Thomas Prietl et al.: The Evaluation of Refractory Linings Thermo-Mechanical Properties The Evaluation of Refractory Linings Thermo-Mechanical Properties Thomas Prietl, Oliver Zach, Hans Studnicka The increasing requirements for high performance furnaces in the metal industries has resulted in an increased use of partially water cooled furnaces that require complex furnace linings. However, with an increasing furnace lining complexity, the refractory material expansion becomes a determining factor. The expansion defaults must be calculated to achieve a minimal expansion of the surrounding furnace steel shell, whilst in parallel ensuring a leak-proof furnace bottom lining. Foremost, the cooling sections in the side wall or bottom furnace area must be protected against deformation due to excessive refractory expansion. The problems that can arise due to cooling section damage are well established and mainly occur in cooling sections that have their cooling circuit inside the furnace (e.g., refractory deformation can result in cooling water leaking into the furnace). To enable future optimal furnace lining designs which satisfy the technical requirements, a test plant was established at the RHI Refractories Technology Center Leoben, Austria. This work was performed in collaboration with the Christian Doppler Laboratory for Secondary Metallurgy of Non Ferrous-Metals, University of Leoben, Austria. The test plant has been operational since November 2004 and should provide important information for lining concept designs. Keywords: Refractory – Thermal expansion – Furnace lining – BHTP Ermittlung thermomechanischer Eigenschaften von feuerfesten Zustellungen Die steigende Nachfrage der metallerzeugenden Industrie nach längeren Ofenreisen resultierte in einem verstärkten Einsatz von Kühlelementen, verbunden mit einer komplexeren Ofenzustellung. Mit der steigenden Komplexität der Ofenzustellungen rückt das thermische Dehnungsverhalten des feuerfesten Materials in den Mittelpunkt. Die Dehnungsvorgaben müssen richtig berechnet werden, um eine kompakte geschlossene Zustellung ohne übermäßige Deformation des Ofenmantels zu gewährleisten. Vor allem müssen die in den Seitenwänden oder im Boden eines Ofens eingebauten Kühlelemente gegen Beschädigung durch eine übermäßige thermische Dehnung des feuerfesten Materials geschützt werden. Probleme, die bei einer Schädigung der Kühlelemente auftreten können, sind hinreichend bekannt (Wassereinbruch in den Ofen). Um zukünftige Ofenzustellung hinsichtlich der Erfordernisse optimal auslegen zu können, wurde im RHI Technologiezentrum Leoben in Zusammenarbeit mit dem Christian Doppler Laboratorium für Sekundärmetallurgie der Nichteisenmetalle ein Versuchsstand errichtet. Die Versuchsapparatur befindet sich seit November 2004 im Einsatz und soll wichtige Informationen für die Entwicklung von Zustellungskonzepten liefern. Schlüsselwörter: Feuerfest – Thermische Dehnung – Ofenzustellung – BHTP La détermination des qualités thermo-mécaniques de revêlements réfractaires Evaluación de las propiedades termomecánicas de revestimientos refractarios Paper presented on the occasion of the European Metallurgical Conference EMC 2005, September 18 to 21, 2005 in Dresden. 1 Introduction During refractory lining design it has been shown that the load carrying capacity of effective in service constructions does not equate with the results of conventional computing methods. Typically, the static calculations predict larger demands than actually occur in practice. This is principally due to the complex behaviour of the different materials used in the total furnace construction. Therefore, refractory lining design still remains a civil engiWorld of Metallurgy – ERZMETALL 59 (2006) No. 3 neering concern and extensive static proofs are rarely provided. The construction of a furnace lining concept cannot be performed without in service experiences and because the material behavioural characteristics are very difficult to calculate, the theoretical and in service results must be analysed in parallel. Furthermore, to perform static refractory design analysis the