Appendix E: Climate impacts and adaptation actions for Canada lynx TheWashington-BritishColumbiaTransboundaryClimateConnectivityProjectengagedscience-practicepartnerships toidentifypotentialclimateimpactsonwildlifehabitat connectivityandadaptationactionsforaddressingthese impactsinthetransboundaryregionofWashingtonand BritishColumbia.iProjectpartnersfocusedtheirassessment onasuiteofcasestudyspecies,vegetationsystems,and regionschosenfortheirsharedprioritystatusamong projectpartners,representationofdiversehabitattypes Photo:EricKilby andclimatesensitivities,anddataavailability.Thisappendix describespotentialclimateimpactsandadaptationactions FigureE.1.Canadalynx identifiedfortheCanadalynx(Lynxcanadensis).1 TheCanadalynxisawide-rangingcarnivorewithrelativelyhighsensitivitytoanthropogenic fragmentation.InthetransboundaryregionofWashingtonandBritishColumbia,thelynx’sconiferous, earlyseralstageforesthabitatexhibitslowconnectivity.2Barrierstolynxmovementarepresentedby bothnaturalfactors(e.g.,largelakesandhightopographicrelief)andhumanfactors(e.g.,snow compactionassociatedwithwinterrecreation),withsignificantbarrierspresentalongmajorhighways andtheOkanaganValley(AppendixE.1).2 FutureclimatechangemaypresentadditionalchallengesandneedsforCanadalynxhabitat connectivity.3-4First,climatechangemayimpactlynxcorehabitatanddispersalcorridorsinwaysthat makethemmoreorlesspermeabletomovement.Second,existinglynxcorehabitatandcorridorsmay bedistributedonthelandscapeinwaysthatmakethemmoreorlessabletoaccommodateclimatedrivenshiftsinlynxdistributions.Forsuchreasons,connectivityenhancementhasbecomethemost frequentlyrecommendedclimateadaptationstrategyforbiodiversityconservation.5However,little workhasbeendonetotranslatethisbroadstrategyintospecific,on-the-groundactions.Furthermore, toourknowledge,nopreviousworkhasidentifiedspecificclimateimpactsoradaptationresponsesfor lynxhabitatconnectivityinthisregion.Toaddresstheseneeds,wedescribehereanoveleffortto identifyandaddresspotentialclimateimpactsonlynxhabitatconnectivityinthetransboundaryregion ofWashingtonandBritishColumbia. Potential climate impacts on habitat connectivity Toidentifypotentialclimateimpactsontransboundarylynxhabitatconnectivity,projectpartners createdaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpectedto influencelynxhabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate,andhow (AppendixE.2).Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentify specificclimateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeen promotedasusefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Thelynx conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise, andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot i ThisreportisAppendixEoftheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject;for 1 moreinformationabouttheproject’srationale,partners,methods,andresults,seeKrosbyetal.(2016). Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 1 Canada lynx (Lynx canadensis) beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand processescontributingtolynxhabitatconnectivity. Projectparticipantsusedconceptualmodelsinconjunctionwithmapsofprojectedfuturechangesin speciesdistributions,vegetationcommunities,andrelevantclimatevariablestoidentifypotential impactsonlynxhabitatconnectivity.Becauseakeyprojectgoalwastoincreasepractitionerpartners’ capacitytoaccess,interpret,andapplyexistingclimateandconnectivitymodelstotheirdecisionmaking,wereliedonafewprimarydatasetsthatarefreelyavailable,spanallorpartofthe transboundaryregion,andreflecttheexpertiseofprojectsciencepartners.Thesesourcesinclude habitatconnectivitymodelsproducedbytheWashingtonConnectedLandscapesProject,2,7future climateprojectionsfromtheIntegratedScenariosofthePacificNorthwestEnvironment8andthePacific ClimateImpactsConsortium’sRegionalAnalysisTool,9andmodelsofprojectedrangeshiftsand vegetationchangeproducedaspartofthePacificNorthwestClimateChangeVulnerability Assessment.10 KeyimpactsontransboundaryCanadalynxhabitatconnectivityidentifiedviathisapproachinclude changesinareasofclimaticsuitabilityforCanadalynx,changesinforesthabitat,changesindisturbance regimes,anddeclinesintheamountanddurationofsnowpack. Changes in areas of climatic suitability Climatechangemayimpactlynxhabitatconnectivitybychangingtheextentandlocationofareasof climaticsuitabilityforlynx;thismayrendersomeexistingcorehabitatareasandcorridorsunsuitablefor lynx,and/orcreatenewareasofsuitability.Climaticnichemodelsprovideestimatesofspecies’current andprojectedfutureareasofclimaticsuitability,andareavailableforlynxforthe2080sbasedontwo CMIP3GlobalCirculationModels(GCMs)(CGCM3.1(T47)andUKMO-HadCM3ii)undertheA2(high) carbonemissionsscenarioiii(AppendixE.3). Forbothclimatemodels,projectionsforthe2080sshowadeclineinclimaticsuitabilityforlynxinthe mid-tolow-elevationsoftheColumbia,Monashee,andSelkirkMountains,thelow-elevationsofColville NationalForest,rivervalleys,andtheOkanaganValleyinparticular.Corridorscrossingthesevalleys (especiallytheOkanagan)maycurrentlybeimportantformaintainingconnectivityamonglynx populationsathigherelevations.ThisdeclineismoreextensivefortheCGCM3.1(T47)model.Projected declinesinclimaticsuitabilityinvalleyssuggestthatvalleycrossingsbylynxmaybecomemoredifficult inthefuture,furtherisolatinghigherelevationpopulationsseparatedbyvalleys.Somefragmented areasinthehigherelevationspersist. ii 14,15 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. iii Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise st untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre16 industriallevels. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 2 Canada lynx (Lynx canadensis) Forbothclimatemodels,theclimaticnichemodelprojectsincreasesinclimaticsuitabilityforsome areasinthetransboundaryregionwestoftheOkanaganValley.Currentlysuitablehabitatintheseareas isexpectedtoremainstableandpossiblyexpandinclimaticsuitability. Changes in forest habitat Throughouttheirrange,lynxusecold,moistvegetationinregeneratingandmulti-layermatureforests.11 Changesinthedistributionandqualityofforesthabitatsinthetransboundaryregioncouldthereforebe expectedtoaffectlynxhabitatconnectivity.Twotypesofmodelsareavailablethatestimatefuture changesinvegetationforthetransboundaryregion:climaticnichemodelsandmechanisticmodels (AppendixE.4).iv Withinthetransboundaryregion,lynx’scurrentrangeisprojectedtoremainneedle-leafforest,though thecharacterofthatforestmaychange.Mechanisticvegetationmodelsforthisregionshowa contractionofborealneedle-leaf(“cold”)forestandalpinehabitattypes,whicharereplacedby temperateneedle-leaf(“cool”)forest(AppendixE.4).Whilelynxarepredominantlyassociatedwith boreal(orsubalpine)foresttypes,2thecurrentmappedrangeforlynxencompassesbothforesttypes, soitisdifficulttojudgehowsignificantofanimpactthiswouldhaveonlynxhabitatquality.Climatic nichemodelsprojectacontractionofsubalpineandalpinevegetationandexpansionofcoastalconifer forest,lowtomid-elevationconiferforest,ornoanalogvegetationtypes(i.e.,areasforwhichfuture climatedoesnotcloselymatchthatthecurrentclimateofanexistingvegetationtype),dependingon thelocationandclimatescenario(AppendixE.4). Changes in disturbance regimes Climatechangemayaffectlynxhabitatconnectivitybyincreasingthefrequencyandseverityofsummer drought(AppendixE.6:DrySpellDuration),increasingtheriskofwildfires(AppendixE.6:DayswithHigh FireRisk),andinfluencingpestandpathogendynamics.Drierconditionscouldreducetheamount and/orqualityofmoisthabitatsandforests.Alongerfireseasonandincreaseinareaburnedcouldalso affectforesthabitat.12Moisturestressandfirecanincreasetreemortalityandbarkbeetleoutbreaks (AppendixE.5),whichcanfurtherincreasethechancesoflarge,high-intensityfires.Suchdisturbance eventscouldaffectlynxhabitatconnectivitybyreducingtheamountand/orqualityofavailablecore foresthabitatandmovementcorridors. Howprojectedchangesinfireregimesaffectlynxhabitatconnectivitywilldependonfirereturn intervals,severity,size,location,andthesubsequentsuccessionaltrajectoriesofvegetation(Appendix E.4andAppendixE.6:DayswithHighFireRisk).Whilelynxavoidrecentlyburnedareas(likelydueto insufficientvegetativecover),oncecoverreestablishesinregeneratingforests,theseenvironmentscan bebeneficialtolynxhabitatconnectivity. iv Climaticnichevegetationmodelsmathematicallydefinetheclimaticconditionswithinagivenvegetationtype’s currentdistributionandthenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture. Thesemodelsdonotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability, dispersal,competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological processesaswellasprojectedclimatechangesandpotentialeffectsofcarbondioxidefertilization.However, mechanisticmodelsonlyprojectedchangestoverygeneralvegetationtypessuchascoldforest,shrubsteppe,or grassland. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 3 Canada lynx (Lynx canadensis) Declining amount and duration of snowpack Projecteddeclinesintheamountanddurationofsnowpackandincreasesintheratioofsnowtowater precipitation(AppendixE.6:Spring(April1st)Snowpack;LengthofSnowSeason;RatioofApril1st SnowpacktoWinterPrecipitation)mayaffectthequalityoflynxcoreareasandcorridors.Morphological adaptations,suchasalowfoot-loading(ratioofbodymasstofootarea),enablelynxtooutcompete otherpredatorsinareaswithdeep,unconsolidatedsnow.13Decliningamountanddurationofsnowpack couldthusresultinacontractionoflynxcorehabitat,andincreasingfragmentationandisolationofcore areaswithinthecurrentsouthernperipheryofthelynxrange.Declinesinsnowpackamountand durationcouldalsomakeithardertosetprescribedfirestoreducewildfirerisks. Adaptation responses Afteridentifyingpotentialclimateimpactsonlynxhabitatconnectivity,projectparticipantsused conceptualmodelstoidentifywhichrelevantlandscapefeaturesorprocessescouldbeaffectedby managementactivities,andsubsequentlywhatactionscouldbetakentoaddressprojectedclimate impacts(AppendixE.2).Keyadaptationactionsidentifiedbythisapproachfallunderthreemain categories:thosethataddresspotentialclimateimpactsonlynxhabitatconnectivity,thosethataddress novelhabitatconnectivityneedsforpromotingclimate-inducedshiftsinlynxdistributions,andthose thatidentifyspatialprioritiesforimplementation. Addressing climate impacts on Canada lynx habitat connectivity Actionstoaddressthepotentialforlynxhabitattobecomeincreasinglyisolatedandfragmented include: • Managingforestryactivitiestoensurethatforestcanopyandunderstorycoverremain continuousthroughoutlynxcorridors(AppendixE.1)andthatwoodydebrisremainspresent. • Consideringlimitingall-terrain-vehicleusewithinclimateresilientcorehabitatareasand corridors. • Avoidingdevelopmentofnewroadsthroughexistingorpotentialfuturemovementcorridors (AppendixE.1).Ifroadsarepresent,considerinstallingcrossings. Actionstoaddressthepotentialforvalleybottomcrossingstobecomemoredifficultaslowelevation valleysbecomewarmeranddrierinclude: • Identifyingandprotectingcorridorslikelytofacilitatelynxmovementacrosslowelevation valleys,inordertomaintainconnectivityamonghigherelevationcorehabitatareas.Habitat connectivitymodels(AppendixE.1)couldbeusedtoevaluatelow-elevationcorridorsforkey areaswherecontinuedpermeabilitywillbeespeciallyimportanttomaintainingbroader connectivity,andwhichshouldthusbehighprioritiesforconnectivityconservationefforts. • Focusinghabitatretentioneffortsinvalleysonriparianhabitats;lynxfrequentlyutilizethesefor dispersalthroughdryhabitats,whichmaybecomelesspermeabletolynxmovementasclimate warms. • Monitoringlow-elevationcorridorsforvegetationchangesthatmayaffectlynxconnectivity.If shrubsteppevegetationappearstobeexpanding,cross-valleycorridorsmaybecomelonger, makingthemlessattractivetodispersinglynx.Conversely,ifforestexpandsintothevalley, corridorsuitabilitymayincreaseforlynx.Monitoringwouldallowtimelymodificationof connectivityconservationeffortstoaccountfortheseorotherpossiblechanges. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 4 Canada lynx (Lynx canadensis) Actionstoaddressthepotentialforclimatechangetoimpactconnectivitythroughmorefrequentand severewildfiresinclude: • Usingrotating,targetedfuelreductiontechniquesandprescribedburnstocreatefirebreaksand reducetheriskofcatastrophicwildfiresthatcouldresultinbroad-scalelossoflynxhabitatand corridors.Vegetationmanagementstrategiesshouldsimultaneouslyaimtopreservesufficient cover(understoryandwoodydebris)forlynxandsnowshoehares(i.e.thinningandotherfuel reductionstrategiesshouldalsoconsiderstanddiversityandhabitatgoals). • Incorporatingprojectionsandobservationsofchangesinthelengthofthesnowseason, evapotranspiration,soilmoisturedeficits,andthetimingofprecipitationtoinformthetimingof firepreventiontechniquesasconditionschange,inordertomaximizetheirsafetyand effectiveness. • Usingsomedegreeoffiresuppressionincool,moistforestswithlongfirereturnintervals,such asthoseusedbylynx.Incontrasttodrier,lowelevationforests,suppressingfireincool,moist forestsislesslikelytoresultinincreasedfuelloadsovertime(whichcanleadtosubsequent increasedfireriskyearslater). • ReferencingtheforestandgrazingpracticesofFirstNationsandtribestoidentifytraditional strategiesformanagingfireriskandotherpotentialclimateimpacts. Actionstoaddressprojecteddecreasesinthedepthandpersistenceofsnowpackinclude: • Usingforestpracticesthatpromotesnowpackretention(e.g.snowfences)atelevationsusedby lynxthatareprojectedtoexperiencethegreatestdecreasesinsnowpack,withthecaveatthat giventhelargehomerangesizesoflynx,local-scalesnowmanagementisunlikelytohavea significantimpactonlynxcorehabitatquality.Therefore,considerprioritizingsuchefforts withinimportanthabitatareas(e.g.,nearknowndenningsites)andcorridors. • Ensuringthatmoistureandsnowpackretentionpractices(whenimplemented)arecompatible withotherforestmanagementpracticesthatbalancetheneedforfireandnaturalresource managementwiththeneedforsufficienthorizontalcoverforlynxandsnowshoehares. • Identifyingareaswheredeepspringsnowpackismostlikelytopersistinthefuture(Appendix E.5),suchasnorth-facingslopesandtopographicallyshadedareas(e.g.,canyons).Consider directingsnowpackretentioneffortstotheseareas,andprioritizingthemwhenmanagingfor lynxcorehabitatandcorridors. Enhancing connectivity to facilitate range shifts Actionsthatmayhelplynxadjustitsgeographicdistributiontotrackshiftsinitsareasofclimatic suitabilityinclude: • Maintainingandrestoringcorridorsbetweenareasofdecliningclimaticsuitabilityforlynxand areasofstabilityorincreasingsuitability(AppendixE.3). • Maintainingandrestoringcorridorsthatspanelevationgradients(e.g.,climate-gradient corridors,AppendixE.1),toensurethatlynxhavetheabilitytodisperseintocooler,higher elevationhabitatsastheclimatewarms. • Focusinghabitatretentioneffortsonridgelines;forestedareas;valleybottoms;andriparian areas,whichspanclimaticgradientsandareusedbylynxasmovementcorridors. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 5 Canada lynx (Lynx canadensis) • Planningtheplacement,orientation,andshapeofhabitatreservepatchestomaximize connectivity,spanclimaticgradients,andcrosslow-elevationvalleys.Aspartofthis,ensurethat whenclearcutsaremadeinforestedlynxcorehabitatandcorridors,reservepatchesare connectedbycorridors. Spatial priorities for implementation Spatialprioritiesforimplementationoftheadaptationactionsdescribedaboveinclude: • HighelevationpeaksintheRockies,thewesternhalfoftheOkanaganValley,andtheNorth Cascades.Climaticnichemodelprojectionssuggestthattheseareasarelikelybeclimatically suitableinthefuture(AppendixE.3). • TheOkanaganValleyandotherlowerelevationareasinthegreaterOkanaganregion.These areasalreadyconstrainlynxmovement(AppendixE.1),2andareexpectedtobecomeless climaticallysuitableforlynxastheclimatewarms(AppendixE.3).Maintainingandrestoring connectivityacrossthesevalleyswillbeimportantformaintainingconnectivityamonghigher elevationlynxhabitats. • Highways,especiallythosethatrunalonglow-elevationvalleys(e.g.,Highway97andHighway 3A)andthosethatcrosstheCascadeRange(e.g.,Highway3).Thesehighwaysmaypresent dispersalbarriersamonghigherelevationhabitats.Forexample,Highway3cutseast-west throughE.C.ManningProvincialParkandmaycreateadispersalbarrierforsouth-north movementthroughtheNorthCascades;ifthereisevidencethattheroadcreatesabarrier,it couldbeacandidateforacrossing. • Climate-gradientcorridors(AppendixE.1),whichmayhelplynxshiftitsrangeintocooler habitatsasclimatewarms. • Ridgelinesandforestedriparianareas,whichcurrentlyactaslynxmovementcorridorsthrough dryelevationareas,andalsospanclimaticgradients,facilitatingdispersalintocoolerhabitats. Policy considerations Referrals response ActionsforaddressingclimateimpactsonlynxhabitatconnectivitythroughFirstNationsandtribal referralsresponseprocessesinclude: • Forhighwayexpansionprojects,encouragingtheuseofhighwaydesigntechniquesthat preserveconnectivity(e.g.,overpasses,openspanbridges,andculverts),bothonandofftribal andFirstNationlands. • Encouragingtheincorporationofwildlife-friendlyfencingintopermittingandplanning processes.Promotingtheuseofsuchdesignsmayhelpfacilitatelynxmovement. Land use planning and management Actionsforaddressingclimateimpactsonlynxhabitatconnectivitythoughlandandwateruse planningandmanagementinclude: • Strivingforcommunitydesignsthatlimitfragmentationofhabitatandincludehabitatcorridors. Keepingdevelopmentawayfrompotentiallynxcorridors. • UsinglargeparcelzoningtomaintaincontiguityofnaturalareaswithinFirstNationsandtribal lands.Outsideoftheselands,workwithprivatelandownersandwithenvironmentalpolicyto maintaincontiguousswathsofsuitablelandthatwillfacilitateconnectivity. