Appendix E: Climate impacts and adaptation actions for Canada

Appendix E: Climate impacts and adaptation actions for Canada lynx
TheWashington-BritishColumbiaTransboundaryClimateConnectivityProjectengagedscience-practicepartnerships
toidentifypotentialclimateimpactsonwildlifehabitat
connectivityandadaptationactionsforaddressingthese
impactsinthetransboundaryregionofWashingtonand
BritishColumbia.iProjectpartnersfocusedtheirassessment
onasuiteofcasestudyspecies,vegetationsystems,and
regionschosenfortheirsharedprioritystatusamong
projectpartners,representationofdiversehabitattypes
Photo:EricKilby
andclimatesensitivities,anddataavailability.Thisappendix
describespotentialclimateimpactsandadaptationactions FigureE.1.Canadalynx
identifiedfortheCanadalynx(Lynxcanadensis).1
TheCanadalynxisawide-rangingcarnivorewithrelativelyhighsensitivitytoanthropogenic
fragmentation.InthetransboundaryregionofWashingtonandBritishColumbia,thelynx’sconiferous,
earlyseralstageforesthabitatexhibitslowconnectivity.2Barrierstolynxmovementarepresentedby
bothnaturalfactors(e.g.,largelakesandhightopographicrelief)andhumanfactors(e.g.,snow
compactionassociatedwithwinterrecreation),withsignificantbarrierspresentalongmajorhighways
andtheOkanaganValley(AppendixE.1).2
FutureclimatechangemaypresentadditionalchallengesandneedsforCanadalynxhabitat
connectivity.3-4First,climatechangemayimpactlynxcorehabitatanddispersalcorridorsinwaysthat
makethemmoreorlesspermeabletomovement.Second,existinglynxcorehabitatandcorridorsmay
bedistributedonthelandscapeinwaysthatmakethemmoreorlessabletoaccommodateclimatedrivenshiftsinlynxdistributions.Forsuchreasons,connectivityenhancementhasbecomethemost
frequentlyrecommendedclimateadaptationstrategyforbiodiversityconservation.5However,little
workhasbeendonetotranslatethisbroadstrategyintospecific,on-the-groundactions.Furthermore,
toourknowledge,nopreviousworkhasidentifiedspecificclimateimpactsoradaptationresponsesfor
lynxhabitatconnectivityinthisregion.Toaddresstheseneeds,wedescribehereanoveleffortto
identifyandaddresspotentialclimateimpactsonlynxhabitatconnectivityinthetransboundaryregion
ofWashingtonandBritishColumbia.
Potential climate impacts on habitat connectivity
Toidentifypotentialclimateimpactsontransboundarylynxhabitatconnectivity,projectpartners
createdaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpectedto
influencelynxhabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate,andhow
(AppendixE.2).Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentify
specificclimateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeen
promotedasusefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Thelynx
conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise,
andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot
i
ThisreportisAppendixEoftheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject;for
1
moreinformationabouttheproject’srationale,partners,methods,andresults,seeKrosbyetal.(2016). Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
1
Canada lynx (Lynx canadensis)
beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand
processescontributingtolynxhabitatconnectivity.
Projectparticipantsusedconceptualmodelsinconjunctionwithmapsofprojectedfuturechangesin
speciesdistributions,vegetationcommunities,andrelevantclimatevariablestoidentifypotential
impactsonlynxhabitatconnectivity.Becauseakeyprojectgoalwastoincreasepractitionerpartners’
capacitytoaccess,interpret,andapplyexistingclimateandconnectivitymodelstotheirdecisionmaking,wereliedonafewprimarydatasetsthatarefreelyavailable,spanallorpartofthe
transboundaryregion,andreflecttheexpertiseofprojectsciencepartners.Thesesourcesinclude
habitatconnectivitymodelsproducedbytheWashingtonConnectedLandscapesProject,2,7future
climateprojectionsfromtheIntegratedScenariosofthePacificNorthwestEnvironment8andthePacific
ClimateImpactsConsortium’sRegionalAnalysisTool,9andmodelsofprojectedrangeshiftsand
vegetationchangeproducedaspartofthePacificNorthwestClimateChangeVulnerability
Assessment.10
KeyimpactsontransboundaryCanadalynxhabitatconnectivityidentifiedviathisapproachinclude
changesinareasofclimaticsuitabilityforCanadalynx,changesinforesthabitat,changesindisturbance
regimes,anddeclinesintheamountanddurationofsnowpack.
Changes in areas of climatic suitability
Climatechangemayimpactlynxhabitatconnectivitybychangingtheextentandlocationofareasof
climaticsuitabilityforlynx;thismayrendersomeexistingcorehabitatareasandcorridorsunsuitablefor
lynx,and/orcreatenewareasofsuitability.Climaticnichemodelsprovideestimatesofspecies’current
andprojectedfutureareasofclimaticsuitability,andareavailableforlynxforthe2080sbasedontwo
CMIP3GlobalCirculationModels(GCMs)(CGCM3.1(T47)andUKMO-HadCM3ii)undertheA2(high)
carbonemissionsscenarioiii(AppendixE.3).
Forbothclimatemodels,projectionsforthe2080sshowadeclineinclimaticsuitabilityforlynxinthe
mid-tolow-elevationsoftheColumbia,Monashee,andSelkirkMountains,thelow-elevationsofColville
NationalForest,rivervalleys,andtheOkanaganValleyinparticular.Corridorscrossingthesevalleys
(especiallytheOkanagan)maycurrentlybeimportantformaintainingconnectivityamonglynx
populationsathigherelevations.ThisdeclineismoreextensivefortheCGCM3.1(T47)model.Projected
declinesinclimaticsuitabilityinvalleyssuggestthatvalleycrossingsbylynxmaybecomemoredifficult
inthefuture,furtherisolatinghigherelevationpopulationsseparatedbyvalleys.Somefragmented
areasinthehigherelevationspersist.
ii
14,15
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
iii
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise
st
untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre16
industriallevels. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
2
Canada lynx (Lynx canadensis)
Forbothclimatemodels,theclimaticnichemodelprojectsincreasesinclimaticsuitabilityforsome
areasinthetransboundaryregionwestoftheOkanaganValley.Currentlysuitablehabitatintheseareas
isexpectedtoremainstableandpossiblyexpandinclimaticsuitability.