following issues must be taken into consideration: • The walls consist of several layers and each layer must fulfil different requirements including refractoriness, 127 Michael Köffel et al.: Refractories for the Copper and Lead Industry Refractories for the Copper and Lead Industry Michael Köffel, Thomas Taschler Before selecting proper refractory materials, the metal production process parameters have to be considered in depth. One of the main wear parameters in furnaces of the copper and lead industry is the corrosion by acid slags. In the following article, mainly fayalithic slags, which are the most common slags in the non ferrous metals industry will be discussed. – But not only the chemistry of the refractory material should fit to the process. In general, there are three major impacts on refractories: • the thermal influence which can result in a weakening of the brick structure due to thermal shocks or infiltration; • the mechanical influence due to erosion which leads to abrasion and lining tensions as well as • the chemical impact like slag corrosion, redox reactions and SO2 diffusion. These impacts are not only influenced by the chemical composition of the refractories, it is also decisive for the performance of the refractories which qualities of raw material are used as well as the preparation of the raw materials and the production quality. Affected by the grain size and the bonding systems, the properties for each refractory material can be varied regarding thermal, mechanical and chemical properties and so the exposure of zones in the furnace where the material should be installed should be known very well. – In the following article, composition of refractory materials and main wear mechanisms in furnaces of the copper and lead industry will be discussed. Keywords: Refractory – Copper – Lead – Non-ferrous metals – Pyrometallurgy Feuerfeste Materialien für die Kupfer- und Bleiindustrie Einer der Hauptverschleißmechanismen von feuerfesten Materialien in der Kupfer- und Bleiindustrie ist der chemische Verschleiß durch saure Schlacken. Im nachstehenden Artikel werden hauptsächlich fayalithische Schlacken, welche am verbreitetesten sind, diskutiert. Generell spricht man von drei Hauptverschleißursachen: schaftswerte betrachtet werden, sondern es muss auch großes Augenmerk auf Qualität und Aufbereitung der Rohmaterialien gelegt werden. Beeinflusst durch u.a. Korngrößen und Bindesysteme können die Eigenschaften des Werkstoffs hinsichtlich thermischer, mechanischer bzw. chemischer Beständigkeit variieren, woraus folgt, dass die Beanspruchung der verschiedenen Zonen im Ofen bekannt sein sollte. Im folgenden Artikel wird die Zusammensetzung verschiedener Feuerfestmaterialien sowie die Verschleißursachen in Öfen der Kupfer- und Bleiindustrie beschrieben. • thermischer Verschleiß, resultierend in einer geschwächten Gefügestruktur auf Grund von Thermoschocks und Infiltrationen, • mechanischer Verschleiß verursacht durch Erosion und Mauerwerksspannungen sowie • chemischer Verschleiß wie Schlackenkorrosion, Redoxreaktionen und SO2-Diffusion. Schlüsselwörter: Zur Auswahl des geeigneten Feuerfestmaterials dürfen nicht nur die chemischen und physikalischen Eigen- Feuerfest – Kupfer – Blei – Nichteisenmetalle – Pyrometallurgie Materiaux réfractaires pour l’industrie du cuivre et du plomb Materiales refractarios para las industrias de cobre y plomo Paper presented on the occasion of the European Metallurgical Conference EMC 2005, September 18 to 21, 2005 in Dresden. 