Isotope Detection by nuclear resonance fluorescence with laser

Isotope Detection by Nuclear
Resonance Fluorescence with
Laser-Compton Gamma-rays
H. Ohgaki (Kyoto U.)
Special Coordination Funds for Promoting Science and Technology
R&D program for Implementation of Anti-Crime and Anti-Terrorism
Technologies for a Safe and Secure Society (FY2010-2014)
3: Nuclear Materials Detection Systems for Maritime Security
1
S t b 11,
September
11 2001
•March
March 2004 Madrid train bombings,191
bombings 191 killed
•May 2005 London bombings, 56 killed
•July 2006 Mumbai train bombings, 190 killed
Small -yield Nuclear weapon developed in US
M-388, weight 23kg, can killed most of lives
within 400m distance.
US government DOD and/or DOE photograph
A nuclear
l
attackk by
b suchh weapon in
i Tokyo
T k may cause 290,000
290 000 dead.
d d
Risk Management Solutions reported that if a terrorist group detonates a smallyield nuclear bomb in the center of Tokyo, a quarter of a million people are killed
i the
in
th blast,
bl t andd 50,000
50 000 die
di from
f
the
th effects
ff t off radiation
di ti over the
th coming
i years.
Non-destructive Inspection
target
SNM
(235U,
U 239Pu,
P
257Np)
Highh Z
Hi
(Pb, Bi, W, DU)
Explosives
drugs
(N,O,C,H,
Cl,S,K)
methodology
source
place
in: n、γ、X
out: prompt
prompt-, delayed
delayed-n、γ
n、γ
fission, photo-nuclear reaction,
resonant absorption or scattering
DT, DD n source
Bremss X,
Bremss.
X γ
LCS γ
11B(p, nγ)12C,Muon
Air, ship
cargo
in: n、X
n X
out: attenuated n・X
Attenuation method
DT, DD n so
DT
source
rce
Bremss. X
Muon
Air, ship
Air
cargo
iin: n
out: n・γ
scatted n・capture γ
DT, DD n source
Air, ship
cargo
Railroad
DT, DD n source
Bremss X,
Bremss.
X γ
Air, ship
cargo
Railroad
Bremss. X
Air, ship
cargo
in: n、γ、X
VX Gas
prompt-,, delayed
delayed-n、γ
n、γ
(F, S,
(F
S Cl,
Cl P,
P A
As)) out: prompt
scatted n・capture γ
resonant absorption or scattering
others
(guns,…)
in: X
out: X
Attenuation method
Requirement of scanning test for
all ship cargo containers to US
Including special nuclear materials (SNMs)!!
However, it’s postponed until 2012, and may extend further…
Ship containers
Photo s from Gunnar Ries
From Yokohama to US
~12,000 cargo containers(TEU)/y
20 ft (6 m) cargo container(TEU)
400 containers/day
Rapid inspection system is required (< 10 min)
•Japanese
Japanese government plans to set up a few “HUB
HUB port”
port against this requirement.
=> Large system, accelerators, could be acceptable.
4
Quantum beams (accelerators
(accelerators, lasers
lasers,
n-source..) are key technologies.
5
Quantum beams (electron accelerator, laser, nsource..) are key technologies.
Energy tunable monochromatic gamma-ray
beam by laser Compton scattering
Energy distribution
Laser Compton scattering (LCS)
dE/E ~ 1%
Scattered Photon
2
1
Incident Photon
Electron
100 MeV ~ a few GeV
C tti off
Cutting
ff by
b smallll angle
l limitation
li it ti
We can obtain energy tunable monochromatic gamma-ray beam in this manner.
MeV class LCS Gamma
Gamma-ray
ray Sources
The Duke
Th
D k F
Free El
Electron
t
Laser
L
Laboratory at Duke University (USA)
AIST Storage
g ring
g TERAS(JP)
( )
105 photons/s
107 photons/s
NewSUBARU (SPring-8,JP)
106-7 photons/s
7
M1 strength of Pb-208
Pb 208 good old days
Measured spectra
p
at AIST
Nuclear Resonance Fluorescence
with LCS polarized gamma-ray beam.
parallel
検出器
detector
M1 transition
M1放射
=90°
detector
検出器
Counts / 2 keV
400
M1
=0
E1
 = 90
200
0
1000
perpendicular
E1放射
E1
transition
E
500
H
ガンマ線
線
LCS gamma-ray
ビーム
Angular distribution of NRF gamma-ray
is strongly
g y sensitive to angle
g of the beam.