Changes in forest habitat
Throughouttheirrange,lynxusecold,moistvegetationinregeneratingandmulti-layermatureforests.11
Changesinthedistributionandqualityofforesthabitatsinthetransboundaryregioncouldthereforebe
expectedtoaffectlynxhabitatconnectivity.Twotypesofmodelsareavailablethatestimatefuture
changesinvegetationforthetransboundaryregion:climaticnichemodelsandmechanisticmodels
(AppendixE.4).iv
Withinthetransboundaryregion,lynx’scurrentrangeisprojectedtoremainneedle-leafforest,though
thecharacterofthatforestmaychange.Mechanisticvegetationmodelsforthisregionshowa
contractionofborealneedle-leaf(“cold”)forestandalpinehabitattypes,whicharereplacedby
temperateneedle-leaf(“cool”)forest(AppendixE.4).Whilelynxarepredominantlyassociatedwith
boreal(orsubalpine)foresttypes,2thecurrentmappedrangeforlynxencompassesbothforesttypes,
soitisdifficulttojudgehowsignificantofanimpactthiswouldhaveonlynxhabitatquality.Climatic
nichemodelsprojectacontractionofsubalpineandalpinevegetationandexpansionofcoastalconifer
forest,lowtomid-elevationconiferforest,ornoanalogvegetationtypes(i.e.,areasforwhichfuture
climatedoesnotcloselymatchthatthecurrentclimateofanexistingvegetationtype),dependingon
thelocationandclimatescenario(AppendixE.4).
Changes in disturbance regimes
Climatechangemayaffectlynxhabitatconnectivitybyincreasingthefrequencyandseverityofsummer
drought(AppendixE.6:DrySpellDuration),increasingtheriskofwildfires(AppendixE.6:DayswithHigh
FireRisk),andinfluencingpestandpathogendynamics.Drierconditionscouldreducetheamount
and/orqualityofmoisthabitatsandforests.Alongerfireseasonandincreaseinareaburnedcouldalso
affectforesthabitat.12Moisturestressandfirecanincreasetreemortalityandbarkbeetleoutbreaks
(AppendixE.5),whichcanfurtherincreasethechancesoflarge,high-intensityfires.Suchdisturbance
eventscouldaffectlynxhabitatconnectivitybyreducingtheamountand/orqualityofavailablecore
foresthabitatandmovementcorridors.
Howprojectedchangesinfireregimesaffectlynxhabitatconnectivitywilldependonfirereturn
intervals,severity,size,location,andthesubsequentsuccessionaltrajectoriesofvegetation(Appendix
E.4andAppendixE.6:DayswithHighFireRisk).Whilelynxavoidrecentlyburnedareas(likelydueto
insufficientvegetativecover),oncecoverreestablishesinregeneratingforests,theseenvironmentscan
bebeneficialtolynxhabitatconnectivity.
iv
Climaticnichevegetationmodelsmathematicallydefinetheclimaticconditionswithinagivenvegetationtype’s
currentdistributionandthenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.
Thesemodelsdonotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,
dispersal,competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological
processesaswellasprojectedclimatechangesandpotentialeffectsofcarbondioxidefertilization.However,
mechanisticmodelsonlyprojectedchangestoverygeneralvegetationtypessuchascoldforest,shrubsteppe,or
grassland.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
3
Canada lynx (Lynx canadensis)
Declining amount and duration of snowpack
Projecteddeclinesintheamountanddurationofsnowpackandincreasesintheratioofsnowtowater
precipitation(AppendixE.6:Spring(April1st)Snowpack;LengthofSnowSeason;RatioofApril1st
SnowpacktoWinterPrecipitation)mayaffectthequalityoflynxcoreareasandcorridors.Morphological
adaptations,suchasalowfoot-loading(ratioofbodymasstofootarea),enablelynxtooutcompete
otherpredatorsinareaswithdeep,unconsolidatedsnow.13Decliningamountanddurationofsnowpack
couldthusresultinacontractionoflynxcorehabitat,andincreasingfragmentationandisolationofcore
areaswithinthecurrentsouthernperipheryofthelynxrange.Declinesinsnowpackamountand
durationcouldalsomakeithardertosetprescribedfirestoreducewildfirerisks.
Adaptation responses
Afteridentifyingpotentialclimateimpactsonlynxhabitatconnectivity,projectparticipantsused
conceptualmodelstoidentifywhichrelevantlandscapefeaturesorprocessescouldbeaffectedby
managementactivities,andsubsequentlywhatactionscouldbetakentoaddressprojectedclimate
impacts(AppendixE.2).Keyadaptationactionsidentifiedbythisapproachfallunderthreemain
categories:thosethataddresspotentialclimateimpactsonlynxhabitatconnectivity,thosethataddress
novelhabitatconnectivityneedsforpromotingclimate-inducedshiftsinlynxdistributions,andthose
thatidentifyspatialprioritiesforimplementation.
Addressing climate impacts on Canada lynx habitat connectivity
Actionstoaddressthepotentialforlynxhabitattobecomeincreasinglyisolatedandfragmented
include:
•
Managingforestryactivitiestoensurethatforestcanopyandunderstorycoverremain
continuousthroughoutlynxcorridors(AppendixE.1)andthatwoodydebrisremainspresent.
•
Consideringlimitingall-terrain-vehicleusewithinclimateresilientcorehabitatareasand
corridors.
•
Avoidingdevelopmentofnewroadsthroughexistingorpotentialfuturemovementcorridors
(AppendixE.1).Ifroadsarepresent,considerinstallingcrossings.
Actionstoaddressthepotentialforvalleybottomcrossingstobecomemoredifficultaslowelevation
valleysbecomewarmeranddrierinclude:
•
Identifyingandprotectingcorridorslikelytofacilitatelynxmovementacrosslowelevation
valleys,inordertomaintainconnectivityamonghigherelevationcorehabitatareas.Habitat
connectivitymodels(AppendixE.1)couldbeusedtoevaluatelow-elevationcorridorsforkey
areaswherecontinuedpermeabilitywillbeespeciallyimportanttomaintainingbroader
connectivity,andwhichshouldthusbehighprioritiesforconnectivityconservationefforts.
•
Focusinghabitatretentioneffortsinvalleysonriparianhabitats;lynxfrequentlyutilizethesefor
dispersalthroughdryhabitats,whichmaybecomelesspermeabletolynxmovementasclimate
warms.