1 Typical slags in the copper and lead industry The main wear mechanism of refractory bricks in furnaces of the copper and lead industry is corrosion by acid slags and therefore it is necessary to know their composition to make a suitable refractory choice. Slags are formed by a lot of components, which are mainly oxides and can be classified according to their chemical behaviour: World of Metallurgy – ERZMETALL 59 (2006) No. 3 basic oxides: acid oxides: amphoteric oxides: salts: e.g. CaO, MnO, FeO, MgO, Na2O e.g. SiO2, P2O5 e.g. Al2O3, Fe2O3, TiO2 e.g. CaF2, CaS The main slag type for the copper and lead industry is formed by the system FeO–CaO–SiO2, or the so called fayalitic slag type (Fe2SiO4). Those slags are showing significant high iron contents and are preferable based in the 133 Rolf Degel et al.: 100 years of SMS Demag Submerged Arc Furnace Technology 100 Years of SMS Demag Submerged Arc Furnace Technology Rolf Degel, Jens Kempken After a short summary of the historical milestones of the submerged arc furnace, the paper will highlight general aspects of furnace design. Different applications and their specific furnace requirements will be emphasized. Finally a state of the art design tool as well as a new invention to improve slag cleaning technology will be featured. Keywords: Submerged arc furnaces – Ferro alloys – FeCr – FeNi – FeMn – Non-ferrous metals – Copper – Slag cleaning – PGM – Rectangular furnace 100 Jahre SMS Demag Submerged Arc Furnace-Technologie Nach einem kurzen historischen Rückblick über die Meilensteine des Elektroreduktionsofens werden Designaspekte hervorgehoben. Zahlreiche Anwendungsmöglichkeiten und damit verbundene Anforderungen an die Technik werden beschrieben. Schließlich werden innovative Werkzeuge zur Prozessverbesserung sowie eine neue Schlackereinigungsstufe vorgestellt. Schlüsselwörter: Elektroreduktionsofen – Ferrolegierung – FeCr – FeNi – FeMn – Nichteisen-Metalle – Kupfer – Schlackereinigung – Platin/Palladium – Rechtecköfen 100 ans de technologie du four à arc „Demag Submerged“ 100 años de la tecnología del horno de arco sumergido en SMS Demag Parts of the paper presented on the occasion of the European Metallurgical Conference EMC 2005, September 18 to 21, 2005, in Dresden. 1 History of the submerged arc furnace 100 years of submerged arc furnace technology (SAF), a remarkable achievement by SMS Demag! We are proud of looking back at our involvement in this technology in which SMS Demag played a significant role in the development of this smelter. During the last century, the submerged arc furnace has been one of metallurgy’s most amazing diversified melting units which has found many applications in over 20 different industrial areas, including ferro-alloys, iron, silicon metal, copper, lead, zinc, refractory, titanium oxide, calcium carbide, phosphorus and materials recycling, etc. [1]. SMS Demag has been developing this technology for more than 100 years and has supplied a diverse market with about 700 furnaces and major furnace components [2]. Numerous applications were constantly developed (Table 1) serving various users [3]. Such an evolution was only possible because of tremendous efforts in research and development and due to the large range of design solutions. World of Metallurgy – ERZMETALL 59 (2006) No. 3 The increasing demand for ferroalloys and desoxidation agents in steelmaking at the beginning of the 20th century led to the development of the first few furnaces. Demag, for the last two centuries a major supplier for the iron and steel industry, started with the construction of the first submerged arc furnace in 1906. The 1.5 MVA unit was installed in Horst, Ruhr/Germany, for the production of calcium carbide and was successfully commissioned Tab. 1: Various applications of SMS Demag’s furnaces [3] User industries Alloys/products Iron & steel industry (main applications) Ferro-nickel, ferro-chrome, ferrosilicon, ferro-manganese, silico-manganese, ... Iron & steel industry (additional applications) Ferro-tungsten, ferro-tantalum, ferro-niob, Calcium-silicon, ferro-vanadium, ... Non-ferrous metals industry Copper, lead, antimon/bismuth, zinc, nickel/copper matte, platinum, ... Refractory & grinding industry Corundum, mullite, fused magnesite, fused oxides, mineral wool, ... Chemical & electronic industry Calcium carbide, titanium slag, phosphorous, silicon metal, ... 