Muonic Atom of Unstable Nuclei Patrick Strasser Muon Science Laboratory KEK Collaborators: K. Nagamine T. Matsuzaki, K. Ishida, Y. Matsuda, M. Iwasaki (KEK) (RIKEN) New Ion Source: A. Taniguchi S. Ichikawa H. Miyatake (Kyoto) (JAERI) (KEK) Workshop on Physics with Ultra Slow Antiprotons RIKEN, March 14-16, 2005. Introduction X Physics Motivation X-RAY SPECTROSCOPY of MUONIC ATOMS ! · Precision tool to measure the NUCLEAR CHARGE DISTRIBUTION. · Usefully complement the knowledge obtained from electron scattering and laser spectroscopy. · Successfully used since more than 30 years to study STABLE ISOTOPES in condensed or gaseous states ! Nuclear Charge Radii of Tin Isotopes from Muonic Atoms C. Piller et al., Phys. Rev. C 42 (1990) 182, L.A. Schaller Z. Phys. C 56 (1992) S48. (Fribourg Univ. / Mainz Univ.; Exp. PSI µE1) Slowpbar, RIKEN March 16, 2005 – P. Strasser Towards Radioactive Muonic Atoms ? X Facilities with both RI BEAM PROJECTS and negative muon beams: RAMA WORKSHOP · TRIUMF (ISAC), J-PARC (E-arena), ... · RIKEN (RI Beam Factory) if intense µ¯ can be produced, · and maybe at a NEUTRINO FACTORY PROJECT X In the near Future 1012 µ/s, 55MeV/c · MUON BEAM of significant higher flux (PRISM,), · NEXT GENERATION of RNB facility X Experimental Methods using muons · Merging Beams Scenario (M. Lindros, CERN) , · Combined Cyclotron Trap & Penning Trap, · SOLID HYDROGEN & MUON TRANSFER X Other Methods for Unstable Nuclei PRESENT: Optical Laser Spectroscopy (ISOLDE, RIKEN, …) FUTURE: Electron Scattering with e¯ & RI collider Rings (GSI , MUSES at RIKEN, …) Slowpbar, RIKEN March 16, 2005 – P. Strasser Why Radioactive Muonic Atoms ? X Probing Nuclear Charge Distribution Matter distribution deduced from measured interaction cross sections. Charge distribution needed to get information on proton and neutron distributions in nuclei. · X-RAY SPECTROSCOPY of RADIOACTIVE MUONIC ATOMS ! X Deformation Properties Quadrupole hyperfine spitting of muonic X-rays yield precise and reliable absolute quadrupole moment values. Measure the deformation properties of nuclei. · IMPORTANT ROLE in ESTABLISHING and REFINING NUCLEAR STRUCTURE MODELS ! A Z X Muon Capture X N + µ − → Z −A1 X N +1 + ν µ Tools to explore changes in collective excitation modes of neutron-rich nuclei. Kolbe et al., Eur. Phys. J A 11 (2001) 39; T. Nilsson et al., Nucl. Phys. A 746 (2004) 513c · IMPORTANT ASTROPHYSICAL IMPLICATIONS ! X Novel nuclear structure effects may exist far off the valley of stability ? Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Technical Feasibility X How to produce such exotic µA* atoms ? We propose: · SOLID HYDROGEN FILM used to stop both simultaneously µ¯ and A* beams. · µA* ATOMS formed through MUON TRANSFER REACTION to higher Z nuclei, i.e., µH + Az* → µAz* + H Basic Concept with A* TRANSFER RATE: λz ≈ Cz Z 1010 s-1 µ− dµ A* Ion Beam HIGH TRANSFER RATE & HIGH EFFICIENCY e.g., Z = 50 and 16 3 Cz = 1 ppm (5 × 10 nuclei/cm ) 5 -1 λz ≈ 5 × 10 s Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Muon Beam X-Rays D2 µA* Technical Feasibility (2) X Basic Concept: Two-Layer Arrangement Ramsauer-Townsend Effect Ion Stopping Region dµ µ− Muon Beam pµ µA* dµ H2/D2 (~ 1 mm , Cd ≈ 10-3) Cold Foil Slowpbar, RIKEN March 16, 2005 – P. Strasser A* Ion Beam D2 (~ 5 µm) X-Rays X Transfer Yield Estimation (Two-Layer Arrangement) No dµ atom loss ! dµ µ− pµ YX = φ λZ Y µ ¯ Y dµ λ0 + φ λZ 10 −1 with λ Z ≈ CZ Z × 10 s , CZ = N Z N D , µA* dµ H2 / D2 D2 X-Rays Transfer Yield per inc. µ¯ Preliminary Transfer Yield Estimation Yµ ¯ ≅ 0.1, Ydµ ≅ 0.04 µ¯ Stopping dµ Emission 10- 1 Two-Layer Arrangement 10- 2 (1-mm H2 /D2 ⊕ 5-µm D2 ) 10- 3 10- 4 1-mm D2 Layer 10- 5 1-mm H2 Layer 10- 6 1 2 10 101 3 101 4 101 5 101 6 101 7 101 8 101 9 Z NZ [1/cm2] X Preliminary Yield Estimation for Tin (Z=50): Q Muon Intensity (1 cm2, 30 MeV/c): 1 × 108 [s-1] Q Implanted Sn Ions (1 cm2, uniform): 1 × 1012 Q Transfer Yield per incident µ¯: 2 × 10-4 Q Muonic Tin Atoms Formed: Q Total X-Ray Number Detected: Two-Layer Arrangement 21st Century Muon Beam SHC confinement Field 1-mm D2 2 × 10-5 20’000 [s-1] 2’000 [s-1] 500 [hr-1] 50 [hr-1] Assuming for µSn 2p→1s X-ray detection (~3.4 MeV) : b.r. ~ 0.7, ε ~ 0.005 and ∆Ω ~ 0.002. Slowpbar, RIKEN March 16, 2005 – P. Strasser Practical Considerations X SIMULTANEOUS implantation of unstable nuclei and measurement with µ¯. X Ion beam ENERGY and SPREAD determine the implantation DEPTH and THICKNESS. Ion range in solid hydrogen: 1 mm ¹ ~ 10 MeV/u 5 µm ¹ ~ 30 keV/u SWEEPING Beam Energy X CONTINUOUS SPUTTERING of solid hydrogen films. If proven important, Hydrogen Deposition SIMULTANEOUS & Ion Implantation Y ACTIVITY HIGH RADIATION BACKGROUND 10 101 2 Φ = 109 s- 1 τ = 1000 s 101 1 NB NA 101 0 · Pulsed Muon Beam 109 0 10 · Active BG suppression, Detector segmentation, ... Slowpbar, RIKEN March 16, 2005 – P. Strasser D2 A* → B 13 Population ACCUMULATION of DAUGHTER NUCLEI · LIMITATION (static target): T1/2 > 10 min. H2 / D2 101 4 X RI beam COMPLETELY stopped in the target! Y A* Beam Impurity (1%) 101 102 103 Time [s] 104 105 Using Solid Hydrogen Films X Advantages · WINDOWLESS TARGET in vacuum · WELL-DEFINED interaction region · EASY TARGET EVAPORATION and REPLACEMENT · RI BEAM: Impurities, Emittance, Energy spread, ... NOT CRITICAL No Cooling