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 6 Canada lynx (Lynx canadensis) • Coordinatingwithforestmanagersandplannerstoincorporatefiremanagement recommendationsintoplanningdocuments. • Monitoringlynxhabitatsforsuitabilityandpreparingtoaddressand/ormodifythelegalcontext formanagement.InthecontiguousUnitedStates,theCanadalynxislistedasthreatenedunder theEndangeredSpeciesAct,requiringprotectionofcriticalhabitat;theseareasmaychange withfuturewarming. • Reviewingandimplementingexistingguidanceandplansrelatingtolynxhabitatmanagement. Evaluateexistingrecommendationsforopportunitiestoaddressclimateimpacts. • Investigatingwhetherhavingmultiplepriorityspeciesaffectedinthesameareacanleadto greaterpressuretochangemanagementpracticesifcumulativeimpactscanbedemonstrated. Transportation planning Actionsforaddressingclimateimpactsonlynxconnectivitythroughtransportationplanning include: • Coordinatingwithtransportationagenciestoevaluateappropriatemanagementresponsesto potentialchangesinseasonalroadopeningsandclosingswithinhighvaluelynxhabitatassnow conditionschange. • Coordinatingwithtransportationagenciestoensurethatnewroadsdonotnegativelyimpact climate-gradientcorridors,orclimate-resilientlynxcorehabitatandcorridors(seeAdditional Research,below).Whennewroadsareinevitable,mitigatebarriereffectsbyincorporating crossingstructuresintoroaddesign. Research Needs Futureresearchthatcouldhelpinformlynxhabitatconnectivityconservationunderclimatechange includes: • Developingtransboundaryfiremodels.Thesemodelscouldimproveassessmentofpotential impacts,anddirectfiremanagementactivitiestowardcorehabitatareasandcorridors identifiedasbeingathighfirerisk. • Developingtransboundarypestmodels(e.g.,mountainpinebeetle,sprucebudworm,and westernpinebeetle).Thesemodelscouldimproveassessmentofpotentialimpacts,anddirect foresthealthactivitiestowardcoreareasandcorridorsidentifiedasbeingathighriskofinsect orpathogenoutbreaks. • Developingfine-scaled,transboundaryriparianmodels.Thesecouldhelpidentifyhighquality ripariancorridorsthatcouldfacilitatemovementdespitegeneralregionalwarming. • Gatheringadditionalempiricaldataontransboundarylynxmovementtovalidateandimprove existingcorridormodels.Verylittleisknownabouthowlynxselectmovementhabitatand aboutlynxdispersalbehaviormoregenerally.Consequently,itisnotcleartowhatextentlynx willmovethroughsub-optimalhabitatasitwarms. • Mappingcurrentlynxpopulationlocations(asopposedtogeneralrangeboundaries).Thiscould helpidentifyvulnerablepopulationsandgiveamorerealisticsenseofexistingandpotential futureconnectivity. • Identifyingpotentialclimateimpactsonspecificlynxcorehabitatareasandcorridors.Overlay projectedchangesinclimatewithexistinglynxcorridornetworkstoquantifyexpectedimpacts Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 7 Canada lynx (Lynx canadensis) onspecificareaswithinthenetwork.Thismayhelpdirectadaptationactionstoappropriate areas. • Identifyingclimateresilientlynxcorehabitatareasandcorridors.Overlaycorridornetworks (AppendixE.1)withclimaticnichemodels(AppendixE.3),andprojectedchangesinvegetation (AppendixE.4),mountainpinebeetlesurvival(AppendixE.5),andclimaticvariables(Appendix E.6);coreareasandcorridorswithinthecurrentrangethatareprojectedbymultiplemodelsto retainsuitableclimaticconditionsandvegetation,havelowriskoffuturemountainpinebeetle outbreaks,andtoseetheleastchangeinrelevantclimaticvariables,maybemostlikelyto supportfuturelynxpopulations.Theseclimateresilientcorehabitatareasandcorridorsmaybe usedaspriorityareasfortheadaptationactionsdescribedabove. • Identifyingcorridorsbetweenlocationswithprojecteddeclinesinclimaticsuitabilityandareas withprojectedstableorimprovingclimaticsuitability.Useclimaticnichemodels(AppendixE.3) andvegetationprojections(AppendixE.4)toidentifypotentiallystableorimprovinglocations. Usecorridormodels(AppendixE.1)toidentifypotentialcorridorsforconnectingvulnerablelynx corehabitatareastoareasprojectedtoremainclimaticallysuitableorbecomenewly suitable.14151617181920 References 1.Krosby,M.,Michalak,J.,Robbins,T.O.,Morgan,H.,Norheim,R.,Mauger,G.,andT.Murdock.2016. TheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject:Identifyingclimate impactsandadaptationactionsforwildlifehabitatconnectivityinthetransboundaryregionof WashingtonandBritishColumbia.ClimateImpactsGroup,UniversityofWashington. 2.WashingtonWildlifeHabitatConnectivityWorkingGroup.2010.WashingtonConnectedLandscapes Project:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,andTransportation, Olympia,WA.www.waconnected.org. 3.Krosby,M.,Tewksbury,J.J.,Haddad,N.,andJ.Hoekstra.2010.Ecologicalconnectivityforachanging climate.ConservationBiology24:1686-1689. 4.Cross,M.S.,Hilty,J.A.,Tabor,G.M.,Lawler,J.J.,Graumlich,L.J.,andJ.Berger.2012.Fromconnectthe-dotstodynamicnetworks:Maintainingandrestoringconnectivityasastrategytoaddress climatechangeimpactsonwildlife.In:J.Brodie,E.Post,D.Doak,eds.Conservingwildlifepopulations inachangingclimate.ChicagoUniversityPress. 5.Heller,N.E.,andE.S.Zavaleta.2009.Biodiversitymanagementinthefaceofclimatechange:areview of22yearsofrecommendations.BiologicalConservation142:14–32. 6.Cross,M.S.,etal.2012.TheAdaptationforConservationTargets(ACT)framework:atoolfor incorporatingclimatechangeintonaturalresourcemanagement.EnvironmentalManagement 50:341–351. 7.WashingtonWildlifeHabitatConnectivityWorkingGroup.2011.WashingtonConnectedLandscapes Project:Climategradientcorridorsreport.WashingtonDepartmentsofFishandWildlife,and Transportation.Olympia,WA.www.waconnected.org. 8.IntegratedScenariosoftheFutureNorthwestEnvironment. http://climate.nkn.uidaho.edu/IntegratedScenarios 9.PacificClimateImpactsConsortium(PCIC),RegionalAnalysisTool.2014. https://www.pacificclimate.org/analysis-tools/regional-analysis-tool Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 8 Canada lynx (Lynx canadensis) 10.PacificNorthwestClimateChangeVulnerabilityAssessment(PNWCCVA). http://www.climatevulnerability.org/ 11.InteragencyLynxBiologyTeam.2013.Canadalynxconservationassessmentandstrategy.3rd Edition.USDAForestService,USDIFishandWildlifeService,USDIBureauofLandManagement,and USDINationalParkService.ForestServicePublicationR1-13-19,Missoula,MT.128pp. 12.McKenzie,D.,Gedalof,Z.,andD.L.Peterson,andP.Mote.2004.Climaticchange,wildfire,and conservation.ConservationBiology18:890-902. 