Isotope Detection by Nuclear Resonance Fluorescence with Laser-Compton Gamma-rays H. Ohgaki (Kyoto U.) Special Coordination Funds for Promoting Science and Technology R&D program for Implementation of Anti-Crime and Anti-Terrorism Technologies for a Safe and Secure Society (FY2010-2014) 3: Nuclear Materials Detection Systems for Maritime Security 1 S t b 11, September 11 2001 •March March 2004 Madrid train bombings,191 bombings 191 killed •May 2005 London bombings, 56 killed •July 2006 Mumbai train bombings, 190 killed Small -yield Nuclear weapon developed in US M-388, weight 23kg, can killed most of lives within 400m distance. US government DOD and/or DOE photograph A nuclear l attackk by b suchh weapon in i Tokyo T k may cause 290,000 290 000 dead. d d Risk Management Solutions reported that if a terrorist group detonates a smallyield nuclear bomb in the center of Tokyo, a quarter of a million people are killed i the in th blast, bl t andd 50,000 50 000 die di from f the th effects ff t off radiation di ti over the th coming i years. Non-destructive Inspection target SNM (235U, U 239Pu, P 257Np) Highh Z Hi (Pb, Bi, W, DU) Explosives drugs (N,O,C,H, Cl,S,K) methodology source place in: n、γ、X out: prompt prompt-, delayed delayed-n、γ n、γ fission, photo-nuclear reaction, resonant absorption or scattering DT, DD n source Bremss X, Bremss. X γ LCS γ 11B(p, nγ)12C,Muon Air, ship cargo in: n、X n X out: attenuated n・X Attenuation method DT, DD n so DT source rce Bremss. X Muon Air, ship Air cargo iin: n out: n・γ scatted n・capture γ DT, DD n source Air, ship cargo Railroad DT, DD n source Bremss X, Bremss. X γ Air, ship cargo Railroad Bremss. X Air, ship cargo in: n、γ、X VX Gas prompt-,, delayed delayed-n、γ n、γ (F, S, (F S Cl, Cl P, P A As)) out: prompt scatted n・capture γ resonant absorption or scattering others (guns,…) in: X out: X Attenuation method Requirement of scanning test for all ship cargo containers to US Including special nuclear materials (SNMs)!! However, it’s postponed until 2012, and may extend further… Ship containers Photo s from Gunnar Ries From Yokohama to US ~12,000 cargo containers(TEU)/y 20 ft (6 m) cargo container(TEU) 400 containers/day Rapid inspection system is required (< 10 min) •Japanese Japanese government plans to set up a few “HUB HUB port” port against this requirement. => Large system, accelerators, could be acceptable. 4 Quantum beams (accelerators (accelerators, lasers lasers, n-source..) are key technologies. 5 Quantum beams (electron accelerator, laser, nsource..) are key technologies. Energy tunable monochromatic gamma-ray beam by laser Compton scattering Energy distribution Laser Compton scattering (LCS) dE/E ~ 1% Scattered Photon 2 1 Incident Photon Electron 100 MeV ~ a few GeV C tti off Cutting ff by b smallll angle l limitation li it ti We can obtain energy tunable monochromatic gamma-ray beam in this manner. MeV class LCS Gamma Gamma-ray ray Sources The Duke Th D k F Free El Electron t Laser L Laboratory at Duke University (USA) AIST Storage g ring g TERAS(JP) ( ) 105 photons/s 107 photons/s NewSUBARU (SPring-8,JP) 106-7 photons/s 7 M1 strength of Pb-208 Pb 208 good old days Measured spectra p at AIST Nuclear Resonance Fluorescence with LCS polarized gamma-ray beam. parallel 検出器 detector M1 transition M1放射 =90° detector 検出器 Counts / 2 keV 400 M1 =0 E1 = 90 200 0 1000 perpendicular E1放射 E1 transition E 500 H ガンマ線 線 LCS gamma-ray ビーム Angular distribution of NRF gamma-ray is strongly g y sensitive to angle g of the beam. 0 6500 T.Shizuma,et al., Phys. Rev. C 78, 061303(R) (2008) 7000 Energy (keV) 7500 Novel Nondestructive Assay by LCS gamma gamma-rays rays We have proposed a novel method that measure any radionuclide inside a heavy shield as a few cm thickness steel steel. R.Hajima, et al. J. Nucl. Sci. Tech. 45, 441 (2008). Energy [keV] 2+ 2657 2464 2423 2143 Tunable 1+ Absorption Emission 846 Absorption 0+ Flux of gamma-rays 0 56 Fe 0+ 0 208 Pb 1/2+ 239 Pu 0 1+ 2003 1862 1 1815 1 1733 2040 2+ 1+ 7/2 Shielded Materials 2410 2245 2176 1846 1782 11- 931 680 0+ 0 Emission - 235 U 0 238 U Gamma-ray beam Hidden nuclides as U-235 Detector •Onlyy this nucleus is excited and subsequently q y de-excites with emission of gamma-ray. •The energy of this gamma-ray is basically identical to the excitation energy of this nucleus. •With energy tunable monochromatic gamma-ray beam, we can detect selectively an isotope of interest. Advantages Combination of LCS gamma-rays gamma rays and NRF provides these advantages advantages. •Detection of isotopes of all the elements of Z>2 Z 2 Example E l off d detection t ti off Pb-208 Pb 208 with a LCS gamma-rays in Japan. • High S/N ratio at peak • With about 2-MeV gamma-rays we can detect Pu, U through thick shields, iron lead iron, lead, and water water. •No production of radioactive materials by 2-MeV gamma-rays Counts per channel 500 Gamma-rays of 208Pb 400 300 High S/N 200 100 0 5000 6000 7000 Energy [keV] 8000 T.Shizuma,et al., Phys. Rev. C 78, 061303(R) (2008) NRF Spectra: Water, Melamine and an Explosive Simulant 11 Bremsstrahlung Beam, Bertozzi et al. Demonstration of detection We use a LCS gamma gamma-ray ray source at synchrotron TERAS in Advanced Industrial Science and Technology (AIST) Flux Monitor x y Electron Storage Ring Electrons LCS rays y Laser Colision Flux Monitor HPGe detector HPGe detector z laser Target Ray Detector Target LCS gamma-rays •Nd:YVO4 Q-switched laser 1064 nm, ~40W •570 MeV electrons 200 mA •1-40 MeV LCS gamma-rays •10 105 photons/s H. Ohgaki, IEEE Trans. Nucl. Sci. NS-38, 386 (1991). Detection of hidden isotopes, p light g nuclei Shield: Iron 15 mm + Lead 4 mm Target g material: Melamine ((Melamine=C3H6N6) Energy 2+ 2+ 7029 120- 5691 5106 4915 1+ 3948 0+ 2313 12+ 4439 Absorption 0+ Flux of gamma-rays 7117 6917 0 12 C 1+ 0 14 N E i i Emission 0+ 0 16 O 13 12C, 0--2+-04438 keV Melamine NRF spectrum (120% G Ge)) Cou unts/1 kkeV 40 14N 1+ - 0- -1+ 4915 keV 30 208Pb 0+-1--0+ 4842 keV 20 10 0 4400 4500 4600 4700 4800 Photon Energy (keV) 16 hours measurement 4900 5000 =2.4 2 4 kkeV V 14 Nucleus Ex exp(keV) Ex ref(keV) ( ) Area ((net count) Width ref ((meV)) 12C (2+->0 >0+) 4438.96 4438 62±7.9 