Needed! Different µA* Formation Schemes MUON BEAM ENERGY · ACCUMULATION of DAUGHTER NUCLEI X Other Considerations · Magnetic confinement field · Pulsed muon beam RI BEAM ENERGY NEW IDEAS ! e.g., using sputtering vs. daughter nuclei accumulation D2 Layer H2/D2 Layer µ¯ µ¯ D2 Layer RI RI D2 Layer D2 Layer µ¯ µ¯ RI RI Degrader Degrader Slowpbar, RIKEN March 16, 2005 – P. Strasser LOW (2–4 MeV) ULTRA-LOW (~0.1 MeV) LOW (10–100 keV/u) · SPUTTERING HIGH (~10 MeV/u) X Disadvantages ? Feasibility Study X EXPERIMENTAL SETUP for X-ray spectroscopy of muonic atoms formed from implanted ions in solid hydrogen X TEST EXPERIMENT at RIKEN-RAL Muon facility. X Establish the feasibility of this method by using STABLE IONS. X µCF RELATED STUDY: Helium transfer in Solid Hydrogen Films X In the near future, experiment using LONG-LIVED ISOTOPES. Slowpbar, RIKEN March 16, 2005 – P. Strasser ISIS Facility at RAL KARMEN MARI HRPD eVS GEM DEVA MAPS PEARL EC MUON FACILITY SXD MuSR EMU SANDALS PRISMA HET TOSCA 800 MeV SYNCHROTRON RIKEN FACILITY POLARIS ROTAX LOQ SURF CRISP VESTA IRIS HEP Test Beam 70 MeV H¯ Linac Slowpbar, RIKEN March 16, 2005 – P. Strasser OSIRIS RIKEN-RAL Muon Facility at ISIS Port 3 Port 4 Slowpbar, RIKEN March 16, 2005 – P. Strasser Port 2 µA* Setup at RIKEN-RAL Port 4 Test Experiment to Implant Stable Ions in Solid Hydrogen Films. µA* Setup Slowpbar, RIKEN March 16, 2005 – P. Strasser Muon Beam Profile (1) X8 X4 X6 X2 Photomultiplier output signal of counter X5 27 MeV/c surface µ+ Y9 27 MeV/c decay µ¯ Y8 Y7 Y6 Y5 Y4 Y3 Y2 ADC output with 27 MeV/c decay µ¯ X9 X7 X5 X1 X3 Y1 3000 10 cm Muon Beam Profile Monitor COUNTS 0 2000 1000 0 0 200 ADC-Y5 CHANNEL Slowpbar, RIKEN March 16, 2005 – P. Strasser 400 Muon Beam Profile (2) Relative Yield_y B4 Current Relative Yield_x Horizontal and vertical muon beam profiles as a function of B4 dipole magnet measured with surface muons at Port 4. B4 Current Center_y Center_x B4 Current B4 Current Slowpbar, RIKEN March 16, 2005 – P. Strasser B4 Current Sigma_y Sigma_x B4 Current B4 Current Muon Beam Momentum Tuning 10 4 Target: 1-mm H2 Layer 10 10 20 Data multiplied by (27/p)3.5 to correct for the expected momentum dependence of the intensity 3 15 2 0 2000 4000 6000 Elec. Counter Time Coin(1-2) 10 4 10 3 10 2 27-MeV/c Decay µ¯ (Port 4, Dec. 2001) 10 27-MeV/c Cloud µ¯ (Port 4, Dec. 2001) 5 27 MeV/c cloud µ¯ 0 No Separator at Port 4 ! e¯ 24 µ¯ 10 1 0 Arbitrary units Counts / 20 ns 27 MeV/c decay µ¯ 2000 4000 6000 8000 Elec. Counter Time Coin(3-4) Slowpbar, RIKEN March 16, 2005 – P. Strasser 25 26 27 28 29 30 Muon Momentum [MeV/c] 31 32 Muon Stopping Distribution X Negative Muon Beam at