Analysis 2 Summer Assignment Complete the following summer

1
Analysis 2 Summer Assignment
Complete the following summer assignment based on content from Analysis I by the first day
of class next year. Show all work with solutions on a separate piece of paper for full credit.
There will be an assessment based on these topics at the beginning of the school year.
Factor the following expressions:
1. π‘₯ 4 βˆ’ 16
2. π‘₯ 2 + 2π‘₯𝑦 + 𝑦 2
3. π‘₯ 2 + 5π‘₯𝑦 + 4𝑦 2
4. 3π‘Ž2 βˆ’ 10π‘Ž βˆ’ 25
5. π‘₯ 2 π‘Ž + π‘₯ 2 𝑏 βˆ’ 16π‘Ž βˆ’ 16𝑏
6. π‘₯ 2 + 4𝑦 2
7. 6𝑧 3 βˆ’ 3𝑧 2 βˆ’ 30𝑧
8. 8π‘Ž3 + 27
Solve the following:
1.
1
π‘₯βˆ’2
=
3
π‘₯+2
βˆ’
6π‘₯
2.
π‘₯ 2 βˆ’4
15
π‘₯
6
βˆ’4= +3
π‘₯
Simplify the following expressions:
1.
4.
3π‘Ž+3𝑏
2.
π‘Ž2 +2π‘Žπ‘+𝑏2
𝑏2 βˆ’3π‘βˆ’10
8𝑏2
÷
2π‘βˆ’10
16𝑏2
5.
(π‘₯βˆ’π‘¦)2
3.
π‘¦βˆ’π‘₯
π‘₯+𝑦
π‘₯
π‘₯2 βˆ’π‘¦2
π‘₯2 𝑦
6.
π‘Ž2 βˆ’4𝑏2
π‘Ž2 βˆ’π‘2
βˆ™
3π‘Ž2 𝑏2
π‘Ž+𝑏
1
𝑑+1
3
1+
π‘‘βˆ’1
1+
Graph the following linear equations:
1. 3π‘₯ βˆ’ 2𝑦 = 6
4
2. 𝑦 = π‘₯ βˆ’ 3
5
Write a linear equation for each scenario in point-slope form and slope-intercept form:
1. Having an π‘₯-intercept of 5 and a 𝑦-intercept of βˆ’2.
2. Passing through the points (βˆ’1,2) and (3,4)
3. A line passing through the point (2,1) and
A. Parallel to 2π‘₯ βˆ’ 7𝑦 = 12
B. Perpendicular to 𝑦 = 3π‘₯ βˆ’ 1
2
Sketch the given parabola. Be sure to identify the vertex and all intercepts.
1. 𝑦 = π‘₯ 2 + 8π‘₯ + 12
2. 𝑦 = π‘₯ 2 βˆ’ 25
3. 𝑦 = 2π‘₯ 2 βˆ’ 4π‘₯ + 5
Solve the following:
1. 𝑛2 βˆ’ 7 = 12
2. π‘Ž2 + 4π‘Ž = 5
3. 3π‘₯ 2 βˆ’ π‘₯ βˆ’ 2 = 0
4. 4𝑦 2 βˆ’ 5 = 3𝑦
Solve each by completing the square:
1. π‘₯ 2 + 7π‘₯ + 2 = 0
2. 3𝑦 2 βˆ’ 𝑦 = 2
Find all roots of the given polynomial then sketch. Use a graphing calculator to find
maximum and minimum values.
1. 𝑦 = βˆ’(π‘₯ βˆ’ 3)2 (π‘₯ + 4)
2. 𝑦 = π‘₯ 4 βˆ’ 37π‘₯ 2 + 36
3. 𝑦 = 4π‘₯ 3 + 4π‘₯ βˆ’ 17π‘₯ 2
4. 𝑦 = (4 βˆ’ π‘₯)(π‘₯ + 7)2 (π‘₯ βˆ’ 1)3
Solve each and graph the solution on a number line.
(π‘₯βˆ’3)2 (π‘₯βˆ’5)
1. π‘₯ 2 βˆ’ 7π‘₯ + 10 β‰₯ 0
2.
3. 3|π‘₯| + 7 > 5
4. |2π‘₯ βˆ’ 13| ≀ 2
π‘₯+1
<0
Sketch each graph:
3
1. 𝑦 = |π‘₯ βˆ’ 7| βˆ’ 2
2. 𝑦 = βˆšβˆ’π‘₯ + 3 + 1
3. 𝑦 = βˆ’ √π‘₯ βˆ’ 4
4. 𝑓(π‘₯) = 2(π‘₯ + 5)2 + 6
5. 𝑦 β‰₯ βˆ’π‘₯ 2 + 9
6. βˆ’2𝑦 > π‘₯ + 4
Determine if the given function is even, odd, neither, or not a function.
