GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 8, PAGES 1147-1150, APRIL 15, 2000 Atlantic hurricanes and NW Pacific '.typhoons: ENSO spatial impacts on occurrence and landfall M. A. Saunders • R.E. Chandler2 C J. Merchant• andF. P. Roberts• •Benfield GreigHazard Research Centre, Department ofSpace andClimate Physics, University College London, HolmburySt Mary, Dorking,SurreyRH5 6NT, U.K. 2Department of Statistical Science, University College London, Gower Street, London WC1E6BT,U.K. Abstract. Hurricanes are the United States' costliest natural disaster. Typhoonsrankasthemostexpensiveanddeadlynatural catastropheaffecting much of southeastAsia. A significant contributorto the year-to-yearvariability in intensetropical cyclonenumbersin the north Atlantic and northwestPacific is ENSO - the strongestinterannualclimatesignalon the planet. We establishfor the first time: (1) the spatial(0.5 degreegrid) impacts of ENSO on the basin-wide occurrenceand landfall strikeincidenceof hurricanesandtyphoons;(2) the spatial(7.5 degreegrid or US statelevel) statisticalsignificancebehindthe differentincidenceratesin warmandcoldENSO episodes; and (3) the effectof strengthening ENSO on regionalstrikeratesand significances (hurricanesonly). Our data comprise98 years (1900-97) for the Atlantic and 33 years(1965-97) for the NW Pacific.At the US statelevel, we find severalregionswherethe differencein landfallingincidencerate betweenwarm and cold ENSO regimesis significantat the 90% level or higher. Our findings offer promiseof useful long-rangepredictabilityto seasonal forecastsof landfallingtropicalcyclones. Introduction Tropical cyclonesrank aboveearthquakesand floods as the majorgeophysicalcauseof propertydamagein the United States. The annualhurricanedamagebill in the continentalUS for 19261995 is estimatedas US $5.0 billion (1997 $) [Pielke and Landsea,1998]; for the period 1990-1998the annualfigure is US $5.2 billion (1997 $). In muchof Japan,SouthKorea, Taiwan, the Philippines, and other southeast Asian coastal regions, tropical cyclonesare the most costly and deadly of all natural disasters.The southeastAsian damagebill and mortality rate fromtropicalcyclonesaverages US $3.1 billion(1997 $) peryear and 740 deathsper year for 1990-1998 [basedon information from Munich Re]. Intensetropical cyclones(maximum 1-min sustained windsof at least33 ms-• or 64 knots)- termed interannualclimatefluctuationon the planet[eg Philander,1990] - wouldappeara promisingcandidate. (See[eg Trenberthet al., 1998, and Latif et al., 1998] for recent reviews of ENSO's teleconnections and predictability).It is well acceptedthat the ENSO warmphase(El Nifio) leadsto reducedhurricanenumbers in the north Atlantic as a whole [Gray, 1984; 1993], to fewer hurricanestrikeson the continentalUS as a whole [Gray, 1984; O'Brien et al., 1996; Bove et al., 1998], and to a lower US hurricanedamagebill [Pielke and Landsea,1999]. Gray [1984] reportsa factor of three reductionin total US landfallingintense hurricaneimpacts from 0.74 per year during La Nifia (ENSO coldphase)yearsto 0.25 per year duringE1Nifio years.Recently Bore et al. [1998] analysedthe probability of hurricaneand intense hurricane strikes for the whole continental US as a functionof the concurrentENSO phase.They find the probability of at least one intense hurricane strike is 63% and 23% for La Nifia and E1 Nifio years respectively. These differences are statisticallysignificant.The spatialimpactsof