R ENDICONTI del S EMINARIO M ATEMATICO della U NIVERSITÀ DI PADOVA L. C ARLITZ Some formulas related to Gauss’s sum Rendiconti del Seminario Matematico della Università di Padova, tome 41 (1968), p. 222-226 <http://www.numdam.org/item?id=RSMUP_1968__41__222_0> © Rendiconti del Seminario Matematico della Università di Padova, 1968, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SOME FORMULAS RELATED TO GAUSS’S SUM L. CARLITZ 1. Chowla where m, n are [1]] has proved arbitrary odd *) the formula positive integers. By contour integration it is shown that where m, n Comparison *) are odd and of (2) and Indirizzo dell’A.: positive. Ramanujan [2] proved that (3) gives (1). Dept. of Math., Duke Univ., Durham, N. C., USA. 223 In the of note we shall give a shall prove the slightly present (1). Indeed we where m, n are odd, (a, 2mn~ the Legendre-Jacobi symbol. In addition we = 1, aa’ « For a, = a’ simple elementary proof general formula more (mod = - and prove - where m 2. If is odd and (a, mn) m is odd and ~ Let a be Let aa’ an = 1 = 1. = I integer prime (mod 2~nn) ; to then it is clear that Then (a/mn) 1, (4) reduces to is (1). 224 so that Since and (6) become8 We shall now where a and n are show that any odd and which evidently yields (6). integers. Indeed 225 Substituting But, by where a little a from so in is the manipulation now m = we get Legendre-Jacobi symbol. to now the 1 sum is odd and (a, mn) that Let aa’ (7) familiar formula for Gaussian sums, 3. We consider where (3) (mod mn) ; then = 1. Thus (9) reduces after 226 It follows that by (10). This evidently completes the proof of (5). REFERENCES [1] S. [2] S. CHOWLA, Some formalae of the Gauss sum type (II), Tohokn Mathematical Journal, vol. 32 (1929-30), pp. 352-353. RAMANUJAN, Some definite integrals connected with Gauss’s sums, Messenger of Mathematics, vol. 44 (1915). pp. 75-85. Manoscritto pervenuto in redazione il 8-6-68.
© Copyright 2026 Paperzz