•
Monitoringlow-elevationcorridorsforvegetationchangesthatmayaffectlynxconnectivity.If
shrubsteppevegetationappearstobeexpanding,cross-valleycorridorsmaybecomelonger,
makingthemlessattractivetodispersinglynx.Conversely,ifforestexpandsintothevalley,
corridorsuitabilitymayincreaseforlynx.Monitoringwouldallowtimelymodificationof
connectivityconservationeffortstoaccountfortheseorotherpossiblechanges.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
4
Canada lynx (Lynx canadensis)
Actionstoaddressthepotentialforclimatechangetoimpactconnectivitythroughmorefrequentand
severewildfiresinclude:
•
Usingrotating,targetedfuelreductiontechniquesandprescribedburnstocreatefirebreaksand
reducetheriskofcatastrophicwildfiresthatcouldresultinbroad-scalelossoflynxhabitatand
corridors.Vegetationmanagementstrategiesshouldsimultaneouslyaimtopreservesufficient
cover(understoryandwoodydebris)forlynxandsnowshoehares(i.e.thinningandotherfuel
reductionstrategiesshouldalsoconsiderstanddiversityandhabitatgoals).
•
Incorporatingprojectionsandobservationsofchangesinthelengthofthesnowseason,
evapotranspiration,soilmoisturedeficits,andthetimingofprecipitationtoinformthetimingof
firepreventiontechniquesasconditionschange,inordertomaximizetheirsafetyand
effectiveness.
•
Usingsomedegreeoffiresuppressionincool,moistforestswithlongfirereturnintervals,such
asthoseusedbylynx.Incontrasttodrier,lowelevationforests,suppressingfireincool,moist
forestsislesslikelytoresultinincreasedfuelloadsovertime(whichcanleadtosubsequent
increasedfireriskyearslater).
•
ReferencingtheforestandgrazingpracticesofFirstNationsandtribestoidentifytraditional
strategiesformanagingfireriskandotherpotentialclimateimpacts.
Actionstoaddressprojecteddecreasesinthedepthandpersistenceofsnowpackinclude:
•
Usingforestpracticesthatpromotesnowpackretention(e.g.snowfences)atelevationsusedby
lynxthatareprojectedtoexperiencethegreatestdecreasesinsnowpack,withthecaveatthat
giventhelargehomerangesizesoflynx,local-scalesnowmanagementisunlikelytohavea
significantimpactonlynxcorehabitatquality.Therefore,considerprioritizingsuchefforts
withinimportanthabitatareas(e.g.,nearknowndenningsites)andcorridors.
•
Ensuringthatmoistureandsnowpackretentionpractices(whenimplemented)arecompatible
withotherforestmanagementpracticesthatbalancetheneedforfireandnaturalresource
managementwiththeneedforsufficienthorizontalcoverforlynxandsnowshoehares.
•
Identifyingareaswheredeepspringsnowpackismostlikelytopersistinthefuture(Appendix
E.5),suchasnorth-facingslopesandtopographicallyshadedareas(e.g.,canyons).Consider
directingsnowpackretentioneffortstotheseareas,andprioritizingthemwhenmanagingfor
lynxcorehabitatandcorridors.
Enhancing connectivity to facilitate range shifts
Actionsthatmayhelplynxadjustitsgeographicdistributiontotrackshiftsinitsareasofclimatic
suitabilityinclude:
•
Maintainingandrestoringcorridorsbetweenareasofdecliningclimaticsuitabilityforlynxand
areasofstabilityorincreasingsuitability(AppendixE.3).
•
Maintainingandrestoringcorridorsthatspanelevationgradients(e.g.,climate-gradient
corridors,AppendixE.1),toensurethatlynxhavetheabilitytodisperseintocooler,higher
elevationhabitatsastheclimatewarms.
•
Focusinghabitatretentioneffortsonridgelines;forestedareas;valleybottoms;andriparian
areas,whichspanclimaticgradientsandareusedbylynxasmovementcorridors.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
5
Canada lynx (Lynx canadensis)
•
Planningtheplacement,orientation,andshapeofhabitatreservepatchestomaximize
connectivity,spanclimaticgradients,andcrosslow-elevationvalleys.Aspartofthis,ensurethat
whenclearcutsaremadeinforestedlynxcorehabitatandcorridors,reservepatchesare
connectedbycorridors.
Spatial priorities for implementation
Spatialprioritiesforimplementationoftheadaptationactionsdescribedaboveinclude:
•
HighelevationpeaksintheRockies,thewesternhalfoftheOkanaganValley,andtheNorth
Cascades.Climaticnichemodelprojectionssuggestthattheseareasarelikelybeclimatically
suitableinthefuture(AppendixE.3).
•
TheOkanaganValleyandotherlowerelevationareasinthegreaterOkanaganregion.These
areasalreadyconstrainlynxmovement(AppendixE.1),2andareexpectedtobecomeless
climaticallysuitableforlynxastheclimatewarms(AppendixE.3).Maintainingandrestoring
connectivityacrossthesevalleyswillbeimportantformaintainingconnectivityamonghigher
elevationlynxhabitats.
•
Highways,especiallythosethatrunalonglow-elevationvalleys(e.g.,Highway97andHighway
3A)andthosethatcrosstheCascadeRange(e.g.,Highway3).Thesehighwaysmaypresent
dispersalbarriersamonghigherelevationhabitats.Forexample,Highway3cutseast-west
throughE.C.ManningProvincialParkandmaycreateadispersalbarrierforsouth-north
movementthroughtheNorthCascades;ifthereisevidencethattheroadcreatesabarrier,it
couldbeacandidateforacrossing.
•
Climate-gradientcorridors(AppendixE.1),whichmayhelplynxshiftitsrangeintocooler
habitatsasclimatewarms.
•
Ridgelinesandforestedriparianareas,whichcurrentlyactaslynxmovementcorridorsthrough
dryelevationareas,andalsospanclimaticgradients,facilitatingdispersalintocoolerhabitats.
Policy considerations
Referrals response
ActionsforaddressingclimateimpactsonlynxhabitatconnectivitythroughFirstNationsandtribal
referralsresponseprocessesinclude:
•
Forhighwayexpansionprojects,encouragingtheuseofhighwaydesigntechniquesthat
preserveconnectivity(e.g.,overpasses,openspanbridges,andculverts),bothonandofftribal
andFirstNationlands.
•
Encouragingtheincorporationofwildlife-friendlyfencingintopermittingandplanning
processes.Promotingtheuseofsuchdesignsmayhelpfacilitatelynxmovement.
Land use planning and management
Actionsforaddressingclimateimpactsonlynxhabitatconnectivitythoughlandandwateruse
planningandmanagementinclude:
•
Strivingforcommunitydesignsthatlimitfragmentationofhabitatandincludehabitatcorridors.
Keepingdevelopmentawayfrompotentiallynxcorridors.
•
UsinglargeparcelzoningtomaintaincontiguityofnaturalareaswithinFirstNationsandtribal
lands.Outsideoftheselands,workwithprivatelandownersandwithenvironmentalpolicyto
maintaincontiguousswathsofsuitablelandthatwillfacilitateconnectivity.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
6
Canada lynx (Lynx canadensis)
•
Coordinatingwithforestmanagersandplannerstoincorporatefiremanagement
recommendationsintoplanningdocuments.