ENSO on the local frequencyand strike incidenceof NW Pacific typhoonshas, to our knowledge, not been reported in the refereed literature. However, Chan [1985, 1990] shows that the frequency of tropical cyclonesin the north Pacific between 140ø and 160øE increasesduringE1Nifio years,while tropicalcycloneoccurrence in the SouthChina Sea increasesin La Nifia years(see also Gray [1993] andLander [1994]). We extendthe above previouswork by quantifyingfor the first time: (1) the spatial impactsof ENSO on the basin-wide occurrenceand local landfalling strike rates of hurricanesand typhoons.This is achievedthroughuseof a 0.5ø x 0.5ø in latitude and longitudebasin-widegrid which permitscoastaland islands regionsto be resolved;(2) the formal significancebehind the different incidenceratesin warm and cold ENSO episodes(on a 7.5ø x 7.5ø grid or US statelevel scale);and (3) the effect and significanceof strengtheningENSO on regional landfalling intensetropicalcycloneincidence. We use the NOAA/NESDIS/NCDC best track global historicaltropicalcyclonedatabase.To obtainfrequencieson a 0.5ø grid we linearly interpolatethe six-hourly records onto hourlypositions,andcomputefor equalareacirclesof radius140 km centered on each grid point, the number of hurricanes/typhoons thatpassthroughthe circle.If an eventexits a circle and reenters(a rare occurrence)it is countedonce.The 140 km distanceis chosenas a representative radiusof damage loss [Neumann and Pryslak, 1981]. For the Atlantic we use hurricanesin the Atlantic and typhoonsin the NW Pacific - are responsiblefor 98% of US damage[Pielke and Landsea,1998] andthe vastmajority of southeastAsian damage.While satellites and numericalweathermodelsprovide warningsof impending landfallup to a week ahead,effortsare increasinglybeinggiven to the seasonalprobabilisticforecastingof theselandfalls.Such long-rangeforecastscan benefit a range of industry including insurance,agricultureandtourism. When considering potential long-range (out to 6 months) hurricanerecordsfrom 1900-1997, and for the northwestPacific predictorsof landfallingtropicalcyclones,ENSO- the strongest from 1965-1997. Landfalling recordsare completein both. For ENSO we useNifio 3.4 monthlyindexvalues(5øN-5øS,120øWCopyright2000 by the AmericanGeophysicalUnion. 170øW) computedfrom the U.K. Met. Office's Historical Sea SurfaceTemperaturedata set version6 (MOHSST6) [Parker et Papernumber1999GL010948. 0094-8276/00/1999GL010948505.00 al., 1995]. MOHSST6 values are a bulk temperatureretrieval 1147 1148 SAUNDERS ET AL.' ENSO SPATIAL IMPACTS ON HURRICANE AND TYPHOON INCIDENCE wherep is the probabilityof 1 or more hurricanesat a given locationin a givenmonth,thexs arethepredictorvalues,andthe ]5sarethecoefficients to beestimated, via MaximumLikelihood, Statistical Analysis and Modelling from historicaldata.For largesamples,likelihoodratiotests[Cox We first compute,for each0.5ø grid cell, the annualincidence and Hinkley, 1974] can be usedto comparemodels.Suchtests rate (IR) of hurricanes/typhoons in both E1 Nifio and La Nifia years.The ENSO signis determinedusingmonthlyNifio 3.4 data betweenlm and 10m depthand,for the tropics,containthe best availablehistoricalqualitycontrolsandbiascorrections. and by whetherthe Nifio 3.4 anomalyis greaterthan or lessthan 0.0øC.By takingthe ratio of incidenceratesunderthe two ENSO ENSO Impact on Atlantic Hurricane Incidence 1900-1• 100'W 90'W 80'W 70'W 60'W 50'W 40W conditions we obtain the incidence rate ratio, a statistic commonlyusedin investigations of the causesof diseases[e.g., Rothmannand Greenland, 1998]. This ratio is shown colourcoded for the north Atlantic and the NW Pacific in Figure 1 (upper numeric panel marked 'LaNifia/E1Nifio'). 