A-Level Practise Card Trigonometry Q1. State whether the following trigonometric identities are true or false: sin x cot x a) cot x = b) = cos x cos x cosec x c) cosec2x = 1 + cot2 x d) (sec x − tan x)(sec x + tan x) = 1 tan2 x − 1 e) 1 + 2 cos x = tan2 x + 1 f) tan(3x) + tan2 x tan(3x) = sec2 x 2 Q2. Simplify the following expressions as much as possible: 1 − cos2 x a) sin2 x d) cos x + sin x tan x sin x cos y + sin y cos x cos x cos y − sin x sin y 1 − tan2 x e) −1 1 + tan2 x c) tan x cos x sin x b) f) cos(2x) 2 + cos2 x cot2 x Q3. Give all solutions in the range 0 ≤ x ≤ 2π for the following: √ a) 2 cos x = 3 d) 2 sin(3x) = 1 √ b) 3 tan x = 3 √ e) 3 cot(2x) = −3 c) sin x + 2 = 3 f) tan2 x − 3 = 0 Q4. Give all solutions in the range 0 ≤ x ≤ 2π for the following: 3 a) 2 cos(3x) − = −5 cos(3x) 4 c) + 3 cos x = 2 cot x tan x sec2 x b) 2 1 − 2 cos x sin(2x) = 0 d) cos(2x) = 1 − 2 sin2 x Trigonometry (Answers) A1. The answers are as follows: a) false b) true c) true d) true e) false f) false A2. The simplified versions are as follows: a) 1 b) tan(x + y) c) sin2 x d) sec x e) cos(2x) − 1 f) sec2 x A3. The solutions in the given range are as follows: a) π 11π 6, 6 b) π 7π 6, 6 c) π 2 d) π 5π 13π 17π 25π 29π 18 , 18 , 18 , 18 , 18 , 18 e) 5π 11π 17π 23π 12 , 12 , 12 , 12 f) π 2π 4π 5π 3, 3 , 3 , 3 A4. The solutions in the given range are as follows and are approximated to six decimal places where appropriate: a) π 5π 7π 11π 13π 17π 9, 9 , 9 , 9 , 9 , 9 5π 3π 7π b) 0, π4 , π2 , 3π 4 , π, 4 , 2 , 4 , 2π c) 1.131403, 5.151782 d) this identity is true, so every value of x is a solution Created by our Student Ambassadors http://tiny.cc/SMSASAlevels
© Copyright 2026 Paperzz