•
Monitoringlynxhabitatsforsuitabilityandpreparingtoaddressand/ormodifythelegalcontext
formanagement.InthecontiguousUnitedStates,theCanadalynxislistedasthreatenedunder
theEndangeredSpeciesAct,requiringprotectionofcriticalhabitat;theseareasmaychange
withfuturewarming.
•
Reviewingandimplementingexistingguidanceandplansrelatingtolynxhabitatmanagement.
Evaluateexistingrecommendationsforopportunitiestoaddressclimateimpacts.
•
Investigatingwhetherhavingmultiplepriorityspeciesaffectedinthesameareacanleadto
greaterpressuretochangemanagementpracticesifcumulativeimpactscanbedemonstrated.
Transportation planning
Actionsforaddressingclimateimpactsonlynxconnectivitythroughtransportationplanning
include:
•
Coordinatingwithtransportationagenciestoevaluateappropriatemanagementresponsesto
potentialchangesinseasonalroadopeningsandclosingswithinhighvaluelynxhabitatassnow
conditionschange.
•
Coordinatingwithtransportationagenciestoensurethatnewroadsdonotnegativelyimpact
climate-gradientcorridors,orclimate-resilientlynxcorehabitatandcorridors(seeAdditional
Research,below).Whennewroadsareinevitable,mitigatebarriereffectsbyincorporating
crossingstructuresintoroaddesign.
Research Needs
Futureresearchthatcouldhelpinformlynxhabitatconnectivityconservationunderclimatechange
includes:
•
Developingtransboundaryfiremodels.Thesemodelscouldimproveassessmentofpotential
impacts,anddirectfiremanagementactivitiestowardcorehabitatareasandcorridors
identifiedasbeingathighfirerisk.
•
Developingtransboundarypestmodels(e.g.,mountainpinebeetle,sprucebudworm,and
westernpinebeetle).Thesemodelscouldimproveassessmentofpotentialimpacts,anddirect
foresthealthactivitiestowardcoreareasandcorridorsidentifiedasbeingathighriskofinsect
orpathogenoutbreaks.
•
Developingfine-scaled,transboundaryriparianmodels.Thesecouldhelpidentifyhighquality
ripariancorridorsthatcouldfacilitatemovementdespitegeneralregionalwarming.
•
Gatheringadditionalempiricaldataontransboundarylynxmovementtovalidateandimprove
existingcorridormodels.Verylittleisknownabouthowlynxselectmovementhabitatand
aboutlynxdispersalbehaviormoregenerally.Consequently,itisnotcleartowhatextentlynx
willmovethroughsub-optimalhabitatasitwarms.
•
Mappingcurrentlynxpopulationlocations(asopposedtogeneralrangeboundaries).Thiscould
helpidentifyvulnerablepopulationsandgiveamorerealisticsenseofexistingandpotential
futureconnectivity.
•
Identifyingpotentialclimateimpactsonspecificlynxcorehabitatareasandcorridors.Overlay
projectedchangesinclimatewithexistinglynxcorridornetworkstoquantifyexpectedimpacts
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
7
Canada lynx (Lynx canadensis)
onspecificareaswithinthenetwork.Thismayhelpdirectadaptationactionstoappropriate
areas.
•
Identifyingclimateresilientlynxcorehabitatareasandcorridors.Overlaycorridornetworks
(AppendixE.1)withclimaticnichemodels(AppendixE.3),andprojectedchangesinvegetation
(AppendixE.4),mountainpinebeetlesurvival(AppendixE.5),andclimaticvariables(Appendix
E.6);coreareasandcorridorswithinthecurrentrangethatareprojectedbymultiplemodelsto
retainsuitableclimaticconditionsandvegetation,havelowriskoffuturemountainpinebeetle
outbreaks,andtoseetheleastchangeinrelevantclimaticvariables,maybemostlikelyto
supportfuturelynxpopulations.Theseclimateresilientcorehabitatareasandcorridorsmaybe
usedaspriorityareasfortheadaptationactionsdescribedabove.
•
Identifyingcorridorsbetweenlocationswithprojecteddeclinesinclimaticsuitabilityandareas
withprojectedstableorimprovingclimaticsuitability.Useclimaticnichemodels(AppendixE.3)
andvegetationprojections(AppendixE.4)toidentifypotentiallystableorimprovinglocations.
Usecorridormodels(AppendixE.1)toidentifypotentialcorridorsforconnectingvulnerablelynx
corehabitatareastoareasprojectedtoremainclimaticallysuitableorbecomenewly
suitable.14151617181920
References
1.Krosby,M.,Michalak,J.,Robbins,T.O.,Morgan,H.,Norheim,R.,Mauger,G.,andT.Murdock.2016.
TheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject:Identifyingclimate
impactsandadaptationactionsforwildlifehabitatconnectivityinthetransboundaryregionof
WashingtonandBritishColumbia.ClimateImpactsGroup,UniversityofWashington.
2.WashingtonWildlifeHabitatConnectivityWorkingGroup.2010.WashingtonConnectedLandscapes
Project:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,andTransportation,
Olympia,WA.www.waconnected.org.
3.Krosby,M.,Tewksbury,J.J.,Haddad,N.,andJ.Hoekstra.2010.Ecologicalconnectivityforachanging
climate.ConservationBiology24:1686-1689.
4.Cross,M.S.,Hilty,J.A.,Tabor,G.M.,Lawler,J.J.,Graumlich,L.J.,andJ.Berger.2012.Fromconnectthe-dotstodynamicnetworks:Maintainingandrestoringconnectivityasastrategytoaddress
climatechangeimpactsonwildlife.In:J.Brodie,E.Post,D.Doak,eds.Conservingwildlifepopulations
inachangingclimate.ChicagoUniversityPress.
5.Heller,N.E.,andE.S.Zavaleta.2009.Biodiversitymanagementinthefaceofclimatechange:areview
of22yearsofrecommendations.BiologicalConservation142:14–32.
6.Cross,M.S.,etal.2012.TheAdaptationforConservationTargets(ACT)framework:atoolfor
incorporatingclimatechangeintonaturalresourcemanagement.EnvironmentalManagement
50:341–351.
7.WashingtonWildlifeHabitatConnectivityWorkingGroup.2011.WashingtonConnectedLandscapes
Project:Climategradientcorridorsreport.WashingtonDepartmentsofFishandWildlife,and
Transportation.Olympia,WA.www.waconnected.org.