143 Christian Hagelüken: Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery Christian Hagelüken With the new legislation for Waste Electrical and Electronic Equipment (WEEE) coming up in Europe and similar developments in other parts of the world, a substantial increase of end-of-life electronic equipment to be treated will take place on a global scale. In this context, often much attention is placed on logistical issues, dismantling and shredding/pre-processing of electronic-scrap, while the final, physical metals recovery step in a smelter is often just taken for granted. However, a state-of-the-art smelter and refinery process has a major impact on recycling efficiency, in terms of elements and value that are recovered as well as in terms of overall environmental performance. Besides copper and precious metals, modern integrated smelters recover a large variety of other elements, and can make use of organics such as plastics to substitute coke as a reducing agent and fuel as an energy source. Umicore has recently completed major investments at its Hoboken Works, com- pletely shifting the plants focus from mining concentrates to recyclable materials and industrial by-products. Based on complex Cu/Pb/Ni metallurgy, the plant has been developed to the globally most advanced full-scale processor of various precious metals containing fractions from electronic scrap, generating optimum metal yields for precious and special metals at increased productivity and minimised environmental impact. Especially the interface between pre-processing (shredding/sorting) and integrated smelting offers additional optimisation potential, which can lead to a substantial increase in overall (precious) metals yields. Keywords: Electronic scrap – Integrated metals smelting – Circuit board & mobile phone recycling – Precious metals – Interface optimisation Recycling von Elektronikschrott in Umicores integriertem Metallhütten-Prozess Die Einführung der europäischen Elektroaltgeräteverordnung (WEEE-directive) und ähnlicher Gesetzesinitiativen in anderen Regionen wird weltweit zu einem signifikantem Anstieg an zu verwertendem Elektronikschrott führen. In diesem Kontext wird häufig großes Augenmerk auf logistische Aspekte sowie auf Zerlegung und Vorbehandlung (Shreddern & Aufbereitung) von E-Schrott gerichtet, während der eigentlichen, physischen Metallrückgewinnung in Hütten oft weit weniger Beachtung geschenkt wird. Tatsächlich aber hat ein moderner, für das E-Schrott-Recycling optimierter Hütten- und Raffinationsprozess einen siknifikanten Einfluss auf die Effizienz der gesamten Recyclingkette, sowohl in Bezug auf rückgewinnbare Metalle und Wertinhalt als auch hinsichtlich der Ökobilanz der Verwertung. Dem Stand der Technik entsprechende integrierte Hütten können neben Kupfer und Edelmetallen eine breite Palette anderer Metalle zurückgewinnen. Organische Stoffe (z.B. Kunststoffe) finden dabei Verwendung als Substitut für Koks (Reduktionsmittel) und Schweröl (Energie). Umicore hat im Werk Hoboken in den letzten Jahren erhebliche Investitionen getätigt, durch welche die ehemalige Primärhütte vollständig in eine Sekundärhütte für Recyclingmaterial und Hüttenbeiprodukte umgewandelt wurde. Basierend auf einer komplexen Cu/Pb/Ni-Metallurgie wurde die Anlage zum weltweit modernsten Endverarbeiter von edelmetallhaltigen Fraktionen entwickelt, mit dem optimierte Metallausbeuten bei erhöhter Produktivität und minimierter Umweltbeanspruchung erzielt werden. Eine weitere Optimierung der Recyclingkette kann vor allem an der Schnittstelle zwischen mechanischer Aufbereitung und integrierter Verhüttung erreicht werden, wodurch die Gesamtausbeute an (Edel-)Metallen deutlich verbessert würde. Schlüsselwörter: Elektronikschrott – Integrierte Metallhütte – Recycling von Leiterplatten und Mobiltelefonen – Edelmetalle – Schnittstellenoptimierung Recyclage de déchets électroniques à la fonderie/raffinerie intégrée de métaux d’Umicore Reciclage de residuos electrónicos en la integrada funda/refinería de metales de Umicore Paper presented on the occasion of the European Metallurgical Conference EMC 2005, September 18 to 21, 2005, in Dresden. 