Aim: How do we prepare for the log and exponential differentiation and integration exam? dy I. Find dx 3 1. y = ln(−14x ) 4. y = ln(ln(cos x)) 5 2. y = (ln 2x) y = ln 4 x 2 +1 x 2 −1 3. y = ln(4 − x 2 ) 6. y = e −4 x+4 5. 2 x 8. y = xe − e 9. y = 4 x π 11. y = π x 4 xy 2 12. x + e − y = 20 2x 3 7. y = 2e 2 10. y = log 3 (x − 2) 2 x−1 Aim: How do we prepare for the log and exponential differentiation and integration exam? 13. ln y + xy + 8x = 25 14. Write the equation of the tangent line of y = 8x 2 + ln(3x + 1) + 1 at x=0 II. Find the integral or definite integral of the given function 1 7x 8x 3 − 7x 2 −1 dx dx dx ∫ ∫ 2 ∫ 2x 15. 5 − x 16. x − 8 17. Aim: How do we prepare for the log and exponential differentiation and integration exam? (ln x)3 ∫ 2x dx (e 4 x + e)dx 2e x (1+ e x )4 dx 18. 19. ∫ 20. ∫ e x + e− x ∫ x − x dx π ecos x sin x dx (e x − e− x )2 dx 21. e − e 22. ∫ 23. ∫ 4 e2 e x 2 ∫ 2 x dx ∫ x dx 24. 1 25. 1 Aim: How do we prepare for the log and exponential differentiation and integration exam? −x 26. Find relative extrema and inflection points of y = xe . Justify your answers.
© Copyright 2026 Paperzz