8.IntegratedScenariosoftheFutureNorthwestEnvironment.
http://climate.nkn.uidaho.edu/IntegratedScenarios
9.PacificClimateImpactsConsortium(PCIC),RegionalAnalysisTool.2014.
https://www.pacificclimate.org/analysis-tools/regional-analysis-tool
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
8
Canada lynx (Lynx canadensis)
10.PacificNorthwestClimateChangeVulnerabilityAssessment(PNWCCVA).
http://www.climatevulnerability.org/
11.InteragencyLynxBiologyTeam.2013.Canadalynxconservationassessmentandstrategy.3rd
Edition.USDAForestService,USDIFishandWildlifeService,USDIBureauofLandManagement,and
USDINationalParkService.ForestServicePublicationR1-13-19,Missoula,MT.128pp.
12.McKenzie,D.,Gedalof,Z.,andD.L.Peterson,andP.Mote.2004.Climaticchange,wildfire,and
conservation.ConservationBiology18:890-902.
13.Murray,D.L.,andS.Boutin.1991.Theinfluenceofsnowonlynxandcoyotemovements:does
morphologyaffectbehavior?Oecologia88:463–469.
14.(IPCC)IntergovernmentalPanelonClimateChange.2007.WorkingGroup1,Summaryfor
Policymakers.Availableat:http://ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
15.Meehl,G.A.,Covey,C.,Delworth,T.,Latif,M.,McAvaney,B.,Mitchell,J.F.B.,Stouffer,R.J.,andK.E.
Taylor.2007:TheWCRPCMIP3multi-modeldataset:Anewerainclimatechangeresearch.Bulletin
oftheAmericanMeteorologicalSociety88:1383-1394.
16.Nakicenovic,N.etal.2000.SpecialReportonEmissionsScenarios:ASpecialReportofWorking
GroupIIIoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress,
Cambridge,U.K.,599pp.Availableonlineat:http://www.grida.no/climate/ipcc/emission/index.htm
17.(IPCC)IntergovernmentalPanelonClimateChange.2013.WorkingGroup1,Summaryfor
Policymakers.Availableat:http://www.climatechange2013.org/images/uploads/WGIAR5SPM_Approved27Sep2013.pdf
18.Taylor,K.E.etal.2012.AnoverviewofCMIP5andtheexperimentdesign.BulletinoftheAmerican
MeteorologicalSociety93:485-498.doi:10.1175/BAMS-D-11-00094.1
19.VanVuuren,D.P.etal.2011.Therepresentativeconcentrationpathways:Anoverview.Climatic
Change109:5-31.
20.Caya,D.,andR.Laprise,1999.Asemi-implicitsemi-Lagrangianregionalclimatemodel:theCanadian
RCM.MonthlyWeatherReview127:341-362.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
9
Canada lynx (Lynx canadensis)
Glossary of Terms
Assistedmigration–Speciesandpopulationsaredeliberatelyplantedortransportedtonewsuitable
habitatlocations,typicallyinresponsetodeclinesinhistorichabitatqualityresultingfromrapid
environmentalchange,principallyclimatechange.
Centrality—Referstoagroupoflandscapemetricsthatranktheimportanceofhabitatpatchesor
linkagesinprovidingmovementacrossanentirenetwork,i.e.,as“gatekeepers”offlowacrossa
landscape.v
Connectivity—Mostcommonlydefinedasthedegreetowhichthelandscapefacilitatesorimpedes
movementamongresourcepatches.viCanbeimportantformaintainingecological,population-level,or
evolutionaryprocesses.
CoreAreas—Largeblocks(10,000+acres)ofcontiguouslandswithrelativelyhighlandscape
permeability.
Corridor—Referstomodeledmovementroutesorphysicallinearfeaturesonthelandscape(e.g.,
continuousstripsofriparianvegetationortransportationroutes).Inthisdocument,theterm“corridor”
ismostoftenusedinthecontextofmodeledleast-costcorridors,i.e.,themostefficientmovement
pathwaysforwildlifeandecologicalprocessesthatconnectHCAsorcoreareas.Theseareareas
predictedtobeimportantformigration,dispersal,orgeneflow,orforshiftingrangesinresponseto
climatechangeandotherfactorsaffectingthedistributionofhabitat.
Desiccation–Extremewaterdeprivation,orprocessofextremedrying.
Dispersal—Relativelypermanentmovementofanindividualfromanarea,suchasmovementofa
juvenileawayfromitsplaceofbirth.
FractureZone—Anareaofreducedpermeabilitybetweencoreareas.Mostfracturezonesneed
significantrestorationtofunctionasreliablelinkages.Portionsofafracturezonemaybepotential
linkagezones.
HabitatConnectivity—SeeConnectivity.
LandscapeConnectivity—SeeConnectivity.
Permeability—Theabilityofalandscapetosupportmovementofplants,animals,orprocesses.
Pinchpoint—Portionofthelandscapewheremovementisfunneledthroughanarrowarea.Pinch
pointscanmakelinkagesvulnerabletofurtherhabitatlossbecausethelossofasmallareacanseverthe
v
Carroll,C.2010.Connectivityanalysistoolkitusermanual.Version1.1.KlamathCenterforConservation
Research,Orleans,California.Availableatwww.connectivitytools.org(accessedJanuary2016).
vi
Taylor,P.D.,L.Fahrig,K.Henein,andG.Merriam.1993.Connectivityisavitalelementoflandscapestructure.
Oikos68:571-573.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
10
Canada lynx (Lynx canadensis)
linkageentirely.Synonymsarebottleneckandchokepoint.
Refugia–Geographicalareaswhereapopulationcansurvivethroughperiodsofunfavorable
environmentalconditions(e.g.,climate-relatedeffects).
Thermalbarriers–Watertemperatureswarmenoughtopreventmigrationofagivenfishspecies.
Thesebarrierscanpreventordelayspawningformigratingsalmonids. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
11
Canada lynx (Lynx canadensis)
Appendices E.1-6
Appendicesincludeallmaterialsusedtoidentifypotentialclimateimpactsonhabitatconnectivityfor
casestudyspecies,vegetationsystems,andregions.ForCanadalynxthesematerialsinclude:
AppendixE.1.Habitatconnectivitymodels
AppendixE.2.Conceptualmodelofhabitatconnectivity
AppendixE.3.Climaticnichemodels
AppendixE.4.Projectedchangesinvegetationcommunities
AppendixE.5.Projectedchangesinprobabilityofmountainpinebeetlesurvival
AppendixE.6.Projectedchangesinrelevantclimaticvariables
Allmapsincludedintheseappendicesarederivedfromafewprimarydatasets,chosenbecausethey
arefreelyavailable,spanallorpartofthetransboundaryregion,andreflecttheexpertiseofproject
sciencepartners.ThesesourcesincludehabitatconnectivitymodelsproducedbytheWashington
ConnectedLandscapesProject,2,7futureclimateprojectionsfromtheIntegratedScenariosofthePacific
NorthwestEnvironment8andthePacificClimateImpactsConsortium’sRegionalAnalysisTool,9and
modelsofprojectedrangeshiftsandvegetationchangeproducedaspartofthePacificNorthwest
ClimateChangeVulnerabilityAssessment.10
Allmapsareprovidedatthreegeographicextentscorrespondingtothedistinctgeographiesofthethree
projectpartnerships(Fig.E.2):
i.