1. 𝑓(π‘₯) = π‘₯ 2 + 2π‘₯ βˆ’ 1
2. 𝑔(π‘₯) = π‘₯ 3 βˆ’ 7
3. β„Ž(π‘₯) = ±βˆšπ‘₯ 2 βˆ’ 3
4. π‘˜(π‘₯) = π‘₯ 2 βˆ’ 4π‘₯ 4
3
Find g-1(x) and the domain and range of g(x) and g-1(x)
1. g(x) = 9 – x2, x ≀ 0
2. g(x) = (x – 1)2 + 1, x ≀ 1
Sketch the following:
1. β„Ž(π‘₯) = 2βˆ’π‘₯+1 βˆ’ 4
2. π‘š(π‘₯) = log 2 (π‘₯ + 2) + 6
Solve the following equations:
1. π‘₯ 2 + 16 = 0
2. π‘₯ = √12 βˆ’ π‘₯
3. √π‘₯ βˆ’ 5 + √π‘₯ = 5
4. √4π‘₯ + 5 βˆ’ √π‘₯ + 4 = √π‘₯ βˆ’ 1
Simplify the following expressions
3π‘Žπ‘ 2
2. π‘Žπ‘ βˆ’3 + π‘Žβˆ’4 𝑏 2
1. (βˆ’ 2 )
2π‘Ž 𝑐
3.
(π‘π‘ž)3
4.
(𝑝2 π‘ž βˆ’1 )2
9𝑑 βˆ’2
π‘Ÿ
+ 3π‘Ÿπ‘‘ βˆ’3 βˆ’
3
𝑑3
Solve the following equations:
1. 23π‘₯ =
4.
3000
2+𝑒 2π‘₯
4π‘₯βˆ’1
8π‘₯+5
=2
2. ln(π‘₯) βˆ’ ln(2) = 0
3. log(π‘₯) βˆ’ 2 = 0
5. 𝑒 2π‘₯ βˆ’ 4𝑒 π‘₯ βˆ’ 5 = 0
6. log(π‘₯ 2 ) = 6
7. log 3 π‘₯ + log 3 (π‘₯ 2 βˆ’ 8) = log 3 (8π‘₯)
8. ln(√π‘₯ βˆ’ 8) = 5
Simplify the following:
π‘₯𝑦
5
2. log √
1. log ( 2 )
𝑧
π‘Ž4
𝑏2
Identify if the given functions are one-to-one:
1. 𝑓(π‘₯) = π‘₯ 3 βˆ’ 7π‘₯
2. 𝑔(π‘₯) = √π‘₯ βˆ’ 3 + 1
3. β„Ž(π‘₯) = 4π‘₯ 4 βˆ’ 2π‘₯ 2 + 1
Sketch the following semicircles:
1. 𝑓(π‘₯) = √4 βˆ’ π‘₯ 2 + 1
2. π‘₯ = √9 βˆ’ (𝑦 + 1)2 βˆ’ 4
4
Find the distance and midpoint of the segment containing the given endpoints.
1. (3, βˆ’7), (5,6)
2. (3, π‘˜), (π‘˜, βˆ’3)
Simplify the following:
1. 𝑖 213
2. (3 βˆ’ 4𝑖) βˆ’ (βˆ’6 + 7𝑖)
5. √75 βˆ’ √125 + √200
3.
6.
4+𝑖
4. (3 + 2𝑖)(2 βˆ’ 5𝑖)
6βˆ’π‘–
3
7. (4 + √3)(1 βˆ’ 2√3)
4βˆ’βˆš5
Calculate the following:
1. If Ron put $1000 of his money into a bank account that earns a 2.3% annual interest rate,
how much will he earn after 10 years if the interest is compounded
A. yearly?
B. monthly?
C. continuously?
Solve:
1. The second and fifth terms of an arithmetic sequence are 5 and 38 respectively. Find the
explicit formula for the sequence.
2. Accurately classify the sequence and then create a corresponding explicit and recursive
formula for finding the nth terms of each sequence.
A.
32, 30, 28, 26,…..
B.
9, -3, 1, - 1 ,…..
3. Find a quadratic model and term number for the last given term for:
10, 12, 16, 22, 30, 40, …. 516
4. Determine the sum.
A.
B.