40'N } We usetwo modelsto determinethe statisticalsignificanceof any differencein hurricane/typhoonfrequenciesbetweenwarm andcoldENSOepisodes. MODEL I is basedonincidence rate ratios and is the numericallysimplermodel. We apply it to landfallingeventsonly. MODEL 2 employslogisticregression [Coxand Snell, 1989;McCullaghand Nelder, 1989].We applyit to landfalling andtonon-landfalling events. Bothmodels give 20'N similarresultsfor landfallingevents. MODEL 1 usesthe incidencerate ratios (IRRs) of eventsfor E1 Nifio (EL) and La Nifia (LN) conditionsappliedto different landfall regions. If the IRR differs significantly from 1.0, it indicatesan associationbetweenthe phaseof ENSO and the incidenceof landfallingintensetropicalcyclones.The statistical ENSO Impact on NW Pacific Typhoon Incidence 1965-1997 100'E 110'E 120'E 130'E 140'E 150'E 160'E 170'E 180' significance testarisesthroughthe logarithmof the IRR being 50'N approximatelyGaussiandistributedwith a standarddeviationof: • +• 40'N Net • N• [seee.g. Rothmannand Greenland,1998], whereN• andNr• are thetotalnumber oflandfalling events inourrecord inELandLN 30'N years respectively. In terms of sample size, the normal approximationfor log IRR is reasonableprovidingbothNELand NL•vare greaterthan about 10. This criterionis met by 95% of our regional landfalling subsets- the exceptions being a few categories of hurricane impacts on the Lesser Antilles, and typhoonstrikeson SouthKorea. 20'N Inapplying MODEL I weuse significance levels of90%and 10'N ß 20'N .J o ' 10'N 95% in a two-tailedtest, i.e., a test for differencefrom unity in either direction.Despite there being a 10% probabilitythat an isolated result atthe90%levelcould occur bychance, weinclude 0', these results becauseIRRs at nearby locationsare spatially 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 La Nifia/EI Ni• dependent. Sincethe four mostactivemonthsfor intensetropicalcyclones 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 La Nifia/TOTAL in both basinsare July, August,Septemberand October(JASO months),we first showresultsusingJASO landfallingeventsand the JASO-averagedNifio 3.4 anomaly. In the NW Pacific, we Figure 1. ENSO spatial impacts on (top) north Atlantic alsoshowresultsbasedon the Augustto October(ASO months) hurricaneincidence(1900-1997) and (bottom)northwestPacific averagedENSO conditionswith the annualnumberof landfalling typhoon incidence (1965-1997). The grid spatial resolutionof 0.5ø permitscoastal,islandand regionalimpactsto be resolved. events. In the Atlantic, where our data time series is three times The colour bar displaystwo scales:the ratio of the numberof the length of our NW Pacific time series, we additionally intensetropicalcyclonenumbersoccurringin La Nifia monthsto computethree separateIRRs for EL, LN and Neutral ENSO the numberpresentin E1 Nifio months(upper scale), and the conditions.The Nifio 3.4 anomalythresholdsusedfor theseare: ratioof the saidsameto thetotal'numberof intense tropical EN > 0.3øC, 0.3øC > Neutral > -0.3øC, LN < -0.3øC. The latter investigationprobes the impact of strengtheningENSO on changinghurricaneincidence,and clarifieshow EN IR andLN IR values differ from Neutral IR values. MODEL 2 