RIKEN-RAL Port 4 · Muon Source: Decay Muon Cloud Muon · Momentum: 27 MeV/c 27 MeV/c · Width (∆p/p): ~ 10 % ~ 7% -1 · Beam size: ~ Ø40 mm XMuon Stopping in Solid D2 · 1-mm D2 : ~ 60% (3000 s-1) · Silver Foil: · Ratio: -1 ~ 5000 s ~ 20% 3 ~ 15000 s 10.00 8.00 Gaussian Stopping Distribution (center = 0.5 mm, σ = 0.6 mm) 6.00 4.00 2.00 0.00 0.0 Slowpbar, RIKEN March 16, 2005 – P. Strasser (~3x) 12.00 µD Kα X-rays/ 103 spills · Intensity: if separator installed ! 0.5 1.0 1.5 2.0 D2 Film Thickness [mm] 2.5 µA* Setup (2) Cryostat Ion Beam Optics µA* Target System Muon Beam Slowpbar, RIKEN March 16, 2005 – P. Strasser Cryostat µA* Target (1) Target Holder Silver Cold Foil Diffuseur Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Target (2) Diffuseur Hydrogen gas Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Gas Handling System Diffuseur Gas Handling System Turbo Molecular Pump Slowpbar, RIKEN March 16, 2005 – P. Strasser Hydrogen gas Hydrogen Gas Purifier µA* Target (3) Beam Profile Monitor Ion Beam Muon Beam Hydrogen Film Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Setup Ion (3) Source Ion Beam Slits Slits EQ-1 Magnetic Bend EQ-2 Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Duoplasmatron Ion Source Ion Source (Duoplasmatron) Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Ion Beam Transport Line Ion Source X-Y Steerer Slits Beam Profile Monitor Ion Beam Slowpbar, RIKEN March 16, 2005 – P. Strasser 0.5-mm H2/D2 Deposition 10- 6 Argon Implantation (x3) 6-µm D2 Deposition Main Vacuum [mbar] Target Temperature [K] 0.5-µm D2 Deposition 10- 7 10- 8 10- 9 5.0 4.0 3.0 15:00:00 16:00:00 Argon Ion Range in Solid D2 17:00:00 Time 18:00:00 19:00:00 Target Temperature [K] Main Vacuum [mbar] Target Preparation 2.0 Beam Profile on Target 500 Beam Profile [a.u.] 400 300 200 100 0 -100 X-Axis (start) Y-Axis (start) -200 -300 Slowpbar, RIKEN March 16, 2005 – P. Strasser -20 -10 X-Axis (end) Y-Axis (end) 0 Position [mm] 10 20 Vacumm Pressure [mbar] Sputtering of Solid Deuterium Films µm D2 1 -µ 2 10-7 2440 s 33-keV Argon Beam µA/10cm2) ( ~ 4µ 1 0-7 9 10-8 8 10-8 7 10-8 6 10-8 5 10-8 B. Stenum et al., NIM. B 48 (1990) 530. 0 1000 2000 3000 Time [s] · Sputtering Yield ≈ 350 D2/Ar Ions 2 (~40 nm/µA/cm ) Slowpbar, RIKEN March 16, 2005 – P. Strasser Argon Ion Range in Solid D2 µA* Setup (4) X-Ray Detector Gamma-Ray Detectors Slowpbar, RIKEN March 16, 2005 – P. Strasser µA* Setup Detector-Target Layout Ge PLANAR: 2 0 0 m m2 x 1 3 mm Be window: 127 µm [keV] C Kα 75.3 Kβ Lα 89.2 14.0 N O 102.4 133.5 121.4 158.4 19.0 24.9 Ge COAXIAL: (2265 mm2) Ø54.7 mm x 41.8 mm Al window: ≤ 1 mm µe-4 0 5 100-µm SUS window µe-3 