OkanaganNationTerritory,theassessmentareaforprojectpartners:OkanaganNationAlliance
anditsmemberbandsandtribes,includingColvilleConfederatedTribes.
ii.
TheOkanagan-KettleRegion,theassessmentareaforprojectpartners:Transboundary
ConnectivityWorkingGroup(i.e.,theWashingtonHabitatConnectivityWorkingGroupandits
BCpartners).
iii.
TheWashington-BritishColumbiaTransboundaryRegion,theassessmentareaforproject
partners:BCParks;BCForests,Lands,andNaturalResourceOperations;USForestService;and
USNationalParkService.
Allprojectreports,datalayers,andassociatedmetadataarefreelyavailableonlineat:
https://nplcc.databasin.org/galleries/5a3a424b36ba4b63b10b8170ea0c915e
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
12
Canada lynx (Lynx canadensis)
FigureE.2.Projectpartnersandassessmentareas.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
13
Canada lynx (Lynx canadensis)
Appendix E.1. Habitat Connectivity Models
HabitatconnectivitymodelsareavailablefromtheWashingtonConnectedLandscapesProject.viiThese
modelscanbeusedtoprioritizeareasformaintainingandrestoringhabitatconnectivitynowandinthe
futureastheclimatechanges.Availablemodelsincludespeciescorridornetworks,landscapeintegrity
corridornetworks,andclimate-gradientcorridornetworks.Thesemodelsareavailableattwodistinct
scales(thoughformanyspecies,onlyonescaleisavailableorwasselectedforusebyproject
participants):1)WHCWGStatewidemodelsspanWashingtonStateandsurroundingareasofOregon,
Idaho,andBritishColumbia;2)WHCWGColumbiaPlateaumodelsspantheColumbiaPlateauecoregion
withinWashingtonState,anddonotextendintoBritishColumbia.
a) WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork.2ThismapshowsHabitat
ConcentrationAreas(HCAs,greenpolygons),whicharelarge,contiguousareasfeaturinglittle
resistancetospeciesmovement;andcorridors(glowingyellowareas)connectingHCAs,modeled
usingleastcostcorridoranalysis.ThenorthernextentofthisanalysisfallsjustnorthofKamloops,
BC.
b) WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+Landscape
Integrity).7Thismapshowscorridors(glowingwhiteareas,withresistancetomovementincreasing
aswhitefadestoblack)connectingcorehabitatareas(polygons,shadedtoreflectmeanannual
temperatures)thatareofhighlandscapeintegrity(i.e.,havelowlevelsofhumanmodification)and
differintemperatureby>1oC.Thesecorridorsthusallowformovementbetweenrelativelywarmer
andcoolercorehabitatareas,whileavoidingareasoflowlandscapeintegrity(e.g.,roads,
agriculturalareas,urbanareas),andminimizingmajorchangesintemperaturealongtheway(e.g.,
crossingovercoldpeaksordippingintowarmvalleys).Thenorthernextentofthisanalysisfallsjust
northofKamloops,BC.
vii
Fordetailedmethodologyanddatalayersseehttp://www.waconnected.org.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
14
Canada lynx (Lynx canadensis)
AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
15
Canada lynx (Lynx canadensis)
AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
16
Canada lynx (Lynx canadensis)
AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
17
Canada lynx (Lynx canadensis)
AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
18
Canada lynx (Lynx canadensis)
AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
19
Canada lynx (Lynx canadensis)
AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+
LandscapeIntegrity)
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
20
Canada lynx (Lynx canadensis)
Appendix E.2. Conceptual Model of Habitat Connectivity
ToidentifypotentialclimateimpactsontransboundaryCanadalynxhabitatconnectivity,project
partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected
toinfluenceCanadalynxhabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate,
andhow.Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentifyspecific
climateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeenpromotedas
usefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6TheCanadalynx
conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise,
andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot
beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand
processescontributingtoCanadalynxhabitatconnectivity.
Conceptualmodelsillustratetherelationshipsbetweenthekeylandscapefeatures(whiteboxes),
ecologicalprocesses(roundedcornerpurpleboxes),andhumanactivities(roundedcornerblueboxes)
thatinfluencethequalityandpermeabilityofcorehabitatanddispersalhabitatforagivenspecies.
Climaticvariablesforwhichdataonprojectedchangesareavailablearehighlightedwithayellow
outline.Greenarrowsindicateapositivecorrelationbetweenlinkedvariables(i.e.,asvariablex
increasesvariableyincreases);notethatapositivecorrelationisnotnecessarilybeneficialtothe
species.Redarrowsindicateanegativerelationshipbetweenvariables(i.e.,asvariablexincreases,
variableydecreases);again,negativecorrelationsarenotnecessarilyharmfultothespecies.
ExpertreviewersfortheCanadalynxconceptualmodelincluded:
•
AlisonPeatt,RPBio,EnvironmentalPlannerforSouthOkanagan-SimilkameenCommunities
•
WestbankFirstNation(communitymember/commercialtrapper)
KeyreferencesusedtocreatetheCanadalynxconceptualmodelincluded:
Buskirk,S.W.,L.F.Ruggiero,andC.J.Krebs.2000a.Habitatfragmentationandinterspecific
competition:implicationsforlynxconservation.Pages83–100inL.F.Ruggiero,K.B.Aubry,S.W.
Buskirk,G.M.Koehler,C.J.Krebs,K.S.McKelvey,andJ.R.Squires,editors.Ecologyandconservationof
lynxintheUnitedStates.UniversityPressofColorado.Boulder,Colorado,USA.
Gonzalez,P.,R.P.NeilsonK.S.McKelvey,J.M.Lenihan,andR.J.Drapek.2007.Potentialimpactsof
climatechangeonhabitatandconservationpriorityareasforLynxcanadensis(CanadaLynx).TheNature
Conservancy,Arlington,Virginia,USA.
