Integrated Math 3 Honors Sullivan Unit 5 Review Verify the identity. 1. ππ π 2 π’ β cos π’ sec π’ = πππ‘ 2 π’ 2. (1 + π‘ππ2 π’)(1 β π ππ2 π’) = 1 3. tan π β csc π = sec π cos(πΌ+π½) 4. = cot π½ β tan πΌ cos πΌ sin π½ 5. (sin π₯ + cos π₯)2 = 1 + sin 2π₯ sin 2π₯ 6. = cot π₯ 1βcos 2π₯ Complete the identity. (sec π₯+1)(sec π₯β1) 7. = 2 π‘ππ π₯ csc π₯ cot π₯ 8. = sec π₯ 9. tan π₯(cot π₯ β cos π₯) = sin π₯ cos π₯ 10. + = cos π₯ 1+π‘ππ155° tan 35° 5π 2 tan 8 1βπ‘ππ2 Use a half-angle formula to find the exact value. 5π 17. tan 165° 18. sin 12 Use a sum/difference formula to find the exact value. 19. sin 165° 20. tan 105° Use the given information to find the exact value for ae. a. sin(πΌ + π½) d. sin 2π½ πΌ b. tan(πΌ β π½) e. πππ 2 c. cos(πΌ + π½) 21. sin πΌ = cos π½ = β cos πΌ sin π½ 5. (sin π₯ + cos π₯)2 = 1 + sin 2π₯ sin 2π₯ 6. = cot π₯ 1βcos 2π₯ Complete the identity. (sec π₯+1)(sec π₯β1) 7. = 2 π‘ππ π₯ csc π₯ cot π₯ 8. = sec π₯ 9. tan π₯(cot π₯ β cos π₯) = sin π₯ cos π₯ 10. + = Solve the equation on the interval [0, 2π). 23. 24. 25. 26. β2 cos 2π₯ = 2 2π ππ2 π₯ = sin π₯ 2πππ 2 π₯ + sin π₯ β 2 = 0 π ππ2 π₯ β πππ 2 π₯ = 0 Name_________________________________ Period__________Date____________________ Use a half-angle formula to find the exact value. 5π 17. tan 165° 18. sin 12 Use a sum/difference formula to find the exact value. 19. sin 165° 20. tan 105° Use the given information to find the exact value for ae. a. sin(πΌ + π½) d. sin 2π½ πΌ b. tan(πΌ β π½) e. πππ 2 c. cos(πΌ + π½) 21. sin πΌ = 1+π‘ππ155° tan 35° 5π 2 tan 8 5π 8 7 25 40 cos π½ = β sin π₯ Use trigonometric identities and the unit circle to find the exact value. 11. cos 20° cos 40° β sin 20° sin 40° 12. 2 sin 75° cos 75° 2π 7π 2π 7π 13. sin cos β cos sin 9 18 9 18 14. πππ 2 112.5° β π ππ2 112.5° tan 155°βtan 35° 15. 1βπ‘ππ2 , π½ lies in quadrant 3 41 5π 8 Verify the identity. 1. ππ π 2 π’ β cos π’ sec π’ = πππ‘ 2 π’ 2. (1 + π‘ππ2 π’)(1 β π ππ2 π’) = 1 3. tan π β csc π = sec π cos(πΌ+π½) 4. = cot π½ β tan πΌ 16. , πΌ lies in quadrant 2 Find all solutions of the equation. 22. 9 cos π₯ + 6β2 = 7 cos π₯ + 5β2 Integrated Math 3 Honors Sullivan Unit 5 Review cos π₯ 7 25 40 sin π₯ Use trigonometric identities and the unit circle to find the exact value. 11. cos 20° cos 40° β sin 20° sin 40° 12. 2 sin 75° cos 75° 2π 7π 2π 7π 13. sin cos β cos sin 9 18 9 18 14. πππ 2 112.5° β π ππ2 112.5° tan 155°βtan 35° 15. 16. Name_________________________________ Period__________Date____________________ , πΌ lies in quadrant 2 41 , π½ lies in quadrant 3 Find all solutions of the equation. 22. 9 cos π₯ + 6β2 = 7 cos π₯ + 5β2 Solve the equation on the interval [0, 2π). 23. 24. 25. 26. β2 cos 2π₯ = 2 2π ππ2 π₯ = sin π₯ 2πππ 2 π₯ + sin π₯ β 2 = 0 π ππ2 π₯ β πππ 2 π₯ = 0
© Copyright 2026 Paperzz