13.Murray,D.L.,andS.Boutin.1991.Theinfluenceofsnowonlynxandcoyotemovements:does morphologyaffectbehavior?Oecologia88:463–469. 14.(IPCC)IntergovernmentalPanelonClimateChange.2007.WorkingGroup1,Summaryfor Policymakers.Availableat:http://ipcc.ch/publications_and_data/ar4/wg1/en/contents.html 15.Meehl,G.A.,Covey,C.,Delworth,T.,Latif,M.,McAvaney,B.,Mitchell,J.F.B.,Stouffer,R.J.,andK.E. Taylor.2007:TheWCRPCMIP3multi-modeldataset:Anewerainclimatechangeresearch.Bulletin oftheAmericanMeteorologicalSociety88:1383-1394. 16.Nakicenovic,N.etal.2000.SpecialReportonEmissionsScenarios:ASpecialReportofWorking GroupIIIoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress, Cambridge,U.K.,599pp.Availableonlineat:http://www.grida.no/climate/ipcc/emission/index.htm 17.(IPCC)IntergovernmentalPanelonClimateChange.2013.WorkingGroup1,Summaryfor Policymakers.Availableat:http://www.climatechange2013.org/images/uploads/WGIAR5SPM_Approved27Sep2013.pdf 18.Taylor,K.E.etal.2012.AnoverviewofCMIP5andtheexperimentdesign.BulletinoftheAmerican MeteorologicalSociety93:485-498.doi:10.1175/BAMS-D-11-00094.1 19.VanVuuren,D.P.etal.2011.Therepresentativeconcentrationpathways:Anoverview.Climatic Change109:5-31. 20.Caya,D.,andR.Laprise,1999.Asemi-implicitsemi-Lagrangianregionalclimatemodel:theCanadian RCM.MonthlyWeatherReview127:341-362. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 9 Canada lynx (Lynx canadensis) Glossary of Terms Assistedmigration–Speciesandpopulationsaredeliberatelyplantedortransportedtonewsuitable habitatlocations,typicallyinresponsetodeclinesinhistorichabitatqualityresultingfromrapid environmentalchange,principallyclimatechange. Centrality—Referstoagroupoflandscapemetricsthatranktheimportanceofhabitatpatchesor linkagesinprovidingmovementacrossanentirenetwork,i.e.,as“gatekeepers”offlowacrossa landscape.v Connectivity—Mostcommonlydefinedasthedegreetowhichthelandscapefacilitatesorimpedes movementamongresourcepatches.viCanbeimportantformaintainingecological,population-level,or evolutionaryprocesses. CoreAreas—Largeblocks(10,000+acres)ofcontiguouslandswithrelativelyhighlandscape permeability. Corridor—Referstomodeledmovementroutesorphysicallinearfeaturesonthelandscape(e.g., continuousstripsofriparianvegetationortransportationroutes).Inthisdocument,theterm“corridor” ismostoftenusedinthecontextofmodeledleast-costcorridors,i.e.,themostefficientmovement pathwaysforwildlifeandecologicalprocessesthatconnectHCAsorcoreareas.Theseareareas predictedtobeimportantformigration,dispersal,orgeneflow,orforshiftingrangesinresponseto climatechangeandotherfactorsaffectingthedistributionofhabitat. Desiccation–Extremewaterdeprivation,orprocessofextremedrying. Dispersal—Relativelypermanentmovementofanindividualfromanarea,suchasmovementofa juvenileawayfromitsplaceofbirth. FractureZone—Anareaofreducedpermeabilitybetweencoreareas.Mostfracturezonesneed significantrestorationtofunctionasreliablelinkages.Portionsofafracturezonemaybepotential linkagezones. HabitatConnectivity—SeeConnectivity. LandscapeConnectivity—SeeConnectivity. Permeability—Theabilityofalandscapetosupportmovementofplants,animals,orprocesses. Pinchpoint—Portionofthelandscapewheremovementisfunneledthroughanarrowarea.Pinch pointscanmakelinkagesvulnerabletofurtherhabitatlossbecausethelossofasmallareacanseverthe v Carroll,C.2010.Connectivityanalysistoolkitusermanual.Version1.1.KlamathCenterforConservation Research,Orleans,California.Availableatwww.connectivitytools.org(accessedJanuary2016). vi Taylor,P.D.,L.Fahrig,K.Henein,andG.Merriam.1993.Connectivityisavitalelementoflandscapestructure. Oikos68:571-573. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 10 Canada lynx (Lynx canadensis) linkageentirely.Synonymsarebottleneckandchokepoint. Refugia–Geographicalareaswhereapopulationcansurvivethroughperiodsofunfavorable environmentalconditions(e.g.,climate-relatedeffects). Thermalbarriers–Watertemperatureswarmenoughtopreventmigrationofagivenfishspecies. Thesebarrierscanpreventordelayspawningformigratingsalmonids. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 11 Canada lynx (Lynx canadensis) Appendices E.1-6 Appendicesincludeallmaterialsusedtoidentifypotentialclimateimpactsonhabitatconnectivityfor casestudyspecies,vegetationsystems,andregions.ForCanadalynxthesematerialsinclude: AppendixE.1.Habitatconnectivitymodels AppendixE.2.Conceptualmodelofhabitatconnectivity AppendixE.3.Climaticnichemodels AppendixE.4.Projectedchangesinvegetationcommunities AppendixE.5.Projectedchangesinprobabilityofmountainpinebeetlesurvival AppendixE.6.Projectedchangesinrelevantclimaticvariables Allmapsincludedintheseappendicesarederivedfromafewprimarydatasets,chosenbecausethey arefreelyavailable,spanallorpartofthetransboundaryregion,andreflecttheexpertiseofproject sciencepartners.ThesesourcesincludehabitatconnectivitymodelsproducedbytheWashington ConnectedLandscapesProject,2,7futureclimateprojectionsfromtheIntegratedScenariosofthePacific NorthwestEnvironment8andthePacificClimateImpactsConsortium’sRegionalAnalysisTool,9and modelsofprojectedrangeshiftsandvegetationchangeproducedaspartofthePacificNorthwest ClimateChangeVulnerabilityAssessment.10 Allmapsareprovidedatthreegeographicextentscorrespondingtothedistinctgeographiesofthethree projectpartnerships(Fig.E.2): i. OkanaganNationTerritory,theassessmentareaforprojectpartners:OkanaganNationAlliance anditsmemberbandsandtribes,includingColvilleConfederatedTribes. ii. TheOkanagan-KettleRegion,theassessmentareaforprojectpartners:Transboundary ConnectivityWorkingGroup(i.e.,theWashingtonHabitatConnectivityWorkingGroupandits BCpartners). iii. TheWashington-BritishColumbiaTransboundaryRegion,theassessmentareaforproject partners:BCParks;BCForests,Lands,andNaturalResourceOperations;USForestService;and USNationalParkService. Allprojectreports,datalayers,andassociatedmetadataarefreelyavailableonlineat: https://nplcc.databasin.org/galleries/5a3a424b36ba4b63b10b8170ea0c915e Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 12 Canada lynx (Lynx canadensis) FigureE.2.Projectpartnersandassessmentareas. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 13 Canada lynx (Lynx canadensis) Appendix E.1. Habitat Connectivity Models HabitatconnectivitymodelsareavailablefromtheWashingtonConnectedLandscapesProject.viiThese modelscanbeusedtoprioritizeareasformaintainingandrestoringhabitatconnectivitynowandinthe futureastheclimatechanges.Availablemodelsincludespeciescorridornetworks,landscapeintegrity corridornetworks,andclimate-gradientcorridornetworks.Thesemodelsareavailableattwodistinct scales(thoughformanyspecies,onlyonescaleisavailableorwasselectedforusebyproject participants):1)WHCWGStatewidemodelsspanWashingtonStateandsurroundingareasofOregon, Idaho,andBritishColumbia;2)WHCWGColumbiaPlateaumodelsspantheColumbiaPlateauecoregion withinWashingtonState,anddonotextendintoBritishColumbia. a) WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork.2ThismapshowsHabitat ConcentrationAreas(HCAs,greenpolygons),whicharelarge,contiguousareasfeaturinglittle resistancetospeciesmovement;andcorridors(glowingyellowareas)connectingHCAs,modeled usingleastcostcorridoranalysis.ThenorthernextentofthisanalysisfallsjustnorthofKamloops, BC. b) WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+Landscape Integrity).7Thismapshowscorridors(glowingwhiteareas,withresistancetomovementincreasing aswhitefadestoblack)connectingcorehabitatareas(polygons,shadedtoreflectmeanannual temperatures)thatareofhighlandscapeintegrity(i.e.,havelowlevelsofhumanmodification)and differintemperatureby>1oC.Thesecorridorsthusallowformovementbetweenrelativelywarmer andcoolercorehabitatareas,whileavoidingareasoflowlandscapeintegrity(e.g.,roads, agriculturalareas,urbanareas),andminimizingmajorchangesintemperaturealongtheway(e.g., crossingovercoldpeaksordippingintowarmvalleys).Thenorthernextentofthisanalysisfallsjust northofKamloops,BC. vii Fordetailedmethodologyanddatalayersseehttp://www.waconnected.org. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 14 Canada lynx (Lynx canadensis) AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 15 Canada lynx (Lynx canadensis) AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 16 Canada lynx (Lynx canadensis) AppendixE.1a.WHCWGStatewideAnalysis:CanadaLynxCorridorNetwork iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 17 Canada lynx (Lynx canadensis) AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 18 Canada lynx (Lynx canadensis) AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 19 Canada lynx (Lynx canadensis) AppendixE.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 20 Canada lynx (Lynx canadensis) Appendix E.2. Conceptual Model of Habitat Connectivity ToidentifypotentialclimateimpactsontransboundaryCanadalynxhabitatconnectivity,project partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected toinfluenceCanadalynxhabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate, andhow.Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentifyspecific climateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeenpromotedas usefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6TheCanadalynx conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise, andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand processescontributingtoCanadalynxhabitatconnectivity. Conceptualmodelsillustratetherelationshipsbetweenthekeylandscapefeatures(whiteboxes), ecologicalprocesses(roundedcornerpurpleboxes),andhumanactivities(roundedcornerblueboxes) thatinfluencethequalityandpermeabilityofcorehabitatanddispersalhabitatforagivenspecies. Climaticvariablesforwhichdataonprojectedchangesareavailablearehighlightedwithayellow outline.Greenarrowsindicateapositivecorrelationbetweenlinkedvariables(i.e.,asvariablex increasesvariableyincreases);notethatapositivecorrelationisnotnecessarilybeneficialtothe species.Redarrowsindicateanegativerelationshipbetweenvariables(i.e.,asvariablexincreases, variableydecreases);again,negativecorrelationsarenotnecessarilyharmfultothespecies. ExpertreviewersfortheCanadalynxconceptualmodelincluded: • AlisonPeatt,RPBio,EnvironmentalPlannerforSouthOkanagan-SimilkameenCommunities • WestbankFirstNation(communitymember/commercialtrapper) KeyreferencesusedtocreatetheCanadalynxconceptualmodelincluded: Buskirk,S.W.,L.F.Ruggiero,andC.J.Krebs.2000a.Habitatfragmentationandinterspecific competition:implicationsforlynxconservation.Pages83–100inL.F.Ruggiero,K.B.Aubry,S.W. Buskirk,G.M.Koehler,C.J.Krebs,K.S.McKelvey,andJ.R.Squires,editors.Ecologyandconservationof lynxintheUnitedStates.UniversityPressofColorado.Boulder,Colorado,USA. Gonzalez,P.,R.P.NeilsonK.S.McKelvey,J.M.Lenihan,andR.J.Drapek.2007.Potentialimpactsof climatechangeonhabitatandconservationpriorityareasforLynxcanadensis(CanadaLynx).TheNature Conservancy,Arlington,Virginia,USA. Hoving,C.L.,D.J.Harrison,W.B.Krohn,W.J.Jakubas,andM.A.McCollough.2004.CanadalynxLynx canadensishabitatandforestsuccessioninnorthernMaine,USA.WildlifeBiology10:285–294. InteragencyLynxBiologyTeam.2013.Canadalynxconservationassessmentandstrategy.3rdedition. USDAForestService,USDIFishandWildlifeService,USDIBureauofLandManagement,andUSDI NationalParkService.ForestServicePublicationR1-13-19,Missoula,MT.128pp. Koehler,G.M.1990.Populationandhabitatcharacteristicsoflynxandsnowshoeharesinnorthcentral Washington.CanadianJournalofZoology68:846–851. Koehler,G.M.,B.T.Maletzke,J.A.vonKienast,K.B.Aubry,R.B.Wielgus,andR.H.Naney.2008. HabitatfragmentationandthepersistenceoflynxpopulationsinWashingtonState.JournalofWildlife Management72:1518–1524. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 21 Canada lynx (Lynx canadensis) Murray,D.L.,andS.Boutin.1991.Theinfluenceofsnowonlynxandcoyotemovements:does morphologyaffectbehavior?Oecologia88:463–469. Squires,J.R.,N.J.Decesare,J.A.Kolbe,andL.F.Ruggiero.2010.SeasonalresourceselectionofCanada lynxinmanagedforestsofthenorthernRockyMountains.JournalofWildlifeManagement74:1648– 1660. Ward,R.M.P.,andC.J.Krebs.1985.Behavioralresponsesoflynxtodecliningsnowshoehare abundance.CanadianJournalofZoology63:2817–2824. WashingtonWildlifeHabitatConnectivityWorkingGroup(WHCWG).2010.WashingtonConnected LandscapesProject:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,and Transportation,Olympia,WA. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 22 Canada lynx (Lynx canadensis) AppendixE.2.ConceptualmodelofCanadalynxhabitatconnectivity Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 23 Canada lynx (Lynx canadensis) Appendix E.3. Climatic Niche Models Climaticnichemodels(CNM)mathematicallydefinetheclimaticconditionswithineachspecies’current geographicdistribution,andthenapplyprojectedclimatechangestoidentifywhereonthelandscape thoseclimateconditionsareprojectedtobelocatedinthefuture.ThesemapsshowCNMresultsbased onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.viii BothmodelsusetheA2(high)emissionsscenario.ixCNMsarebasedonclimateconditionsaloneanddo notaccountfordispersalability,geneticadaptation,interspeciesinteractions,orotheraspectsof habitatsuitability.Onceprojectedrangeshiftsweremodeled,currentlandusesandprojected vegetationtypes(identifiedusingShaferetal.2015x)thatareunlikelytosupportspeciesoccurrence wereremoved.Forexample,areascurrentlydefinedasurbanwereremovedforspeciesunabletolivein urbanlandscapes,andgrasslandhabitatswereremovedforforest-dependentspecies.Bothwouldbe shownasunsuitable. Darkgrayareasindicateareasofthespecies’currentrangethatareprojectedtoremainclimatically suitablebybothGCMs(i.e.,rangeisexpectedtoremain“stable”).Darkpinkareasareprojectedto becomelessclimaticallysuitablebybothGCMs(i.e.,rangeisexpectedto“contract”).Lightpinkareas areprojectedtobecomelesssuitableunderonemodelbutremainstableundertheother.Darkgreen areasareareasthatarenotwithinthespecies’currentrangebutareprojectedtobecomeclimatically suitablebybothGCMs(i.e.,therangeisexpectedto“expand”).Lightgreenareasareprojectedto becomeclimaticallysuitablebyoneGCM,butnottheother. viii 14,15 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. ix Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise st untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre16 industriallevels. x Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe northwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759 Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 24 Canada lynx (Lynx canadensis) AppendixE.3.CanadaLynxClimaticNicheModel i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 25 Canada lynx (Lynx canadensis) AppendixE.3.CanadaLynxClimaticNicheModel ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 26 Canada lynx (Lynx canadensis) AppendixE.3.CanadaLynxClimaticNicheModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 27 Canada lynx (Lynx canadensis) Appendix E.4. Projected Changes in Vegetation Twotypesofmodelsareavailablethatprojectfuturechangesinvegetationthatcouldaffectaspecies’ habitatconnectivity:climaticnichemodelsandmechanisticmodels.Climaticnichevegetationmodels mathematicallydefinetheclimaticconditionswithinagivenvegetationtype’scurrentdistributionand thenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.Thesemodels donotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,dispersal, competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological processes,aswellasprojectedclimatechangesandthepotentialeffectsofcarbondioxidefertilization. However,mechanisticmodelsonlyprojectchangestoverygeneralvegetationtypes(e.g.,coldforest, shrubsteppe,orgrassland).Bothtypesofmodelsincludedbelowshowvegetationmodelresultsbased onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xi BothmodelsalsousetheA2(high)emissionsscenario.xii a) BiomeClimaticNicheVegetationModel.xiiiThisclimaticnichevegetationmodelshowsthe projectedresponseofbiomesorforesttypestoprojectedclimatechange. b) MechanisticVegetationModel.xivThismechanisticvegetationmodelshowssimulated vegetationcompositionanddistributionpatternsunderclimatechange. xi 14,15 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. xii Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue st toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto 16 pre-industriallevels. xiii Rehfeldt,G.E.,Crookston,N.L.,Sánez-Romero,C.,Campbell,E.M.2012.NorthAmericanvegetationmodelfor land-useplanninginachangingclimate:asolutiontolargeclassificationproblems.EcologicalApplications22:119141. xiv Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe NorthwestUnitedStatesandSouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 28 Canada lynx (Lynx canadensis) AppendixE.4a.BiomeClimaticNicheModel i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 29 Canada lynx (Lynx canadensis) AppendixE.4a.BiomeClimaticNicheModel ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 30 Canada lynx (Lynx canadensis) AppendixE.4a.BiomeClimaticNicheModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 31 Canada lynx (Lynx canadensis) AppendixE.4b.MechanisticVegetationModel i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 32 Canada lynx (Lynx canadensis) AppendixE.4b.MechanisticVegetationModel ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 33 Canada lynx (Lynx canadensis) AppendixE.4b.MechanisticVegetationModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 34 Canada lynx (Lynx canadensis) Appendix E.5. Projected Changes in Probability of Mountain Pine Beetle Survival Projectedchangesintheprobabilityofclimaticsuitabilityformountainpinebeetlesfortheperiod2001 to2030(relativeto1961to1990),wherebrownindicatesareaswherepinebeetlesareprojectedto increaseinthefutureandgreenindicatesareaswherepinebeetlesareprojectedtodecreaseinthe future.xv,xvi xv Mote,P.W.,Snover,A.K.,Capalbo,S.M.,Eigenbrode,S.,Glick,P.,Littell,J.S.,Raymondi,R.,Reeder, S.2014.Chapter21inClimateChangeImpactsintheUnitedStates:TheThirdU.S.NationalClimateAssessment,J. Melillo,Terese(T.C.)Richmond,andG.W.Yohe,Eds.,U.S.GlobalChangeResearchProgram,16-1-nn. xvi Changesinprobabilityofsurvivalarebasedonclimate-dependentfactorsimportantinbeetlepopulation xv success,includingcoldtolerance,springprecipitation,andseasonalheataccumulation. Projectionsarebasedon 20 16 theCRCM4.2regionalclimatemodel, underanA2(high)carbonemissionsscenario, andareonlyavailablefor theUnitedStates. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 35 Canada lynx (Lynx canadensis) AppendixE.5.ProbabilityofMountainPineBeetleSurvival i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 36 Canada lynx (Lynx canadensis) AppendixE.5.ProbabilityofMountainPineBeetleSurvival ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 37 Canada lynx (Lynx canadensis) AppendixE.5.ProbabilityofMountainPineBeetleSurvival iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 38 Canada lynx (Lynx canadensis) Appendix E.6. Projected Changes in Relevant Climate Variables Thefollowingprojectionsoffutureclimatewereidentifiedbyprojectpartnersasbeingmostrelevantto understandingandaddressingclimateimpactsonCanadalynxconnectivity.xviiFutureclimateprojections weregatheredfromtwosources,exceptwhereotherwisenoted:1)theIntegratedScenariosofthe PacificNorthwestEnvironment,8whichislimitedtotheextentoftheColumbiaBasin;andthePacific ClimateImpactsConsortium’sRegionalAnalysisTool,9whichspansthefulltransboundaryregion.For manyclimaticvariables,noticeabledifferencesinthemagnitudeoffuturechangescanbeseenatthe US-Canadaborder;thisartifactresultsfromdifferencesoneithersideoftheborderinthenumberof weatherstations,thewaytemperatureandprecipitationweremeasured,anddifferencesinthe approachusedtoprocessthesedatatoproducegriddedestimatesofdailyweathervariations. a) Spring(April1st)Snowpack.Thismapsnowsthepercentchangeinsnowwaterequivalent (SWE)onApril1st.April1stistheapproximatecurrenttimingofpeakannualsnowpackin Northwestmountains.SWEisameasureofthetotalamountofwatercontainedinthe snowpack.ProjecteddecreasesinSWEaredepictedbytheyellowtoredshading. b) LengthofSnowSeason.Thismapshowstheprojectedchangeinthelengthofthesnowseason, definedasthenumberofdaysbetweenthefirstandlastdaysoftheseasonwithatleast10%of annualmaximumsnowwaterequivalent.Projectedchangesinsnowseasonlengtharedepicted bytheyellowtoredshading. c) PercentageofWinterPrecipitationCapturedinApril1stSnowpack.Thismapshowsthe projectedpercentageofwinter(October-March)precipitationthatisretainedinApril1st snowpack.Themapclassifiestheresultsinthreecategories:raindominant(green:<10%), mixed-rain-and-snow(orange:10-40%),andsnowdominant(blue:>40%). d) DayswithHighFireRisk(EnergyReleaseComponent,ERC>95thpercentile).xviiiThismapshows theprojectedchangeinthenumberofdayswhentheERC–acommonlyusedmetrictoproject thepotentialandriskofwildfire–isgreaterthanthehistorical95thpercentileamongalldaily values. e) DrySpellDuration.Thismapshowstheprojectedchange,inpercent,inthemaximumnumber ofconsecutivedayswithlessthan1mmofprecipitation.Projectedchangeindryspellduration isdepictedbythebrowntogreenshading. xvii Allprojectionsbut“DayswithHighFireRisk”areevaluatedforthe2050s(2040-2069)andthe2080s(207017,18 2099),basedon3globalclimatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(CCSM4)), undera 19 highgreenhousegasscenario(RCP8.5). “DayswithHighFireRisk”isevaluatedforthe2050s,basedon3global 17,18 climatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(MIROC5)) usingtheRCP8.5(high)emissions 19 scenario. xviii Abatzoglou,J.T.2013.Developmentofgriddedsurfacemeteorologicaldataforecologicalapplicationsand modeling.InternationalJournalofClimatology33:121-131. Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 39 Canada lynx (Lynx canadensis) AppendixE.6a.Spring(April1st)Snowpack i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 40 Canada lynx (Lynx canadensis) AppendixE.6a.Spring(April1st)Snowpack ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 41 Canada lynx (Lynx canadensis) AppendixE.6a.Spring(April1st)Snowpack iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 42 Canada lynx (Lynx canadensis) AppendixE.6b.LengthofSnowSeason i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 43 Canada lynx (Lynx canadensis) AppendixE.6b.LengthofSnowSeason ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 44 Canada lynx (Lynx canadensis) AppendixE.6b.LengthofSnowSeason iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 45 Canada lynx (Lynx canadensis) AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 46 Canada lynx (Lynx canadensis) AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 47 Canada lynx (Lynx canadensis) AppendixE.6c.PercentageofWinterPrecipitationCapturedinApril1stSnowpack iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 48 Canada lynx (Lynx canadensis) AppendixE.6d.DayswithHighFireRisk i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 49 Canada lynx (Lynx canadensis) AppendixE.6d.DayswithHighFireRisk ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 50 Canada lynx (Lynx canadensis) AppendixE.6d.DayswithHighFireRisk iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 51 Canada lynx (Lynx canadensis) AppendixE.6e.DrySpellDuration i)Extent:OkanaganNationTerritory Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 52 Canada lynx (Lynx canadensis) AppendixE.6e.DrySpellDuration ii)Extent:Okanagan-KettleRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 53 Canada lynx (Lynx canadensis) AppendixE.6e.DrySpellDuration iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix E: Washington-British Columbia Transboundary Climate-Connectivity Project 54
© Copyright 2026 Paperzz