152 World of Metallurgy – ERZMETALL 59 (2006) No. 3 Mahin Rameshni et al.: Production of Elemental Sulphur from SO2 (RSR) Production of Elemental Sulphur from SO2 (RSR) Mahin Rameshni, Stephen Santo WorleyParsons innovative SO2 reduction process efficiently recovers sulphur from SO2 streams. Effluent gases from ore roasters and smelters and coal-fired power plants can be treated to reduce sulphur emissions. This exciting new process is an innovative combination of well-established processes of reaction of CH4 and sulphur vapor to produce CS2, followed by catalytic hydrolysis of CS2 to H2S, and Claus reaction of H2S and SO2 to sulphur. Key advan- tages are lower fuel consumption, reduced emissions, better product sulphur quality and better operational stability. The production of elemental sulfur from SO2 is being called Rameshni SO2 Reduction (RSR) and it is patent pending. Keywords: SO2 reduction – off gas – Claus reaction – sulphur – RSR Herstellung von elementarem Schwefel aus SO2 (RSR) WorleyParsons innnovativer SO2-Reduktionsprozess dient der wirtschaftlichen Gewinnung von Schwefel aus SO2haltigen Abgasströmen. Den Röstgasen von Metallhütten, die sulfidische Erze verarbeiten, sowie den Abgasen von Kohlekraftwerken wird der darin enthaltene Schwefel entzogen. Dieser neue Prozess stellt eine innovative Kombination des etablierten Verfahrens der Reaktion von CH4 und Schwefeldampf zu CS2 und der darauf folgenden katalytischen Hydrolyse von CS2 zu H2S sowie der Claus-Reaktion von H2S und SO2 zu Schwefel dar. Vorteile des Prozesses sind niedrigerer Energieeinsatz, reduzierte Emissionen, verbesserte Qualität des Produkts Schwefel und große Betriebsstabilität. Die Gewinnung von elementarem Schwefel aus SO2 wurde als Rameshni-SO2-Reduktion (RSR) zum Patent angemeldet. Schlüsselwörter: SO2-Reduktion – Abgas – Claus-Reaktion – Schwefel – RSR Production de soufre élémentaire à partir de SO2 (RSR) Producción de azufre elemental del SO2 (RSR) 1 Introduction Environmental regulatory agencies of many countries continue to promulgate more stringent standards for sulphur emissions from Industrial sources. Many plants around the world, ore smelters, in particular, are still allowed to emit large quantities of SO2 because of their remote locations and the high cost of mitigation, but those exemptions are running out as governments become more environmentally responsible. With the renewed interest in high sulphur coal for power production and increased activity in the mining and metals sectors, it is necessary to develop and implement reliable and cost-effective technologies to cope with the changing requirements. Sulphur dioxide is found in a many industrial gases emanating from plants involved in roasting, smelting and sintering sulfide ores, or gases from power plants burning high sulphur coal or fuel oils or other sulfurous ores or other industrial operations involved in the combustion of sulfur-bearing fuels, such as fuel oil. One of the more difficult environmental problems facing industry is how to economically control SO2 emissions from these sources. 162 In general, smelter gases contain about 2 % to 16 % SO2 by volume while gases from other sources may vary from 1 % to 100 % SO2 with the other components usually comprising oxygen, nitrogen, carbon dioxide and water vapor. Few commercially feasible processes for the reduction of SO2 to elemental sulfur have been developed. The reduction of SO2 to elemental sulfur has been investigated extensively over a period of nearly 100 years, and the basic SO2 reduction process using a hydrocarbon reducing agent is discussed in many articles and patents. Thermal and catalytic reduction processes have both been investigated over the years. The general problems using hydrocarbon as a reducing agent are listed below. • • • • • Low sulphur recovery efficiency High fuel consumption High cost Difficult operation Soot formation produces off-color sulphur and fouls catalyst beds • By products, such as hydrogen and CO, increase the gas volume requiring larger plants World of Metallurgy – ERZMETALL 59 (2006) No. 3 Reinhard Schwaiger et al.: Porous Plugs – A New Generation of Degassing Technology in Aluminium Foundry Ladles Porous Plugs – A New Generation of Degassing Technology in Aluminium Foundry Ladles Report by Reinhard Schwaiger, Klaus Gamweger The quality requirements for alloys increase continuously, also in the field of the