employslogisticregression andtakesthe form: In P = ]•o'•' ]•ixi 1- p i=• cyclones(lower scale). These ratios are computedafter first normalisingto ensureequal numbersof El Nifio and La Nifia months.Grid cellscontainingfewerthan5 eventsare not plotted. White lines enclose regions where the difference in intense tropicalcyclonenumbersbetweenENSO warm and ENSO cold episodesis statistically significant at the 95% level when averagedover an area of 7.5ø x 7.5ø grid size centredon the point(MODEL 2). SAUNDERS ET AL.' ENSO SPATIAL IMPACTS involve computingthe differencein log-likelihoodbetweentwo competingmodels,doubling,and comparingwith a percentage point of the appropriatechi-squareddistribution.If, for example, the computedvalueexceedsthe 95% pointof thedistribution, we rejectthe simplermodelin favourof the more complexone,at the 5% significancelevel. In the presentcontext,a 'large' sampleis one in which a reasonable number of hurricane occurrences are observed. This ON HURRICANE AND TYPHOON INCIDENCE 1149 StrengtheningENSO (using a ñ0.3øC SST threshold,rather than a 0.0øC threshold)increasesthe Atlantic landfallingENSO incidencerate ratio (IRR (LN/EN)) in all regions.The size of the increasevaries with region but is typically twice as large for hurricanesas for tropicalstorms(not shown).It is alsotwice as large when computedusing the 'JASO landfallingeventsand JASO Nifio 3.4' datathan with the 'annuallandfallingeventsand ASO Nifio 3.4' data set.For the latterdata,the averagehurricane IRR (LN/EN) increasesby 69% when using a ñ0.3øC SST dictatesa lower bound to the areal size used in applying the model.When analysingthe effectof ENSO at anypointin space, threshold rather than a 0.0øC threshold. The effects of we find it necessaryto considera regionof 7.5ø x 7.5ø in latitude strengtheningENSO noted above are statisticallysignificant. andlongitudecentredon thatpoint,to ensurethatlikelihoodratio They indicate that: (a) the strongerthe ENSO the larger the tests can be used with this model. Seasonality in hurricane/typhoon occurrence is represented by usinga setof 12 indicatorvariables(one for eachmonth).We refer to this as the Table 1. The magnitudeandsignificanceof ENSO's impactson 'seasonalonly' predictionmodel. regionalAtlantic(Table1(a)) andregionalNW Pacific(Table To studythe effect of ENSO uponhurricaneoccurrencean 1(b)) landfallingintensetropicalcycloneincidence.Resultsare extra predictor,coded 0 for a cold episodemonth and 1 for a fromMODEL 1. Table 1(a) showsvaluesfor July-Augustwarm episode, is added to the 'seasonal-only' model. The September-October (JASO) landfallingevents1900-1997based associated regressioncoefficient,/3•NSO, has the interpretation on the JASO Nifio 3.4 indexwith two SST thresholds. Table 1(b) that exp[/3•NSO] is the proportionalincreasein the odds for showsvaluesfor all landfallingevents1965-1997basedon the hurricaneoccurrenceduringa warm episodemonthrelativeto a August-September-October (ASO) Nifio 3.4 index.The landfallingincidencerates(IR) peryearfor E1Nifio (EN), cold episode month (the odds for occurrenceare defined as Neutral, and La Nifia (LN) conditionsare shown,togetherwith p/(1-p) wherep is the probability of occurrence;see Dobson thelandfallingIncidenceRateRatio (IRR) - theratioof incidence [1990] for further details on coding and interpretation of ratesin LN to EN periods.Shadingindicateswhetherthe latteris predictors in regression-typemodels). The regions of >_95% significantat