HOMEWORK #7 – SOLUTIONS Page 195 6) g ( t ) = 4 sec t + tan t g ' ( t ) = 4 sec t tan t + sec 2 t 16) y = x 2 sin x tan x y ' = 2x sin x tan x + x 2 cos x tan x + x 2 sin x sec 2 x = 2x sin x tan x + x 2 sin x + x 2 sin x sec 2 x = ( x sin x 2 tan x + x + x sec 2 x 30) ) f ( x ) = sec x ⇒ f ' ( x ) = sec x tan x ⇒ f '' ( x ) = sec x sec 2 x + tan x sec x tan x = ( ) sec 3 x + tan 2 x sec x = sec x sec 2 x + tan 2 x ⎛π⎞ f '' ⎜ ⎟ = 2 2 + 12 = 3 2 ⎝ 4⎠ ( ) 36) s = 2 cos t + 3sin t, t ≥ 0 a) v = s = −2 sin t + 3cos t a = v = −2 cos t − 3sin t b) (see graph) c) s = 2 cos t + 3sin t = 0 ⇒ t = 2.55359 sec. (TI − 89 ) d) v = −2 sin t + 3cos t = 0 ⇒ t = 0.982794 sec. (TI − 89 ) e) s (.982794 ) = 3.60555cm. s = 0 or a = 0 ⇒ 2 cos t + 3sin t = 0 ⇒ t = nπ − .588003, n ∈I + 40) sin 4x x ⎞ 6x ⎞ ⎛ sin 4x ⎛ 4 sin 4x = lim ⎜ ⋅ = lim ⎜ ⋅ ⎟ ⎟= x→0 sin 6x x→0 ⎝ x sin 6x ⎠ x→0 ⎝ 4x 6 sin 6x ⎠ sin 4x 1 6x 1 2 4 lim ⋅ = 4 ⋅1⋅ ⋅1 = x→0 4x 6 sin 6x 6 3 lim cos θ − 1 cos θ − 1 0 θ = lim = = 0 42) lim θ →0 θ →0 sin θ sin θ 1 θ Page 203 8) ( F ( x ) = 4x − x 2 ( ) 100 F ' ( x ) = 100 4x − x ) ⋅ ( 4 − 2x ) or 200 ( 2 − x ) ( 4x − x ) 2 99 12) −2 1 f ( t ) = 3 1 + tan t ⇒ f ( t ) = (1 + tan t ) 3 ⋅ sec 2 t = 3 2 sec t 3 3 (1 + tan t ) 20) 2 2 99 ( ) x +2 1 y ' = ( x + 1) ⋅ ( x + 2 ) ⋅ 2x + x + 2 ⋅ 2x = 3 2x ( x + 1) + 2x ( x + 2 ) = 3( x + 2 ) 2x ( x + 1) + 6x ( x + 2 ) 8x + 14x 2x ( 4x + 7 ) = = 3( x + 2 ) 3( x + 2 ) 3( x + 2 ) y = x2 + 1 3 2 2 −2 2 2 2 2 2 3 3 1 2 3 3 2 2 2 2 3 2 3 2 2 2 3 2 3 2 2 2 24) y = 101− x ⇒ y ' = 101− x ⋅ ln10 ⋅ ( −2x ) = −2x ln10 ⋅101− x 30) 4 ⎛ y2 ⎞ ⎛ y 2 ⎞ ⎡ ( y + 1) 2y − y 2 ⋅1 ⎤ G ( y) = ⎜ ⇒ G' = 5⎜ ⋅⎢ ⎥= ⎝ y + 1 ⎟⎠ ⎝ y + 1 ⎟⎠ ⎢⎣ ( y + 1)2 ⎥⎦ 40) 76) ⎛ y2 ⎞ 5⎜ ⎝ y + 1 ⎟⎠ 4 ⎡ 2y 2 + 2y − y 2 ⎤ ⎛ y2 ⎞ ⎢ ⎥ = 5⎜ 2 ⎝ y + 1 ⎟⎠ ⎢⎣ ( y + 1) ⎥⎦ ⎡ y10 + 2y 9 ⎤ 5y 9 ( y + 2 ) 5⎢ = 6 ⎥ y + 1 ( ) ( y + 1)6 ⎢⎣ ⎥⎦ y = sin ( sin ( sin x )) y ' = cos ( sin ( sin x )) ⋅ cos ( sin x ) ⋅ cos x f ( x ) = xe− x f ' ( x ) = −xe− x + e− x = e− x (1 − x ) f '' ( x ) = = e− x ( x − 2 ) f ''' ( x ) = e− x ( 3 − x ) f ( 4 ) ( x ) = e− x ( x − 4 ) ∴ f (1000 ) ( x ) = e− x ( x − 1000 ) 4 ⎡ y 2 + 2y ⎤ = ⎢ 2 ⎥ ⎢⎣ ( y + 1) ⎥⎦ 78) s = A cos (ω t + δ ) a) v = s = −A sin (ω t + δ ) ⋅ ω = −Aω sin (ω t + δ ) b) −Aω sin (ω t + δ ) = 0 ⇒ sin (ω t + δ ) = 0 ⇒ nπ − δ , ω assuming A ≠ 0 and ω ≠ 0 ω t + δ = nπ ⇒ t =
© Copyright 2026 Paperzz