Materials for Design


The design of any machine component is based on its capacity to withstand the load. The
capacity of machine components is its ability to sustain the loading conditions without changing
its configuration which may not allow the components to perform the intended function. The
capacity of the components is measured on the basis of the mechanical properties obtained
experimentally. The condition maintained during the testing does not exist in actual service
conditions. Moreover, the mechanical properties obtained for two standard test specimens of the
same material may not result in same values even when they are tested on the same machine.
That is why the minimum value or range of strength is given. The selection of appropriate
material property data is the responsibility of the designer to ensure the safety of his design. The
design case where safety risk is very high, as in the design of aircraft, space vehicles, automobiles
etc, the safest approach is to develop the mechanical property data by conducting tests involving
actual loading conditions on the prototype manufactured through the specified processes, so as
to emulate the actual conditions as accurately as possible during testing.
    




  





­
€
‚€ƒ
„
 




      ­ €€ 
‚
ƒ
€€
€„
Stress
Quenched, tempered alloy steel
High strength, low alloy steel
Carbon steel
Pure iron
Strain


­€

Stress
U
F
Proof stress
B
A
0.002
O H
Strain
­€
‚
s =
e ­ ƒ „ …† n n‚‡

n e
s
s
een tg

t
g
 
­
€‚
ƒ + n
„
…†
‡
ˆ
­†€‚
ƒ - n

‰
†
­


…

­­
   Š 
‹
- ¥ = ¥ 
Œ
e
Ú
= 
  



 
­
€
Stress
U
Stress
U
F
F
Su
Sy
Y
Y
Strain
Strain

 

 e 
­

e ­
€
e

‚
ƒ
„
…
†
†‡‡
ˆ  ‰Š‡
‰
Cup
(a)
Cone
(b)





­€
­‚ƒ

­ƒ‚‚
„…€


 ­€‚ƒ­„‚
…†‡
ˆ

(
p - - )
  
…†
s‰Š‹…††Œ‚
Ž
­‰€‘
‡
­‹ŠŒ
 ‡ ’ ‡ “ ‡ 
“ “ “ ‡   
  

Strain
Primary creep
Secondary creep
Tertiary creep
Time
­
€
‚ ‚ ‚ ‚ ƒ„ 
‚ ­
‚ 
Temperature
g austenite
a ferrite
d delta iron
d L
1540
1490
d
Cementite begins
to solidify
Primary austenite
begins to solidify
d g
1400
g L
g
L
Austenite in liquid
L Fe 3 C
austenite solid solution of
carbon in gamma iron
1130
Fe 3 C
A2
910
Acm
A3
0.025%
g + Fe 3 C
austenite to pearlite
a+g
760
723
Austenite+ledeburite + cementite
Cementite +
ledeburite
A1, 2 ,3
A1
a
pearlite + Cementite
pearlite + ferrite
a + Fe 3 C
Cementite, pearlite and
transformed ledeburite
210
0.008%
2.0%
0.83%
Hypo-eutectoid steel
Hyper-eutectoid steel
4.3%
6.67%
Carbon %
Cast iron

   ­ € ‚ƒ
„ …†‡ ˆ ‰
ˆ





­€‚ƒ„‚…­‚†
‡
†
ˆ
ˆ‰

ˆ   Šˆ ‹ˆ ˆ  ‰Œ
ŠˆŠ‰‰Œ
‹ˆ€‚‹€‚‰Œ
ˆ„ „‰Œ
‰
ˆ

ISI Grade
Applications
GCI 15
Where bending stress < 10 N/mm2: pressure < 5 N/mm2: columns, pedestals, beds, covers,
housings, arms, Sliding tables
GCI 20
Where bending stress < 30 N/mm2,: pressure < 100 N/mm2: beds, columns, gears, guide
ways, pulleys
GCI 25
Bending stress < 50 N/mm2; pressure < 200 N/mm2 columns, chucks, gears, ways, hydraulic
cylinders, pump body, HP valves, work table, flywheels.
Malleable CI
Face plate, chuck body, vices, clamps, levers, hand wheels turret body, tool post.
Cast Iron
Sut
MPa
Suc
MPa
Syt
MPa
E
GPa
G
GPa
BHN
Applications
Gray CI
4.5% C
Malleable CI
2% C
170
655
–
69
28
110-150
General industrial castings,
pumps, cylinders
345
620
230
165
65
100-140
Automobile parts etc.
Note: The properties of same material varies greatly because of different manufacturing processes, chemical composition, internal
defects, temperature, measuring errors and many other factors. Consequently, catalogues of manufacturer of the material should be
consulted for precise value of the properties.



