IM3H Sullivan Unit 5 Review

Integrated Math 3 Honors
Sullivan Unit 5 Review
Verify the identity.
1. 𝑐𝑠𝑐 2 𝑒 βˆ’ cos 𝑒 sec 𝑒 = π‘π‘œπ‘‘ 2 𝑒
2. (1 + π‘‘π‘Žπ‘›2 𝑒)(1 βˆ’ 𝑠𝑖𝑛2 𝑒) = 1
3. tan πœ— βˆ™ csc πœ— = sec πœ—
cos(𝛼+𝛽)
4.
= cot 𝛽 βˆ’ tan 𝛼
cos 𝛼 sin 𝛽
5. (sin π‘₯ + cos π‘₯)2 = 1 + sin 2π‘₯
sin 2π‘₯
6.
= cot π‘₯
1βˆ’cos 2π‘₯
Complete the identity.
(sec π‘₯+1)(sec π‘₯βˆ’1)
7.
=
2
π‘‘π‘Žπ‘› π‘₯
csc π‘₯ cot π‘₯
8.
=
sec π‘₯
9. tan π‘₯(cot π‘₯ βˆ’ cos π‘₯) =
sin π‘₯
cos π‘₯
10.
+
=
cos π‘₯
1+π‘‘π‘Žπ‘›155° tan 35°
5πœ‹
2 tan 8
1βˆ’π‘‘π‘Žπ‘›2
Use a half-angle formula to find the exact value.
5πœ‹
17. tan 165°
18. sin
12
Use a sum/difference formula to find the exact value.
19. sin 165°
20. tan 105°
Use the given information to find the exact value for ae.
a. sin(𝛼 + 𝛽)
d. sin 2𝛽
𝛼
b. tan(𝛼 βˆ’ 𝛽)
e. π‘π‘œπ‘ 
2
c. cos(𝛼 + 𝛽)
21. sin 𝛼 =
cos 𝛽 = βˆ’
cos 𝛼 sin 𝛽
5. (sin π‘₯ + cos π‘₯)2 = 1 + sin 2π‘₯
sin 2π‘₯
6.
= cot π‘₯
1βˆ’cos 2π‘₯
Complete the identity.
(sec π‘₯+1)(sec π‘₯βˆ’1)
7.
=
2
π‘‘π‘Žπ‘› π‘₯
csc π‘₯ cot π‘₯
8.
=
sec π‘₯
9. tan π‘₯(cot π‘₯ βˆ’ cos π‘₯) =
sin π‘₯
cos π‘₯
10.
+
=
Solve the equation on the interval [0, 2πœ‹).
23.
24.
25.
26.
√2
cos 2π‘₯ =
2
2𝑠𝑖𝑛2 π‘₯ = sin π‘₯
2π‘π‘œπ‘  2 π‘₯ + sin π‘₯ βˆ’ 2 = 0
𝑠𝑖𝑛2 π‘₯ βˆ’ π‘π‘œπ‘  2 π‘₯ = 0
Name_________________________________
Period__________Date____________________
Use a half-angle formula to find the exact value.
5πœ‹
17. tan 165°
18. sin
12
Use a sum/difference formula to find the exact value.
19. sin 165°
20. tan 105°
Use the given information to find the exact value for ae.
a. sin(𝛼 + 𝛽)
d. sin 2𝛽
𝛼
b. tan(𝛼 βˆ’ 𝛽)
e. π‘π‘œπ‘ 
2
c. cos(𝛼 + 𝛽)
21. sin 𝛼 =
1+π‘‘π‘Žπ‘›155° tan 35°
5πœ‹
2 tan 8
5πœ‹
8
7
25
40
cos 𝛽 = βˆ’
sin π‘₯
Use trigonometric identities and the unit circle to find
the exact value.
11. cos 20° cos 40° βˆ’ sin 20° sin 40°
12. 2 sin 75° cos 75°
2πœ‹
7πœ‹
2πœ‹
7πœ‹
13. sin cos βˆ’ cos sin
9
18
9
18
14. π‘π‘œπ‘  2 112.5° βˆ’ 𝑠𝑖𝑛2 112.5°
tan 155°βˆ’tan 35°
15.
1βˆ’π‘‘π‘Žπ‘›2
, 𝛽 lies in quadrant 3
41
5πœ‹
8
Verify the identity.
1. 𝑐𝑠𝑐 2 𝑒 βˆ’ cos 𝑒 sec 𝑒 = π‘π‘œπ‘‘ 2 𝑒
2. (1 + π‘‘π‘Žπ‘›2 𝑒)(1 βˆ’ 𝑠𝑖𝑛2 𝑒) = 1
3. tan πœ— βˆ™ csc πœ— = sec πœ—
cos(𝛼+𝛽)
4.
= cot 𝛽 βˆ’ tan 𝛼
16.
, 𝛼 lies in quadrant 2
Find all solutions of the equation.
22. 9 cos π‘₯ + 6√2 = 7 cos π‘₯ + 5√2
Integrated Math 3 Honors
Sullivan Unit 5 Review
cos π‘₯
7
25
40
sin π‘₯
Use trigonometric identities and the unit circle to find
the exact value.
11. cos 20° cos 40° βˆ’ sin 20° sin 40°
12. 2 sin 75° cos 75°
2πœ‹
7πœ‹
2πœ‹
7πœ‹
13. sin cos βˆ’ cos sin
9
18
9
18
14. π‘π‘œπ‘  2 112.5° βˆ’ 𝑠𝑖𝑛2 112.5°
tan 155°βˆ’tan 35°
15.
16.
Name_________________________________
Period__________Date____________________
, 𝛼 lies in quadrant 2
41
, 𝛽 lies in quadrant 3
Find all solutions of the equation.
22. 9 cos π‘₯ + 6√2 = 7 cos π‘₯ + 5√2
Solve the equation on the interval [0, 2πœ‹).
23.
24.
25.
26.
√2
cos 2π‘₯ =
2
2𝑠𝑖𝑛2 π‘₯ = sin π‘₯
2π‘π‘œπ‘  2 π‘₯ + sin π‘₯ βˆ’ 2 = 0
𝑠𝑖𝑛2 π‘₯ βˆ’ π‘π‘œπ‘  2 π‘₯ = 0