µe-2 10-µm Ag window µe-1 1.0 Attenuation 0.8 0.6 100µm Fe 1mm Al 10um Ag 0.4 0.2 0.0 0 20 40 60 80 Photon Energy [keV] Slowpbar, RIKEN March 16, 2005 – P. Strasser 100 Si(Li): 70 mm2 x 3.5 mm Be window: 25.4 µm 50-µm SUS window 10-µm Ag window 10 cm Muonic Siver X-Rays µA* Target System Muonic Silver X-rays from the Cold Foil µAg 600 Counts 500 Cold Foil (100-µm Ag) 105Ag 2p1/2-1s1/2 400 107Ag 300 200 100 Germanium γ-Ray Detector Slowpbar, RIKEN March 16, 2005 – P. Strasser 2p3/2-1s1/2 0 3100 3150 3200 Energy [keV] (1) 0.5-mm H2/D2 + 7-µm D2(Ar-multi) Ge(coaxial) γ-Ray Energy Spectra Si(Li) X-Ray Energy Spectrum 2600 Total µAr (2p→1s) 644 keV 2400 2200 800 dµ µ − pµ µA* 2000 dµ 1800 H2 / D2 1600 1400 1200 D2 X-Rays Two-Layer Arrangement 600 650 Counts / 0.89keV 800 800 700 Short Delayed µAr (2p→1s) Ag(e) L-complex 400 µp Kβ 200 0 1.0 1.5 2.0 500 500 400 400 300 300 200 700 Energy [keV] Slowpbar, RIKEN March 16, 2005 – P. Strasser 2.5 3.0 3.5 Energy [keV] Implanted Ar Ions in 5 µm 16 2 ~10 at/cm (500 ppm) 12'170 kspills 600 600 650 (µAr)(e) Kα 600 40 900 600 µp Kα 700 Energy [keV] 700 Counts / 20 eV Counts / 0.89keV 2800 (67.6 hrs) Long Delayed µAr (2p→1s) 600 650 Energy [keV] 700 4.0 dµ Atom Scattering in Solid Deuterium Deceleration of Muonic Hydrogen Atoms in Solid Hydrogens A. Adamczak, Hyperfine Interactions 119 (1999) 23. dµ Mean-Free-Path in Solid D2 dµ speed (µm/µs) 103 104 2 10 102 mean-free-path (µm) d µ (1/ 2 → 3/ 2) + D2 d µ (3/ 2 → 1/ 2) + D2 101 d µ (1/ 2) + D2 100 d µ (3/ 2) + D2 C(Ar)=0.1% 10- 1 C(Ar)=1% m.f.p. (dµ+Ar → µAr+d) 10- 2 10- 5 Slowpbar, RIKEN March 16, 2005 – P. Strasser 10- 4 10- 3 10- 2 10- 1 100 dµ energy (eV) φ = 1.4 101 102 (2) 0.5-mm D2(Ar-multi) Ge(coaxial) γ-Ray Energy Spectra Counts / 0.89keV 2600 2400 1500 µ− dµ 2200 µA* 2000 1800 X-Rays D2 µd Kα (µAr)(e) Kα 1000 µd Kβ 500 Ag(e) L-complex 1600 0 1.0 Single D2 Layer 1400 600 650 Short Delayed µAr (2p→1s) 500 400 400 300 300 200 600 650 700 Energy [keV] Slowpbar, RIKEN March 16, 2005 – P. Strasser Long Delayed µAr (2p→1s) 12’560 600 500 3.0 3.5 4.0 Implanted Ar Ions in 0.5 mm 16 2 ~10 at/cm (~ 6 ppm) 700 600 2.5 Energy [keV] 800 700 2.0 40 900 800 1.5 700 Energy [keV] Counts / 0.89keV Counts / 20 eV Total µAr (2p→1s) 644 keV 2800 Si(Li) X-Ray Energy Spectrum kspills (69.8 hrs) 600 650 Energy [keV] 700 Counts / 0.89keV Total Energy Spectra (1-mm D 2) (a) ??? 