0
6500
T.Shizuma,et al., Phys. Rev. C 78, 061303(R) (2008)
7000
Energy (keV)
7500
Novel Nondestructive Assay by LCS gamma
gamma-rays
rays
We have proposed a novel method that measure any radionuclide
inside a heavy shield as a few cm thickness steel
steel.
R.Hajima, et al. J. Nucl. Sci. Tech. 45, 441 (2008).
Energy [keV]
2+
2657
2464
2423
2143
Tunable
1+
Absorption
Emission
846
Absorption
0+
Flux of gamma-rays
0
56 Fe
0+
0
208 Pb
1/2+
239 Pu
0
1+
2003
1862
1
1815
1
1733
2040
2+
1+
7/2
Shielded Materials
2410
2245
2176
1846
1782
11-
931
680
0+
0
Emission
-
235 U
0
238 U
Gamma-ray
beam
Hidden nuclides as U-235
Detector
•Onlyy this nucleus is excited and subsequently
q
y de-excites with emission of
gamma-ray.
•The energy of this gamma-ray is basically identical to the excitation energy
of this nucleus.
•With energy tunable monochromatic gamma-ray beam, we can detect
selectively an isotope of interest.
Advantages
Combination of LCS gamma-rays
gamma rays and NRF provides these advantages
advantages.
•Detection of isotopes of all the
elements of Z>2
Z 2
Example
E
l off d
detection
t ti off Pb-208
Pb 208
with a LCS gamma-rays in Japan.
• High S/N ratio at peak
• With about 2-MeV gamma-rays we
can detect Pu, U through thick shields,
iron lead
iron,
lead, and water
water.
•No production of radioactive materials
by 2-MeV gamma-rays
Counts per channel
500
Gamma-rays of 208Pb
400
300
High S/N
200
100
0
5000
6000
7000
Energy [keV]
8000
T.Shizuma,et al., Phys. Rev. C 78, 061303(R) (2008)
NRF Spectra: Water, Melamine and an Explosive
Simulant
11
Bremsstrahlung Beam, Bertozzi et al.
Demonstration of detection
We use a LCS gamma
gamma-ray
ray source at synchrotron TERAS in Advanced Industrial
Science and Technology (AIST)
Flux Monitor
x
y
Electron Storage Ring
Electrons
LCS  rays
y
Laser
Colision
Flux Monitor HPGe detector
HPGe detector
z
laser
Target
 Ray Detector
Target
LCS gamma-rays
•Nd:YVO4 Q-switched laser
1064 nm, ~40W
•570 MeV electrons
200 mA
•1-40 MeV LCS gamma-rays
•10
105 photons/s
H. Ohgaki, IEEE Trans. Nucl. Sci. NS-38, 386 (1991).
Detection of hidden isotopes,
p
light
g nuclei
Shield: Iron 15 mm + Lead 4 mm
Target
g material: Melamine ((Melamine=C3H6N6)
Energy
2+
2+
7029
120-
5691
5106
4915
1+
3948
0+
2313
12+
4439
Absorption
0+
Flux of gamma-rays
7117
6917
0
12 C
1+
0
14 N
E i i
Emission
0+
0
16 O
13
12C,
0--2+-04438 keV
Melamine NRF spectrum
(120% G
Ge))
Cou
unts/1 kkeV
40
14N
1+ - 0- -1+
4915 keV
30
208Pb
0+-1--0+
4842 keV
20
10
0
4400
4500
4600
4700
4800
Photon Energy (keV)
16 hours measurement
4900
5000
=2.4
2 4 kkeV
V
14
Nucleus
Ex
exp(keV)
Ex ref(keV)
(
)
Area ((net
count)
Width ref ((meV))
12C
(2+->0
>0+)
4438.96
4438
62±7.9
10.8±0.06
14N
(0-->1+)
4915.25
4915
62±7.9
84±1.6*
208Pb,, 4.842MeV:eV
*Γ=ħ/τ=ħ/7.6fs* ((91AJ01))
(12C/14N)cal = 5/(1/3)0(12C)/0 (14N)
*Wq/Wd*(12C/14N)Melamine
= 15 x 10.8/84*5/3*3/6
M l i
Melamine=C
C3H6N6
= 1.61
W()dipole=3/4(1+cos2())
W()quad=5/4(1-3cos2()+4cos4())
 deg: Wq/Wd=5/3
deg:
(12C/14N)exp=62/62=1.0±0.18
15
Spectrum of Incident -ray
Gamma flux
Y(4.915)=663
Y(4.438)=433
1000
Coun
nts/2 keV
800
Y(4.915)=33ph/s/keV
in exp.