 

  


 ­ € ‚ €
ƒ € „ ­ …
‚€†‡
… ‚ ˆ€†‡
ˆ€†
‰ Designation
ISI
Sut
MPa
Syt
MPa
%
elong
BHN
C07
314-392
196
27
—
C10
C14
333-412
363-441
206
216
26
26
—
137
C15
363-481
233
25
137
C20
C25
C25Mn75
C30
432-510
432-520
461-560
490-588
245
275
275
294
24
27
22
21
156
170
207
179
C35
C35Mn75
510-608
540-637
304
314
20
20
187
223
C40
570-667
324
18
217
C45
C50
618-696
647-765
353
373
15
13
229
241
C50Mn1
706(min)
392
11
255
C55M75
706(min)
392
13
265
C65
736(min)
422
10
255
Applications
Cold forming and deep drawing, Rimming quality used for
Automobile bodies and rivets, killed quality used for
forgings
Cam shafts, cams, light duty gears, worms, gudgeon pins,
spindles, ratchets, chain wheels, tappets etc.
Cold worked-rivets, General purpose-low stresses
components
Cold formed levers, Hardened and tempered tie rods,
cables, sprockets, hubs and bushes, steel tubes etc.
Low stressed components, automobile tubes and fasteners
Low stressed parts, cycle and motor frame tubes, fish
plates for rails and fasteners
Crank shafts, shafts, spindles, axle beams, push rods,
connecting rods, studs, bolts, gears etc
Shafts, bolts, gears and spindles of machine tools
Shafts, keys, cylinders, hardened stock for worms and
worm gears
Rail steel, bolts, gear shafts, rocking levers and cylinder
liners
Keys, crank shafts, cylinders, cams, gears, sprockets, parts
requiring moderate wear resistance
Locomotive carriage and wagon tyres, engine valve
springs, washers and thin stamped parts
Note: The properties of same material vary greatly because of different manufacturing processes, chemical composition, internal defects, temperature,
measuring errors and many other factors. Consequently, catalogues of manufacturer of the material should be consulted for precise value of the properties.
         
Structural carbon steel
High-strength steel ­
High-strength low-alloy steels€‚
 Quenched and tempered carbon steel ­ 

­ Quenched and tempered alloy steel‚‚
ƒ
„…
†

ACYZ
A ¥
C Y ¥
Z ‡ƒˆ†
‰
‡
Sulphur  Šˆ
‹ PhosphorusŠˆ
 cold shortness
Silicon
‹ ƒ    ­
­Š ‰ Š ƒ ˆ Œ
Nickel ˆ ‰ ­Š
‹ Chromium ˆ Š ISI Grade
Sut
N/mm2
27 Mn 2
588 – 736
687 – 834
588 – 736
687 – 834
785 – 932
882 – 1030
687 – 834
785 – 932
882 – 1030
981 – 1128
785 – 932
882 – 1030
981 – 1128
687 – 834
785 – 932
882 – 1030
687 – 834
785 – 932
882 – 1030
981 – 1128
687 – 834
785 – 932
1324 min
1520 min
687 – 834
785 – 932
882 – 1030
785 – 932
882 – 1030
687 – 834
785 – 932
882 – 1030
1520 min
785 – 932
882 – 1030
981 – 1128
1080 – 1226
1200 min
37 Mn 2
35 Mn 2 Mo 28
35 Mn 2 Mo 45
40 Cr 1
40 Cr 1 Mo 28
15 Cr 3 Mo 55
40 Cr 3 Mo 1 V 20
40 Cr 2 A1 1 Mo 18
40 Ni 3
35 Ni 1 Cr 60
30 Ni 4 Cr 1
40 Ni 1 Cr 1 Mo 15
31 Ni 3 Cr 65 Mo 55
Syt
N/mm2
432
490
432
530
588
687
530
588
687
785
588
687
785
530
588
687
530
588
687
785
530
588
1098
1275
530
588
687
588
687
530
588
687
1275
588
687
785
863
1000
Min %
Elongation
BHN
18
16
18
18
16
15
18
16
15
13
16
15
13
18
16
15
18
16
15
13
18
16
8
8
18
16
15
16
15
18
16
15
8
16
15
13
11
10
170 – 217
201 – 248
170 – 217
201 – 248
229 – 277
255 – 311
201 – 248
229 – 277
255 – 311
285 – 341
229 – 277
255 – 311
285 – 341
201 – 248
229 – 277
255 – 311
201 – 248
229 – 277
255 – 311
285 – 341
201 – 248
229 – 277
363 min
444 min
201 – 248
229 – 277
255 – 311
229 – 277
255 – 311
201 – 248
229 – 277
255 – 311
444 min
229 – 277
255 – 311
285 – 341
311 – 363
444 min
Note: The properties of same material varies greatly because of different manufacturing processes, chemical composition, internal defects, temperature,
measuring errors and many other factors. Consequently, catalogues of manufacturer of the material should be consulted for precise value of the
properties.


¥
 
 ¥ ­
 ¥€‚ƒ„
¥ƒ 
¥ ­
¥€‚ƒ„
¥ƒ 
… †
   

‡† ˆ ˆ ˆ
‰Š

ˆ
‰ ‰ ˆˆ
ˆ ‹
  


  
­€
 ‚  ƒ
 
  „     ­  …  „ ­  
†  
‡
 ‡ ˆˆƒ
ƒ‰
Stress
Quenched
Tempered
Annealed
Strain

  