Hoving,C.L.,D.J.Harrison,W.B.Krohn,W.J.Jakubas,andM.A.McCollough.2004.CanadalynxLynx
canadensishabitatandforestsuccessioninnorthernMaine,USA.WildlifeBiology10:285–294.
InteragencyLynxBiologyTeam.2013.Canadalynxconservationassessmentandstrategy.3rdedition.
USDAForestService,USDIFishandWildlifeService,USDIBureauofLandManagement,andUSDI
NationalParkService.ForestServicePublicationR1-13-19,Missoula,MT.128pp.
Koehler,G.M.1990.Populationandhabitatcharacteristicsoflynxandsnowshoeharesinnorthcentral
Washington.CanadianJournalofZoology68:846–851.
Koehler,G.M.,B.T.Maletzke,J.A.vonKienast,K.B.Aubry,R.B.Wielgus,andR.H.Naney.2008.
HabitatfragmentationandthepersistenceoflynxpopulationsinWashingtonState.JournalofWildlife
Management72:1518–1524.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
21
Canada lynx (Lynx canadensis)
Murray,D.L.,andS.Boutin.1991.Theinfluenceofsnowonlynxandcoyotemovements:does
morphologyaffectbehavior?Oecologia88:463–469.
Squires,J.R.,N.J.Decesare,J.A.Kolbe,andL.F.Ruggiero.2010.SeasonalresourceselectionofCanada
lynxinmanagedforestsofthenorthernRockyMountains.JournalofWildlifeManagement74:1648–
1660.
Ward,R.M.P.,andC.J.Krebs.1985.Behavioralresponsesoflynxtodecliningsnowshoehare
abundance.CanadianJournalofZoology63:2817–2824.
WashingtonWildlifeHabitatConnectivityWorkingGroup(WHCWG).2010.WashingtonConnected
LandscapesProject:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,and
Transportation,Olympia,WA.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
22
Canada lynx (Lynx canadensis)
AppendixE.2.ConceptualmodelofCanadalynxhabitatconnectivity
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
23
Canada lynx (Lynx canadensis)
Appendix E.3. Climatic Niche Models
Climaticnichemodels(CNM)mathematicallydefinetheclimaticconditionswithineachspecies’current
geographicdistribution,andthenapplyprojectedclimatechangestoidentifywhereonthelandscape
thoseclimateconditionsareprojectedtobelocatedinthefuture.ThesemapsshowCNMresultsbased
onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.viii
BothmodelsusetheA2(high)emissionsscenario.ixCNMsarebasedonclimateconditionsaloneanddo
notaccountfordispersalability,geneticadaptation,interspeciesinteractions,orotheraspectsof
habitatsuitability.Onceprojectedrangeshiftsweremodeled,currentlandusesandprojected
vegetationtypes(identifiedusingShaferetal.2015x)thatareunlikelytosupportspeciesoccurrence
wereremoved.Forexample,areascurrentlydefinedasurbanwereremovedforspeciesunabletolivein
urbanlandscapes,andgrasslandhabitatswereremovedforforest-dependentspecies.Bothwouldbe
shownasunsuitable.
Darkgrayareasindicateareasofthespecies’currentrangethatareprojectedtoremainclimatically
suitablebybothGCMs(i.e.,rangeisexpectedtoremain“stable”).Darkpinkareasareprojectedto
becomelessclimaticallysuitablebybothGCMs(i.e.,rangeisexpectedto“contract”).Lightpinkareas
areprojectedtobecomelesssuitableunderonemodelbutremainstableundertheother.Darkgreen
areasareareasthatarenotwithinthespecies’currentrangebutareprojectedtobecomeclimatically
suitablebybothGCMs(i.e.,therangeisexpectedto“expand”).Lightgreenareasareprojectedto
becomeclimaticallysuitablebyoneGCM,butnottheother.
viii
14,15
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
ix
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise
st
untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre16
industriallevels. x
Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe
northwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation
model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
24
Canada lynx (Lynx canadensis)
AppendixE.3.CanadaLynxClimaticNicheModel
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
25
Canada lynx (Lynx canadensis)
AppendixE.3.CanadaLynxClimaticNicheModel
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
26
Canada lynx (Lynx canadensis)
AppendixE.3.CanadaLynxClimaticNicheModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
27
Canada lynx (Lynx canadensis)
Appendix E.4. Projected Changes in Vegetation
Twotypesofmodelsareavailablethatprojectfuturechangesinvegetationthatcouldaffectaspecies’
habitatconnectivity:climaticnichemodelsandmechanisticmodels.Climaticnichevegetationmodels
mathematicallydefinetheclimaticconditionswithinagivenvegetationtype’scurrentdistributionand
thenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.Thesemodels
donotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,dispersal,
competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological
processes,aswellasprojectedclimatechangesandthepotentialeffectsofcarbondioxidefertilization.
However,mechanisticmodelsonlyprojectchangestoverygeneralvegetationtypes(e.g.,coldforest,
shrubsteppe,orgrassland).Bothtypesofmodelsincludedbelowshowvegetationmodelresultsbased
onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xi
BothmodelsalsousetheA2(high)emissionsscenario.xii
a) BiomeClimaticNicheVegetationModel.xiiiThisclimaticnichevegetationmodelshowsthe
projectedresponseofbiomesorforesttypestoprojectedclimatechange.
b) MechanisticVegetationModel.xivThismechanisticvegetationmodelshowssimulated
vegetationcompositionanddistributionpatternsunderclimatechange.
xi
14,15
CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs)
whicheachprojectdifferent
potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe
CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet”
futurewithinthePacificNorthwest.
xii
Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional
climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue
st
toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto
16
pre-industriallevels. xiii
Rehfeldt,G.E.,Crookston,N.L.,Sánez-Romero,C.,Campbell,E.M.2012.NorthAmericanvegetationmodelfor
land-useplanninginachangingclimate:asolutiontolargeclassificationproblems.EcologicalApplications22:119141.
xiv
Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe
NorthwestUnitedStatesandSouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation
model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
28
Canada lynx (Lynx canadensis)
AppendixE.4a.BiomeClimaticNicheModel
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
29
Canada lynx (Lynx canadensis)
AppendixE.4a.BiomeClimaticNicheModel
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
30
Canada lynx (Lynx canadensis)
AppendixE.4a.BiomeClimaticNicheModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
31
Canada lynx (Lynx canadensis)
AppendixE.4b.MechanisticVegetationModel
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
32
Canada lynx (Lynx canadensis)
AppendixE.4b.MechanisticVegetationModel
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
33
Canada lynx (Lynx canadensis)
AppendixE.4b.MechanisticVegetationModel
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
34
Canada lynx (Lynx canadensis)
Appendix E.5. Projected Changes in Probability of Mountain Pine Beetle Survival
Projectedchangesintheprobabilityofclimaticsuitabilityformountainpinebeetlesfortheperiod2001
to2030(relativeto1961to1990),wherebrownindicatesareaswherepinebeetlesareprojectedto
increaseinthefutureandgreenindicatesareaswherepinebeetlesareprojectedtodecreaseinthe
future.xv,xvi
xv
Mote,P.W.,Snover,A.K.,Capalbo,S.M.,Eigenbrode,S.,Glick,P.,Littell,J.S.,Raymondi,R.,Reeder,
S.2014.Chapter21inClimateChangeImpactsintheUnitedStates:TheThirdU.S.NationalClimateAssessment,J.