eitherthe90% (light fill) or 95% level (darkfill) significanceobtainedwith MODEL 2 are markedin Figure 1 by levels.Shadingin the 'EN IR' columnindicatesthatthesevalues the white lines. They are all based on likelihood ratio tests comparingthe 'seasonalonly' modelto the 'seasonalplusENSO' model. A naive analysis,which ignoresseasonality,produces noticeablydifferentresults(the effectof ENSO is maskedby the strongerseasonalvariation): this emphasizesthe need for the methodologyusedhere if ENSO effectsare to be studiedat subannual timescales Atlantic Hurricanes Figure 1 (top) showsthat in the Atlantic,ENSO cold episodes are associatedwith higher hurricaneincidenceratesover nearly the entirebasin,the only exceptionbeingthe northeastquadrant. Usingthe basiccriterionof a zeroNifio 3.4 anomalythresholdto distinguishwarm and cold ENSO episodes,we find highestIRR (LN/EN) values of -4 occurringin a band stretchingfrom the Caribbeanthroughthe centralGulf of Mexico to Texas. When averagingIRR valuesover a 7.5ø x7.5ø grid we find, as indicated, that the IRRs in this regionare significantto >95% as they are alsoin a bandreachingfrom the LesserAntillesto the northeast of the Bahamas. differ from the 'Neutral IR' values at the level indicated. The coastalregionsin Table 1(a) aredefinedasfollows:'USNortheast':CapeHatterasto Maine, 'US Southeast': Jacksonville (Florida)to CapeHatteras,'Florida': Jacksonville to Pensacola, 'Gulf Coast': Pensacolato Brownsville(Texas),ZesserAntilles': Trinidadto Anguilla,and 'GreaterAntilles': PuertoRico to Cuba, includingJamaica.The countriesin Table 1(b) areself-evident exceptthat 'Philippines'refersto the regioncentredon Manilia (14øN- 16øN),and 'Vietnam'refersto theregion10øN- 20øN only.The effectof strengthening ENSO on landfallingIRR is not examinedin Table l(b) dueto the shortness (33 years)of theNW Pacific timeseries. Table l(a). ENSO RegionalImpactson Atlantic Landfalling Hurricanes: JASO Events 1900-1997 JASO Nino 3.4 No SST Threshold Coastal Region EN IR LN IR JASO Nino 3.4 :[-0.3ø C SST Threshold IRR ENIR Neut.IR LN IR IRR (52 yrs) (46 yrs) (LN/EN) (31 yrs) (39 yrs) (28 yrs) (LN/EN) US Northeast 0.19 0.33 1.74 0.16 0.28 0.32 2.00 US Southeast 0.35 0.48 1.37 0.32 0.33 0.61 1.91 Florida 0.44 0.67 1.52 '"11•i•i:::•.•:i.•.•i•iiiiiiiiiii•! 0.56 0.82................ '"••i: •"' Gulf Coast 0.42 0.78'•"•'•'-•-•'•-*..--'•• 0.42 0.54 0.86 ..................................... Results for regional landfalling hurricane incidence from MODEL 1 are displayedin Table l(a). Six areasare considered: Lesser Antilles0.15 0.26 US northeast, US southeast, Florida, Gulf of Mexico, Lesser Great. Antilles 0.48 0.80•'•'•-'• '•"ø•'""•':•''••'"'•••]"•'•'":•:"" ..... "••i 0.69 1.00........... "• ""•'•""•"' Antilles and the GreaterAntilles. The IRR (LN/EN) valuesin all regionsexceed 1.0, with typical valuesbeing 1.6 (JASO events only, JASONifio 3.4 - no threshold),and2.8 (JASOeventsonly, JASO Nifio 3.4 - ñ0.3øC threshold).Largestvaluesof- 3 to 4 -:•:.•....