HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 1. ( x8 y 7 )2 x16 y14 = 5 −6 = x11 y 20 x 5 y −6 x y 2. Ax = (4 x + B )C Ax = 4Cx + BC Ax − 4Cx = BC x( A − 4C ) = BC BC x= A − 4C 3. 2 3 + 4x − 5 1 − 6x 2(1 − 6 x) + 3(4 x − 5) (4 x − 5)(1 − 6 x) 2 − 12 x + 12 x − 15 = (4 x − 5)(1 − 6 x) −13 = (4 x − 5)(1 − 6 x) = 4. (a) 5m − 10n = 5( m − 2n) (b) m 2 + mn − 6n 2 = (m + 3n)(m − 2n) (c) m 2 + mn − 6n 2 − 5m + 10n = (m + 3n)( m − 2n) − 5( m − 2n) = (m − 2n)( m + 3n − 5) 5. Let x be the number of female members Then the number of male members = x (1 + 40%) = 1.4 x x + 1.4 x = 180 2.4 x = 180 x = 75 Then the required difference is 1.4 x − x = 0.4 x = 30 1 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 6. (a) x + 6 < 6( x + 11) x + 6 < 6 x + 66 −60 < 5 x x > −12 Therefore, x > −12 or x ≤ −5 The compound solution is all real numbers (b) The greatest negative integer is −1 7. (a) ∠AOB = 135° − 75° = 60° (b) OA = OB = 12 , AB = 12 2 + 122 − 2(12)(12) cos 60° = 12 The perimeter is 12 + 12 + 12 = 36 (c) 8. ∆AOB has 3 fold of rotational symmetry (a) Let f ( x) = ax + bx 2 , where a and b are non-zero constants f (3) = 48 3a + 9b = 48 a + 3b = 16......(1) f (9) = 198 9a + 81b = 198 a + 9b = 22......(2) (2) − (1) b =1 a = 13 Therefore, f ( x) = 13 x + x 2 (b) f ( x ) = 90 x 2 + 13 x − 90 = 0 ( x + 18)( x − 5) = 0 x = −18 or x = 5 9. (a) x = 2+4 = 6 y + 15 = 37 y = 22 z = 37 + 3 = 40 (b) c = y − 13 = 22 − 13 = 9 b = 13 − x = 13 − 6 = 7 The required probability = 9+7 2 = 40 5 2 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 10. (a) Let M ( x, y ) be the mid-point of A and B x= 5 + 13 7 +1 =9, y = =4 2 2 Slope of AB = Slope of Γ = 7 −1 3 =− 5 − 13 4 4 3 Equation of Γ : 4 y − 4 = ( x − 9) 3 4 x − 3 y − 24 = 0 (b) put y = 0 into the equation of Γ x=6 i.e. H = (6, 0) put x = 0 into the equation of Γ y = −8 i.e. K = (0, − 8) as ∠HOK = 90° , HK is the diameter of the circumcircle of ∆HOK diameter of the circumcircle = (6 − 0) 2 + ( −8 − 0) 2 = 10 The circumference of C = 10π > 30 Therefore, the claim is correct 3 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 11. (a) Let V cm3 be the original volume of milk in the vessel 3 V 12 = V + 444π 16 V 27 = V + 444π 64 64V = 27V + (27)(444π ) 37V = (27)(444π ) V = 324π Therefore, the final volume of milk in the vessel is 324π + 444π = 768π cm 3 (b) Let r cm be the radius of the final surface 1 2 π r (16) = 768π 3 r = 12 The final area of the wet curved surface = π (12) 122 + 162 = 240π cm 2 < 800 cm 2 Therefore, the claim is disagreed a + 11 = 11 + b + 4 a =b+4 If a = 12 , b = 8 If a = 13 , b = 9 (b) (i) The greatest possible median is attained when the extra ages are 7, 8, 9, 10 and a = 13 , b = 9 12. (a) The median = 8+8 =8 2 (ii) The least possible mean is attained when the extra ages are 6, 7, 8, 9 and a = 12 , b = 8 The mean = 6 × 12 + 7 × 13 + 8 × 12 + 9 × 9 + 10 × 4 = 7.6 50 4 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 13. (a) In ∆ACD and ∆ABE ∠ADC = ∠AEB (given) AD = AE (sides opp. eq. ∠s) CD = CE + ED = BD + DE = BE Therefore, ∆ACD ≅ ∆ABE (SAS) (b) (i) AD = AE and DM = EM = 9 cm Therefore, AM ⊥ DE (prop. of isos. ∆ ) AM = 152 − 92 = 12 cm (ii) AB = 162 + 122 = 20 cm BE 2 = (7 + 18)2 = 625 AB 2 + AE 2 = 202 + 152 = 625 i.e. AB 2 + AE 2 = BE 2 therefore, ∆ABE is a right-angled triangle (Converse of Pyth. Theorem) 5 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 14. (a) p ( x) = (lx 2 + 5 x + 8)(2 x 2 + mx + n) = 2lx 4 + (10 + lm) x3 + (16 + 5m + nl ) x 2 + (8m + 5n) x + 8n Comparing coefficients 2l = 6 l =3 10 + lm = 7 3m = −3 m = −1 p (−2) = p (2) [3(−2) 2 + 5(−2) + 8][2(−2) 2 − (−2) + n] = [3(2) 2 + 5(2) + 8][2(2) 2 − (2) + n] 10(10 + n) = 30(6 + n) n = −4 (b) p ( x ) = 0 (3 x 2 + 5 x + 8)(2 x 2 − x − 4) = 0 3 x 2 + 5 x + 8 = 0 or 2 x 2 − x − 4 = 0 For 3 x 2 + 5 x + 8 = 0 ∆ = 52 − 4(3)(8) = −71 <0 There is no real root For 2 x 2 − x − 4 = 0 ∆ = (−1) 2 − 4(2)(−4) = 33 >0 There are two distinct real roots As a result, there are 2 distinct real roots 6 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 15. The required probability = 5! × C46 × 4! 5 = 9! 42 16. Let σ be the standard deviation of the distribution and x be the score of Mary 22 − 61 σ = −2.6 σ = 15 x − 61 = 1.4 15 x = 82 The range of the distribution ≥ 82 − 22 = 60 > 59 Therefore, the claim is not correct 17. (a) Let d be the common difference 666 + (38 − 1)d = 555 d = −3 Therefore, the common difference is −3 (b) n [2(666) + (n − 1)(−3)] > 0 2 n(1332 − 3n + 3) > 0 n(n − 445) < 0 0 < n < 445 Therefore, the greatest value of n is 444 7 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 18. (a) f ( x) = −1 2 x + 12 x − 121 3 1 = − ( x 2 − 36 x) − 121 3 1 = − ( x 2 − 36 x + 324 − 324) − 121 3 1 = − ( x − 18)2 − 13 3 Therefore, the coordinates of the vertex is (18, − 13) (b) The vertex of the graph of y = g ( x ) is (18, 0) The graph of g ( x ) is obtained by translating the graph of y = f ( x ) upwards by 13 units 1 Therefore, g ( x) = f ( x) + 13 = − ( x − 18) 2 3 −1 2 x − 12 x − 121 3 h( x ) = f ( − x ) (c) Let h( x) = i.e. f ( x ) is reflected in the y-axis 8 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 19. (a) In ∆ABD 10 15 = sin ∠ADB sin 86° 10sin 86° sin ∠ADB = 15 ∠ADB = 41.68560132° ∠ABD = 180° − 86° − 41.68560132° = 52.3° In ∆BCD 52.31439868 CD = 82 + 152 − 2(8)(15) cos 43° = 10.7 cm (b) In ∆ABC 10.65246974 AC 2 + BC 2 = 62 + 82 = 100 = 102 = AB 2 Therefore, ∠ACB = 90° (converse of Pyth. Theorem) In ∆ABD AD = 102 + 152 − 2(10)(15) cos ∠ABD = 11.89964475 cm In ∆ACD AC 2 + CD 2 = 149.4751116 AD 2 = 141.6015451 I.e. AC 2 + CD 2 ≠ AD 2 Therefore, ∠ACD ≠ 90° Hence, C is not the projection of A on BCD ∠ABC is not the angle between AB and the face BCD The claim is disagreed 9 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution 20. (a) I is the in-centre Then ∠IPO = ∠IPQ = x J is the circumcenter Then JO = JP = JQ ∠JOP = ∠JPO = x ( base ∠s, isos. ∆ ) ( base ∠s, isos. ∆ ) ∠JQP = ∠JPQ = x ( base ∠s, isos. ∆ ) ∠JOQ = ∠JQO = y ∠POQ = x − y = ∠PQO Therefore, PQ = PQ ( sides opp. eq. ∠s ) P x x I x x O y y J (b) (i) Let P = ( a, 19) PO = PQ (a − 0) 2 + (19 − 0) 2 = (a − 40) 2 + (19 − 30) 2 a 2 + 361 = a 2 − 80a + 1600 + 121 a = 17 i.e. P = (17, 19) Let the equation of C be x 2 + y 2 + Dx + Ey + F = 0 Put O (0, 0) , F = 0 Put (17, 19) , 17 2 + 192 + 17 D + 19 E = 0 17 D + 19 E = −650......(1) Put (40, 30) , 402 + 302 + 40 D + 30 E = 0 4 D + 3E = −250......(2) Solving (1) and (2) D = −112 , E = 66 Therefore, the equation of C: x 2 + y 2 − 112 x + 66 y = 0 10 Q HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution (ii) Method I Let y = 3 x + c be the equation of the tangent 4 Put into C 3 3 x 2 + ( x + c) 2 − 112 x + 66( x + c) = 0 4 4 9 3c 99 x 2 + x 2 + x + c 2 − 112 x + x + 66c = 0 16 2 2 25 2 3c − 125 x + x + c 2 + 66c = 0 16 2 2 25 x + 8(3c − 125) x + 16c(c + 66) = 0 ∆=0 64(3c − 125) 2 − 4(25)(16c)(c + 66) = 0 9c 2 − 750c + 15625 − 25c 2 − 1650c = 0 16c 2 + 2400c − 15625 = 0 (4c − 25)(4c + 625) = 0 25 625 or c = − 4 4 3 25 3 625 i.e. L1 : y = x + and L2 : y = x − 4 4 4 4 c= S = (− 25 25 625 625 , 0) , T = (0, ) , U = ( , 0) , V = (0, − ) 3 4 3 4 ST = (− 25 25 125 − 0)2 + (0 − )2 = 3 4 12 625 625 3125 − 0) 2 + (− − 0) 2 = 3 4 12 Height of the trapezium = Diameter of circle UV = ( −112 2 66 2 ) + ( ) = 130 2 2 Area of the trapezium = 2× ( 1 125 3125 = ×( + ) × 130 2 12 12 1 = 17604 6 > 17000 Therefore, the claim is correct 11 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution Method II In the figure, M and N are the feet of the perpendiculars from T and S to UV respectively Let θ be the inclination of L1 and L2 , Then tan θ = 3 3 4 , sin θ = , cos θ = 4 5 5 ∠SUV = θ and ∠TVU = 90° − θ PR = diamater of the circumcircle =2 ( −112 2 66 2 ) +( ) 2 2 = 130 = TM = SN In ∆SUN , SN SU 130 650 SU = = 3 3 5 sin θ = In ∆TVM , 12 HKDSE2016 Mathematics (Compulsory Part) Paper 1 - Solution TM TV 130 650 TV = = 4 4 5 sin(90° − θ ) = Area of STUV 1 = × SU × TV 2 1 650 650 = × × 2 3 4 1 = 17604 6 > 17000 Therefore, the claim is correct 13
© Copyright 2026 Paperzz