Melillo,Terese(T.C.)Richmond,andG.W.Yohe,Eds.,U.S.GlobalChangeResearchProgram,16-1-nn.
xvi
Changesinprobabilityofsurvivalarebasedonclimate-dependentfactorsimportantinbeetlepopulation
xv
success,includingcoldtolerance,springprecipitation,andseasonalheataccumulation. Projectionsarebasedon
20
16
theCRCM4.2regionalclimatemodel, underanA2(high)carbonemissionsscenario, andareonlyavailablefor
theUnitedStates.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
35
Canada lynx (Lynx canadensis)
AppendixE.5.ProbabilityofMountainPineBeetleSurvival
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
36
Canada lynx (Lynx canadensis)
AppendixE.5.ProbabilityofMountainPineBeetleSurvival
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
37
Canada lynx (Lynx canadensis)
AppendixE.5.ProbabilityofMountainPineBeetleSurvival
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
38
Canada lynx (Lynx canadensis)
Appendix E.6. Projected Changes in Relevant Climate Variables
Thefollowingprojectionsoffutureclimatewereidentifiedbyprojectpartnersasbeingmostrelevantto
understandingandaddressingclimateimpactsonCanadalynxconnectivity.xviiFutureclimateprojections
weregatheredfromtwosources,exceptwhereotherwisenoted:1)theIntegratedScenariosofthe
PacificNorthwestEnvironment,8whichislimitedtotheextentoftheColumbiaBasin;andthePacific
ClimateImpactsConsortium’sRegionalAnalysisTool,9whichspansthefulltransboundaryregion.For
manyclimaticvariables,noticeabledifferencesinthemagnitudeoffuturechangescanbeseenatthe
US-Canadaborder;thisartifactresultsfromdifferencesoneithersideoftheborderinthenumberof
weatherstations,thewaytemperatureandprecipitationweremeasured,anddifferencesinthe
approachusedtoprocessthesedatatoproducegriddedestimatesofdailyweathervariations.
a) Spring(April1st)Snowpack.Thismapsnowsthepercentchangeinsnowwaterequivalent
(SWE)onApril1st.April1stistheapproximatecurrenttimingofpeakannualsnowpackin
Northwestmountains.SWEisameasureofthetotalamountofwatercontainedinthe
snowpack.ProjecteddecreasesinSWEaredepictedbytheyellowtoredshading.
b) LengthofSnowSeason.Thismapshowstheprojectedchangeinthelengthofthesnowseason,
definedasthenumberofdaysbetweenthefirstandlastdaysoftheseasonwithatleast10%of
annualmaximumsnowwaterequivalent.Projectedchangesinsnowseasonlengtharedepicted
bytheyellowtoredshading.
c) PercentageofWinterPrecipitationCapturedinApril1stSnowpack.Thismapshowsthe
projectedpercentageofwinter(October-March)precipitationthatisretainedinApril1st
snowpack.Themapclassifiestheresultsinthreecategories:raindominant(green:<10%),
mixed-rain-and-snow(orange:10-40%),andsnowdominant(blue:>40%).
d) DayswithHighFireRisk(EnergyReleaseComponent,ERC>95thpercentile).xviiiThismapshows
theprojectedchangeinthenumberofdayswhentheERC–acommonlyusedmetrictoproject
thepotentialandriskofwildfire–isgreaterthanthehistorical95thpercentileamongalldaily
values.
e) DrySpellDuration.Thismapshowstheprojectedchange,inpercent,inthemaximumnumber
ofconsecutivedayswithlessthan1mmofprecipitation.Projectedchangeindryspellduration
isdepictedbythebrowntogreenshading.
xvii
Allprojectionsbut“DayswithHighFireRisk”areevaluatedforthe2050s(2040-2069)andthe2080s(207017,18
2099),basedon3globalclimatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(CCSM4)),
undera
19
highgreenhousegasscenario(RCP8.5). “DayswithHighFireRisk”isevaluatedforthe2050s,basedon3global
17,18
climatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(MIROC5))
usingtheRCP8.5(high)emissions
19
scenario. xviii
Abatzoglou,J.T.2013.Developmentofgriddedsurfacemeteorologicaldataforecologicalapplicationsand
modeling.InternationalJournalofClimatology33:121-131.
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
39
Canada lynx (Lynx canadensis)
AppendixE.6a.Spring(April1st)Snowpack
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
40
Canada lynx (Lynx canadensis)
AppendixE.6a.Spring(April1st)Snowpack
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
41
Canada lynx (Lynx canadensis)
AppendixE.6a.Spring(April1st)Snowpack
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
42
Canada lynx (Lynx canadensis)
AppendixE.6b.LengthofSnowSeason
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
43
Canada lynx (Lynx canadensis)
AppendixE.6b.LengthofSnowSeason
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
44
Canada lynx (Lynx canadensis)
AppendixE.6b.LengthofSnowSeason
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
45
Canada lynx (Lynx canadensis)
AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
46
Canada lynx (Lynx canadensis)
AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
47
Canada lynx (Lynx canadensis)
AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
48
Canada lynx (Lynx canadensis)
AppendixE.6d.DayswithHighFireRisk
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
49
Canada lynx (Lynx canadensis)
AppendixE.6d.DayswithHighFireRisk
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
50
Canada lynx (Lynx canadensis)
AppendixE.6d.DayswithHighFireRisk
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
51
Canada lynx (Lynx canadensis)
AppendixE.6e.DrySpellDuration
i)Extent:OkanaganNationTerritory
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
52
Canada lynx (Lynx canadensis)
AppendixE.6e.DrySpellDuration
ii)Extent:Okanagan-KettleRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
53
Canada lynx (Lynx canadensis)
AppendixE.6e.DrySpellDuration
iii)Extent:Washington-BritishColumbiaTransboundaryRegion
Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project
54