-(s•:•:•:•:•:::•:•::: 0.18 0.36 Tablel(b). ENSORegional ImpactsonNW Pacific LandfallingTyphoons: 1965-1997 occur for the Lesser and Greater Antilles with the ñ0.3øC Nifio Coastal 3.4 threshold.In terms of statisticalsignificance,33% (50%) of the 12 IRR values in Table l(a) are significantto levels >95% (>90%). The regionsexhibitingthe highest(lowest)significance for IRR (LN/EN) are the GreaterAntilles(US southeast). Lack of a significantresult in a given area does not mean there is no effect, merely that any effect is small enough to be indistinguishablefrom random variations on the basis of the Region available data. 1.73 0.10 All Events ASO Nino 3.4 No SST Threshold EN IR LN IR IRR JASO Events JASO Nino 3.4 No SST Threshold EN IR LN IR IRR (18yrs) (15yrs) (LN/EN) (19yrs) (14yrs) (LN/EN) 4.50 3.67 0.82 4.16 3.29 South Korea Japan 0.44 0.53 1.20 0.42 0.57 0.79 1.35 Taiwan 2.11 1.60 0.76 1.84 1.21 0.66 Philippines 1.56 2.13 1.37 0.53 1.21...... "•••• •"' Vietnam 1.00 1.40 1.40 0.89 1.00 1.12 1150 SAUNDERS ET AL.: ENSO SPATIAL IMPACTS ON HURRICANE AND TYPHOON INCIDENCE impact on landfalling frequencyand (b) the calculationof the maximum IRR (LN/EN) for each sub-regionis sensitiveto a combinationof the monthsselectedfor landfallingeventsandthe References months chosen for ENSO. Bove, M.C., J.B. Eisner,C.W. Landsea,X.Niu andJ.J.O'Brien,Effect of El Nifio on U.S. landfallinghurricanes, revisited,Bull. Amer.Meteor. Soc., 79, 2477-2482, 1998. NW Pacific Typhoons Chan,J.C.L.,Tropicalcycloneactivityin thenorthwest Pacificin relation to the El Nifio/SouthernOscillationphenomenon, Mon. Wea. Rev., 113, 599-606, 1985. Figure 1 (bottom)showsthat in the NW Pacific,ENSO warm periodsare associatedwith highertyphoonfrequenciesover the majorityof the basin.The exceptions arethe SouthChinaSeaand adjacentareas,plus the region northeastof 30øN and 145øE. Thesefindingsappearto differ from thoseof Lander [1994] who, Chan,J.C.L., Regionalinterannual variabilityof tropicalcyclonesover the western North Pacific, Research Report (AP-90-06), City Polytechnic ofHong Kong,40pp.,1990. Cox, D.R. and D.V.Hinkley, TheoreticalStatistics,ChapmanandHall, based on 1960-1991 data, does not observe an ENSO effect on andHall, London,236pp, 1989. Dobson,A.J., An Introductionto GeneralisedLinear Models, Chapman andHall, London, 174pp, 1990. annualtyphoonnumbers.With the basiccriterionof a zeroNifio 3.4 anomalyto distinguishwarm and cold ENSO episodes,we observesmallestIRR (LN/EN) valuesof-•0.25 in a bandreaching from 10øN, 170øEto 20øN, 135øE.When averagedover a 7.5ø x 7.5ø grid, thesesmallestIRR valuesare significantto >95%, as they alsoare locally in the SouthChina Sea,overwesterncentral Japan,and over the westerncentralPhilippines.A few localised hot spotsof highsignificance alsoexistelsewhere. Resultsfor regionallandfallingtyphoonsfrom MODEL 1 are displayedin Table l(b). Five countriesare considered:Japan, SouthKorea, Taiwan, Philippinesand Vietnam. In generalthe ENSO impactson landfallingtyphoonsare lessthanfor Atlantic landfallinghurricanes.Also, use of the 'JASO event and JASO Nifio 3.4' criterion does not change the magnitudeof IRR (LN/EN) values as in the Atlantic. The only areas exhibiting landfalling incidence rates which are significantly different between warm and cold ENSO episodesare the Philippines region centeredon Manilla (14øN - 16øN)for typhoons,andthe 'Vietnam' region 10øN- 20øNfor tropicalstorms(not shown). Conclusions and Further Work We quantify for the first time the spatial impacts and significance of ENSO on Atlantic and NW Pacific intense tropicalcycloneoccurrenceand landfall.We find severalregions, notably in the Atlantic, where differences in the landfalling incidence rate between warm and cold ENSO regimes are statisticallysignificantat the 90% or 95% level. Theseresultsdo not provecausalitybetweenENSO regimesand changingstorm landfallingfrequency.Suchclaimsshouldbe supportedby