be the mid - point of AB, X is the projection of V on ABC 3 3 VM = MC = 32 − (1.5) 2 = 2 2 V 3 3 2 1 3 3 VX = ( ) − × = 6 cm 2 3 2 Chapter 11 – Trigonometric (Applications) Q154 With the notations in the figure θ = 360o − (180o − 110o ) = 290o The bearing of B from A is 290o C A A 110o θ B X M Option C B Chapter 11 – Trigonometric (Applications) Q155 With the notations in the figure 90o − 30o ∠ABD = ∠DBC = = 30o 2 c DC = BC tan 30o = c sin 30o × tan 30o = 2 3 Option B Option C Chapter 11 – Trigonometric (Applications) Q156 With the notations in the figure The required angle is ∠BFD Option D 26 10/12/2015 Chapter 11 – Trigonometric (Applications) Q157 With the notations in the figure x 16 = sin(180o − 80o − 30o ) sin 80o x= With the notations in the figure BD BD AD = = 3BD, DC = = BD tan 30o tan 45o 16 sin 70o ≈ 15 sin 80o AD : DC = 3BD : BD = 3 : 1 Option B Option C Chapter 11 – Trigonometric (Applications) Q159 With the notations in the figure 2 Chapter 11 – Trigonometric (Applications) Q158 2 2 12 + 5 = 144 + 25 = 169 = 13 , α = 90 5 tan θ = 12 Chapter 11 – Trigonometric (Applications) Q160 With the notations in the figure o a = 130o − 60 o = 70o , b = 120o BD (150 − 80) cm = sin b sina BD = 70 sin 120o cm ≈ 65 cm sin 70o α α Option A Chapter 11 – Trigonometric (Applications) Q161 Option D b Chapter 11 – Trigonometric (Applications) Q162 HF = BF 2 + 2 2 , GE = AE 2 + 32 With the notations in the figure BF = AE < HF < GE θ = 40o CF DE CF DE = > > BF AE HF GE The angle of depression of Q from P is 40o tan b = tan a > tan c > tan d P d <c<a =b θ 40o Q Option D Option A 27 10/12/2015 Chapter 11 – Trigonometric (Applications) Q163 With the notations in the figure AB 3 tan θ = = BC 2 θ ≈ 56o Chapter 11 – Trigonometric (Applications) Q164 With the notations in the figure 1 AC 4 Area of ∆ACD = 4 × Area of ∆ADE = 4 cm 2 AC cos 60o = AD, AE = AD cos 60o = Area of ∆ABC = Area of ∆ACD = 4 cm 2 Option D Option B Chapter 11 – Trigonometric (Applications) Q165 With the notations in the figure Chapter 11 – Trigonometric (Applications) Q166 With the notations in the figure 7 sin(330o + θ ) = 0 AD = a − b = BC sin x − CD cos y 330o + θ = 360o θ = 30o a Option B Option C b Chapter 11 – Trigonometric (Applications) Q167 With the notations in the figure 12 XN = = 6 cm 2 MN = 82 + 152 = 17 cm tan θ = Chapter 11 – Trigonometric (Applications) Q168 With the notations in the figure CD DE ∆CDE ~ ∆BAE , = AB AE o a = 90 XN 6 = MN 17 N CD = cosθ AB a θ Option B Option B 28 10/12/2015 Chapter 11 – Trigonometric (Applications) Q169 Chapter 11 – Trigonometric (Applications) Q170 With the notations in the figure With the notations in the figure AD = AC sin β AD AC sin β BD = = tan α tan α AC tan α = BD sin β The required angle is ∠AED Option B Option D Chapter 11 – Trigonometric (Applications) Q171 With the notations in the figure 2 3 ( 2a ) 2 − a 2 3 7 AD = = a, BD = a 2 + a = a 2 2 2 2 o sin θ sin 30 = AD BD 3 a× 1 21 sin θ = 2 7 2 = 30o 14 a 2 Chapter 11 – Trigonometric (Applications) Q171 With the notations in the figure MC = NC = a 2 + ( 2a) 2 = 5a MN = ( 2a) 2 + (2a) 2 = 2 2a cosθ = MN 2 MC = 2 10 = 5 5 a 2a 2a Option D Option D a 2a a 29
© Copyright 2025 Paperzz