10.8±0.06 14N (0-->1+) 4915.25 4915 62±7.9 84±1.6* 208Pb,, 4.842MeV:eV *Γ=ħ/τ=ħ/7.6fs* ((91AJ01)) (12C/14N)cal = 5/(1/3)0(12C)/0 (14N) *Wq/Wd*(12C/14N)Melamine = 15 x 10.8/84*5/3*3/6 M l i Melamine=C C3H6N6 = 1.61 W()dipole=3/4(1+cos2()) W()quad=5/4(1-3cos2()+4cos4()) deg: Wq/Wd=5/3 deg: (12C/14N)exp=62/62=1.0±0.18 15 Spectrum of Incident -ray Gamma flux Y(4.915)=663 Y(4.438)=433 1000 Coun nts/2 keV 800 Y(4.915)=33ph/s/keV in exp. p condition 106 photons Ee= 530 M MeV V L= 1064 nm 600 400 EGS simulation 200 0 0 1 2 3 4 5 6 Photon Energy (MeV) (12C/14N)cal = 1.61 * 433/663 = 1.05 (12C/14N)exp=62/62=1.0±0.18 16 Good agreement!! Detection of a hidden isotope, heavy nuclei : imaging!! We used Pb-208 instead of U-238, 10 since i we cannott use it att AIST. AIST 15 10 0 -5 0 5000 5200 10 -10 8 -15 6 -20 20 (5.512MeV) 2 Position of Pb 5 208Pb 4 Cou unts Position (mm) 6 Counts 20 -25 5400 5600 5800 6000 5800 6000 Energy (keV) y = -12mm No Pb-208 4 2 -30 0 40 1.E+06 K (1460keV) Countts/8keV 1.E+05 Counts/8keV 0.E+00 1.E-07 2.E-07 3.E-07 4.E-07 5.E-07 Counts/ph 1.E+07 1.E 07 We detected Pb Pb-208 208 hidden by 15mm iron plate. Peak P k off Pb-208 Pb 208 Pb-208 y = -8mm 8 5000 0 5500 Energy [keV] 1.E+03 .E 03 5700 208 Pb (5512keV) Tl (2614keV) 1.E+01 計算結果 実験結果 1.E+00 1.E-01 0 1000 2000 5600 Energy (keV) 100 5300 208 5400 200 1.E+04 1.E+02 5200 3000 4000 Energy [keV] 5000 6000 7000 N. Kikuzawa et al., Applied Physics Express 2, 036502 (2009). Background at high energy region originated from bremsstrahlung of the electron beam. 2-D image of hidden materials by NRF excited with LCS gamma-rays Experiment set up Wedge shape nat. lead 15 10 LaBr3 Shield box, Nat. Iron (40 mm×30 mm, Iron) mm HPGe 5 0 -5 -10 LCS beam -15 -20 -25 25 -20 20 We’ve obtained 2-D image of hidden lead. about 24 hours scanning time -15 15 -10 10 -5 5 mm 0 5 10 18 Proposed Non-Destructive Detection System Fast screening system TEU TEU Neutron shield TEU D-D IEC neutron source 50 cm TEU Detector 6m array 6x2m SNM contained Cargo NRF LCS gamma-ray Inspection system 1m 磁石 TEU Suspicious p Cargo OK Shipping 磁石 OK 4x3m Microtron+Laser Detector array 2x2m Microtron based LCS gamma source Gamma-ray shield Neutron source : Inertial Electrostatic Confinement Fusion (IEC) Using gas or plasma target long lifetime lifetime, maintenance free potential of high power operation Conventional neutron tube Metal target g (Hydrogen Absorbing Alloys) Fusion reactions 20 SUMMARY NRF with LCS gamma-rays has big advantages for isotope detection. detection -Melamine ((C3H6N6) experiment shows quantitative measurement ability of LCS-NRF method. 12C(2+->0+, 4.44 MeV),14N(0-->1+, 4.92 MeV) R l ti strength Relative t th : G Good d agreementt with ith atomic t i ratio ti => compound material identification => > detection of explosives -Succeeded in 208Pb isotope imaging (1D, 2D) => 3D, realistic?? Development of non-destructive hidden SNM detection system t has h been b jjustt b begun. 21 Quantum beams (accelerators (accelerators, lasers lasers, n-source..) are key technologies. Work harder!! 22
© Copyright 2025 Paperzz