sound evidenceof a physicalmechanism- for example- hurricane suppresionin the Atlantic via enhancedtroposphericwind shear [e.g. •1onesand Thorncroft, 1998]. Furtherwork is alsorequired to determine the maximum IRR (LN/EN) for each sub-region. This will dependupon the monthsselectedfor the landfalling eventsand for Nifio 3.4, the optimummonthsprobablyvarying with region. Most importantly our findings offer promiseof long-range predictabilityto landfallingintensetropicalcyclones.At present, 25% of the observedNifio 3.4 varianceis predictable9 monthsin advance[Latifet al., 1998]. As ENSO's predictabilityimproves with future developments in coupledclimatemodelsso will the skill of seasonalforecastsof landfallinghurricanesandtyphoons. London,511pp, 1974. Cox,D.R.andE.J.Snell, Analysis ofBinary Data(2"aEdition), Chapman Gray, W.M., Atlanticseasonalhurricanefrequency:PartI: El Nifio and 30mb quasi-biennialoscillationinfluences.Mon. Wea. Rev., 112, 1649-1668, 1984. Gray,W.M., Seasonal Forecasting. Chapter5 in GlobalGuideto Tropical CycloneForecasting. WMOfrD-No.560, 21pp,1993. Jones,C.G. and C.D.Thorncrofi,the role of El Nifio in Atlantic tropical cycloneactivity,Weather,53, 324-336,1998. Lander, M.A., An exploratoryanalysisof the relationships between tropicalstormformationin the westernNorth Pacific and ENSO, Mon. Wea.Rev., 122, 636-651, 1994. Latif, M., D.Anderson, T.Barnett, M.Cane. R.Kleeman, A.Leetmaa, J.O'Brien, A.Rosati and E.Schneider,A review of the predictability andprediction ofENSO J. Geophys. Res.,103,14,375-14,3,94, 1998. McCullagh, P.and J.A.Nel[ler, Generalised Linear Models (2na Edition), ChapmanandHall, 511pp, 1989. Neumann,C.J. and M.J.Pryslak,Frequencyand motion of Atlantic tropicalcyclones.NOAA TechnicalReportNWS 26, US Department of Commerce,WashingtonDC, 1981. Parker, D.E., C.K.Folland and M.Jackson,Marine surfacetemperature: observedvariationsand datarequirements,Clim. Change,31, 559600, 1995. Pielke, R.A., Jr., and C.W.Landsea,Normalisedhurricanedamagesin the UnitedStates:1925-1995,Wea.Forecasting,13, 621-631, 1998. Pielke, R.A., Jr., and C.W.Landsea,La Nifia, E1 Nifio, and Atlantic hurricanedamages in theUnitedStates,Bull.Amer.Meteor.Soc.,80, 2027-2033, 1999. O'Brien, J.J.,T.S.Richardsand A.C.Davis, The effect of E1Nifio on U.S. landfallinghurricanes. Bull.Amer.Meteor.Soc.,77, 773-774,1996. Philander, S.G.H., El Ni•o, La Ni•a and the Southern Oscillation, AcademicPress,SanDiego,280pp, 1990. Rothman, K.J.andS.Greenland, ModernEpidemiology (2"aEdition), Lippincott-Raven, Philadelphia, PA, 737pp,1998. Trenberth, K.E., G.W.Branstator, D.Karoly, A. Kumar, N-C.Lau and C.Ropelewski, Progress duringTOGA in understanding andmodeling global teleconnectionsassociatedwith tropical sea surface temperatures, d. Geophys. Res.,103, 14,291-14,324,1998. M. A. Saunders,C. J. Merchantand F. P. Roberts,Benfield Greig Hazard ResearchCentre,Departmentof Spaceand ClimatePhysics, UniversityCollegeLondon,HolmburySt. Mary, DorkingSurrey,RH5 6NT, U.K. (e-mail:mas•mssl.ucl.ac.uk). R. E. Chandler,Department of Statistical Science,UniversityCollege London, Gower Street, London WC1E 6BT, U.K. (e-mail: richard•stats.ucl.ac.uk). Acknowledgements.ChrisMerchantis fundedby theUK TSUNAM! Initiative for this work. Frank Roberts gratefully thanksthe Benfield Greig Group for sponsorship. We thankJustinMansleyfor helpful (ReceivedJuly27, 1999;revisedJanuary13,2000; assistance. accepted January21, 2000.)
© Copyright 2026 Paperzz