p condition
106 photons
Ee= 530 M
MeV
V
L= 1064 nm
600
400
EGS simulation
200
0
0
1
2
3
4
5
6
Photon Energy (MeV)
(12C/14N)cal = 1.61 * 433/663 = 1.05
(12C/14N)exp=62/62=1.0±0.18
16
Good agreement!!
Detection of a hidden isotope,
heavy
nuclei
:
imaging!!
We used Pb-208 instead of U-238,
10
since
i
we cannott use it att AIST.
AIST
15
10
0
-5
0
5000
5200
10
-10
8
-15
6
-20
20
(5.512MeV)
2
Position of
Pb
5
208Pb
4
Cou
unts
Position (mm)
6
Counts
20
-25
5400
5600
5800
6000
5800
6000
Energy (keV)
y = -12mm
No Pb-208
4
2
-30
0
40
1.E+06
K (1460keV)
Countts/8keV
1.E+05
Counts/8keV
0.E+00 1.E-07 2.E-07 3.E-07 4.E-07 5.E-07
Counts/ph
1.E+07
1.E
07
We detected Pb
Pb-208
208
hidden by 15mm iron
plate.
Peak
P
k off Pb-208
Pb 208
Pb-208
y = -8mm
8
5000
0
5500
Energy [keV]
1.E+03
.E 03
5700
208
Pb (5512keV)
Tl (2614keV)
1.E+01
計算結果
実験結果
1.E+00
1.E-01
0
1000
2000
5600
Energy (keV)
100
5300
208
5400
200
1.E+04
1.E+02
5200
3000
4000
Energy [keV]
5000
6000
7000
N. Kikuzawa et al., Applied Physics Express 2, 036502 (2009).
Background at high
energy region
originated from
bremsstrahlung of
the electron beam.
2-D image of hidden materials by NRF
excited with LCS gamma-rays
Experiment set up
Wedge shape
nat. lead
15
10
LaBr3
Shield box, Nat. Iron
(40 mm×30 mm, Iron)
mm
HPGe
5
0
-5
-10
LCS beam
-15
-20
-25
25
-20
20
We’ve obtained 2-D image of hidden lead.
about 24 hours scanning time
-15
15
-10
10
-5
5
mm
0
5
10
18
Proposed Non-Destructive Detection System
Fast screening system
TEU
TEU
Neutron
shield
TEU D-D IEC neutron source
50 cm
TEU
Detector
6m array 6x2m
SNM contained Cargo
NRF LCS gamma-ray
Inspection system
1m
磁石
TEU
Suspicious
p
Cargo
OK
Shipping
磁石
OK
4x3m
Microtron+Laser
Detector array
2x2m
Microtron based
LCS gamma
source
Gamma-ray
shield
Neutron source : Inertial Electrostatic Confinement
Fusion (IEC)
Using gas or plasma target
long lifetime
lifetime, maintenance free
potential of high power operation
Conventional neutron tube
Metal target
g
(Hydrogen
Absorbing Alloys)
Fusion reactions
20
SUMMARY
NRF with LCS gamma-rays has big advantages for isotope
detection.
detection
-Melamine ((C3H6N6) experiment shows quantitative
measurement ability of LCS-NRF method.
12C(2+->0+, 4.44 MeV),14N(0-->1+, 4.92 MeV)
R l ti strength
Relative
t
th : G
Good
d agreementt with
ith atomic
t i ratio
ti
=> compound material identification
=>
> detection of explosives
-Succeeded in 208Pb isotope imaging (1D, 2D)
=> 3D, realistic??
Development of non-destructive hidden SNM detection
system
t
has
h been
b
jjustt b
begun.
21
Quantum beams (accelerators
(accelerators, lasers
lasers,
n-source..) are key technologies.
Work harder!!
22