aluminum industry. In this case the reduction of the hydrogen content is of decisive importance. The degassing can be carried out directly in the holding furnace, or in the foundry transport ladles, with the help of a stationary degassing device. In the AL KIN System introduced here, porous plugs are installed in the bottom of these ladles. With these, the hydrogen content can be reduced in the metal bath quickly and very efficiently. Mostly, the step of degassing is the bottleneck in the production, so that the time saved directly affects the productivity of the facility. A further advantage of this system is that no moving parts are used, contrary to the system with rotating lances. These have to be changed frequently and represent high costs and maintenance work. This article shows the operation of this system and the results achieved by the example of a 1.2 t foundry transport ladle. Keywords: Aluminum – Porous plugs – Ladle – Degassing – Hydrogen Poröse Spülsteine – Eine neue Generation der Entgasungstechnologie für Gießereipfannen in der Aluminiumindustrie Die Qualitätsanforderungen bei Legierungen steigen auch im Bereich der Aluminiumindustrie ständig an. Dabei ist die Reduzierung des Wasserstoffgehaltes von entscheidender Bedeutung. Die Entgasung kann direkt im Halteofen durchgeführt werden, oder in den Überführungspfannen mit Hilfe von Entgasungsstationen. In dem hier vorgestellten AL KIN-System werden poröse Spülsteine im Boden dieser Pfannen installiert. Mit diesen kann der Wasserstoffgehalt im Metallbad schnell und effizient reduziert werden. Meist stellt der Entgasungsschritt den Bottleneck in der Produktionskette dar, so dass die eingesparte Zeit sich direkt auf die Produktivität der Anlage auswirkt. Dass hier keine beweglichen Teile eingesetzt werden, ist ein weiterer Vorteil dieses Systems gegenüber dem der rotierenden Lanzen. Diese verschleißen schnell und stellen einen hohen Kosten- und Arbeitsaufwand für die Instandhaltung dar. Dieser Artikel zeigt die Arbeitsweise dieses Systems und die erzielten Ergebnisse anhand einer 1,2-TonnenPfanne. Schlüsselwörter: Aluminium – Spülsteine – Pfanne – Entgasen – Wasserstoff Bouchons poreux – une technologie de dégazage de la nouvelle génération dans les poches de transfer Tapones porosos – una nueva generación de tecnología de desgasificación para cucharas usados en la industria del aluminio 1 Introduction The treatment of molten metals with purging gases is a well established practice in non-ferrous metallurgy. In the aluminium industry, inert or reaction gases are blown into the melt using porous plugs at multiple steps in the process, including in melting and holding furnaces, and more recently in ladles. To enable effective gas purging during aluminium production RHI Refractories developed the AL KIN system, a complete package that includes porous plugs, refractory expertise, gas supply technology, and gas control equipment. The main role of gas purging in aluminium melting furnaces is to increase the melting rate and homogenization of the alloying elements. By contrast, in holding furnaces the principal focus is the removal of inclusions and a decrease World of Metallurgy – ERZMETALL 59 (2006) No. 3 in the hydrogen content, in addition to temperature and chemical homogenization of the melt. Subsequently, when the high quality aluminium is transferred from the holding furnace to the caster or dosing furnace using transport ladles, an additional degassing step is necessary to reduce the hydrogen content to the required minimum. Whilst rotary lances can be employed at this stage, the ladle must be fully charged and moved to the degassing station prior to the purging step. In contrast, the transport distance and degassing time can be significantly reduced using porous plugs installed in ladles because the plugs are an integral part of the ladle and purging can begin as the ladle is charged. At RHI Refractories, the AP4 porous plug has been optimized for ladle purging requirements, and by providing a rapid degassing method aluminium cooling during the transport step is decreased. 169
© Copyright 2026 Paperzz