Non-Associativity of the Double Minus Operation

Non-Associativity of the
Double Minus Operation
MADISON MICKEY
UNIVERSITY OF NEBRASKA AT KEARNEY
PRESENTED: 3/14/2017
JOINT WORK WITH J. HUANG AND J. XU
Double Minus Operation

Define binary operation: π‘Ž Σ© b = βˆ’a βˆ’ b

Let 𝐢ө,𝑛,π‘Ÿ be the number of distinct results with exactly r plus
signs from
π‘₯0 Σ© π‘₯1 Σ© … Σ© π‘₯𝑛

Let 𝐢ө,𝑛 = 0 β‰€π‘Ÿ ≀𝑛+1 𝐢ө,𝑛,π‘Ÿ for 𝑛 β‰₯ 0 which is the total number of
distinct results from the previous expression.

𝐢ө,𝑛 measures the non-associativity of the operation Σ©
Example (n = 3)
βˆ’ βˆ’ βˆ’π‘₯0 βˆ’ π‘₯1 βˆ’ π‘₯2 βˆ’ π‘₯3 = βˆ’π‘₯0 βˆ’ π‘₯1 + π‘₯2 βˆ’ π‘₯3
βˆ’ βˆ’π‘₯0 βˆ’ π‘₯1 βˆ’ βˆ’π‘₯2 βˆ’ π‘₯3 = π‘₯0 + π‘₯1 + π‘₯2 + π‘₯3
βˆ’ βˆ’π‘₯0 βˆ’ βˆ’π‘₯1 βˆ’ π‘₯2
βˆ’ π‘₯3 = π‘₯0 βˆ’ π‘₯1 βˆ’ π‘₯2 βˆ’ π‘₯3
βˆ’π‘₯0 βˆ’ βˆ’ βˆ’π‘₯1 βˆ’ π‘₯2 βˆ’ π‘₯3 = βˆ’π‘₯0 βˆ’ π‘₯1 βˆ’ π‘₯2 + π‘₯3
βˆ’π‘₯0 βˆ’ βˆ’π‘₯1 βˆ’ βˆ’π‘₯2 βˆ’ π‘₯3
= βˆ’π‘₯0 + π‘₯1 βˆ’ π‘₯2 βˆ’ π‘₯3
CΣ©,3,0 = 0
CΣ©,3,1 = 4 =
4
1
CΣ©,3,2 = 0
CΣ©,3,3 = 0
CΣ©,3,4 = 1 =
CΣ©,3
4
4
4
4
=
+
=5
1
4
--+++++
+-----+
-+--
Theorem (Huang, M., and Xu)
For 𝑛 β‰₯ 1 and 0 ≀ π‘Ÿ ≀ 𝑛 + 1:
𝐢ө,𝑛,π‘Ÿ =
𝑛+1
π‘Ÿ
𝑛+1
βˆ’1
π‘Ÿ
0
𝑖𝑓 𝑛 + π‘Ÿ ≑ 1 π‘šπ‘œπ‘‘ 3 π‘Žπ‘›π‘‘ 𝑛 β‰  2π‘Ÿ βˆ’ 2;
𝑖𝑓 𝑛 + π‘Ÿ ≑ 1 π‘šπ‘œπ‘‘ 3 π‘Žπ‘›π‘‘ 𝑛 = 2π‘Ÿ βˆ’ 2;
𝑖𝑓 𝑛 + π‘Ÿ β‰’ 1 π‘šπ‘œπ‘‘ 3 .
Theorem (Huang, M., and Xu)
For 𝑛 β‰₯ 1 we have
2𝑛+1 βˆ’1
𝐢ө,𝑛 =
3
2𝑛+1 βˆ’2
3
,
𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘
,
𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛.
Proof by Example


6
0
+
6
6
+
6
1
=?
+
6
4
6
2
=?
6
5
=?
π‘₯5 +
6
6
+
Using the binomial expansion:
6
0
6
1
π‘₯1 +
6
2
π‘₯2 +
6
2
6
3
+

(1 + π‘₯)6 =

π‘₯ = 1:

π‘₯ = βˆ’1:

Add together and divide by 2:


6
3
6
0
6
1
+
6
0
+
βˆ’
+
6
1
+
+
6
2
βˆ’
6
3
6
4
+
6
3
6
4
π‘₯3 +
+
6
4
6
5
βˆ’
6
0
+
+
6
5
π‘₯4 +
π‘₯6
6
6
+
6
2
6
5
+
6
6
6
4
+
6
6
Result based on ±1 = 1 and 1 + (βˆ’1) = 0 (Second Roots of Unity)
Used Third Roots of Unity to calculate binomial coefficient totals

13 = 1, πœ”3 = 1, (πœ”2 )3 = 1 and 1 + πœ” + πœ”2 = 0
Examining Non-Associativity

Related to Sequence A000975 in the OEIS (On-line Encyclopedia of Integer Sequences)

This sequence is characterized by a recurrence relation.

This sequence also gives binary operations with alternating ones and zeros.

A(1)
=
1
=
12
=
1 × 20
A(2)
=
2
=
102
=
1 × 21 + 0 × 20
A(3)
=
5
=
1012
=
1 × 22 + 0 × 21 + 1 × 20
A(4)
=
10 =
10102
=
1 × 23 + 0 × 22 + 1 × 21 + 0 × 20
A(5)
=
21 =
101012 =
1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20
This sequence occurs in other interesting places.
THANK YOU!