1500 No Argon 1000 500 600 650 700 750 800 Counts / 0.89keV Energy [keV] 2500 µAr (2p→1s) (b) 2000 µAr (3p→1s) µAr (4p→1s) 1500 1000 600 650 700 Energy [keV] Slowpbar, RIKEN March 16, 2005 – P. Strasser 750 800 Counts / 0.89keV Delayed Energy Spectra (1-mm D 2) 600 No Argon 400 200 0 600 650 700 750 800 Counts / 0.89keV Energy [keV] 800 µAr (2p→1s) 600 µAr (3p→1s) µAr (4p→1s) 400 200 0 600 650 700 Energy [keV] Slowpbar, RIKEN March 16, 2005 – P. Strasser 750 800 (3) 1.0-mm D2(Ar-multi) Implantation: Distance: 20x 50µm 10x 100 µm 5x 200 µm 250 Single D2 Layer 1400 µA(2p-1s) 800 225 µA(2p-1s) 1200 µ− 200 700 dµ D2 175 1000 600 µA* µA(2p-1s) X-Rays 150 500 800 125 distance between implantation 400 600 100 300 75 400 200 Total γ-Ray Energy Spectra 100 0 1300 Slowpbar, RIKEN March 16, 2005 – P. Strasser ~2 ppm 200 50 ~1 ppm ~0.5 ppm 25 1400 1500 Ge(Eur) E total(1ch) 1600 0 1300 1400 1500 Ge(Eur) E total(1ch) 1600 0 1300 1400 1500 Ge(Eur) E total(1ch) Normalized Counts (a.u.) Transfer Yield 0.70 0.60 0.50 0.40 0.30 µAr(2-1) 0.20 µ Ar(e) K 0.10 Total Transfer (w/o Z) Transfer Yield (w/ Z) α Z = Air (N2, O2) 0.00 0 1 2 3 4 5 6 7 8 Ar Concentration (ppm) For a uniform target Normalized data only No correction applied yet ! Slowpbar, RIKEN March 16, 2005 – P. Strasser Y dAr = φ C Ar λ dAr λ 0 + φ C Ar λ dAr + φ C Z λ dZ 0.010 µAr(2-1) 0.008 Limitation on the minimum film thickness! µAr(e) Kα 0.006 0.004 f(x) = 1 - exp(-x/a) dµ Mean-Free-Path in Solid D2 a ≈ 20 µm 0.002 0 50 100 150 200 Distance between Implantation [µm] d D2 dµ dµ dµ Implantation µA* µA* Ar Slowpbar, RIKEN March 16, 2005 – P. Strasser Ar dµ speed (µm/µs) 103 104 2 10 102 0.000 d µ (1/ 2 → 3/ 2) + D2 250 mean-free-path (µm) Norm. Counts / Implantation (a.u.) dµ Atom Diffusion in Solid D 2 d µ (3/ 2 → 1/ 2) + D2 101 d µ (1/ 2) + D2 100 d µ (3/ 2) + D2 C(Ar)=0.1% 10- 1 C(Ar)=1% m.f.p. (dµ+Ar → µAr+d) 10- 2 10- 5 10- 4 10- 3 10- 2 10- 1 100 dµ energy (eV) φ = 1.4 101 102 Towards Radioactive Muonic Atoms X Experiment using LONG-LIVED ISOTOPES under consideration, e.g., radium isotopes of special interest for P&T violation in atoms (K. Jungmann, KVI). X Need a NEW ION SOURCE to produce LONG-LIVED RI BEAMS. X NOW at RIKEN-RAL: 1016 atoms needed in Ø5cm x 1mm D2 target (3000 µ¯/s). Possible Improvements: 60 times! X Need ~100x more in the ION SOURCE. N = 10 1 day Activity (Bq) · 3 times (cloud µ¯) 10 10 16 101 atoms 100 1 week 1 month 10 10-1 10-2 1 year 108 10-3 10 years 10 10-4 100 years 6 10-5 3 X ACTIVITY versus HALF-LIFE. 10 years 4 10 10 y 4 103 Slowpbar, RIKEN March 16, 2005 – P. Strasser 105 107 109 Half-Life (sec) 1011 10-6 1013 Activity (Ci) · 20 times (1 cm2 target) 102 1 hour 12 Periodic Table of Elements Slowpbar, RIKEN March 16, 2005 – P. Strasser New Surface Ionization Ion Source New Collaborators: A. Taniguchi (Kyoto), S. Ichikawa (JAERI), H. Miyatake (KEK) Seeds First stable: Ba, … then RI Good for alkali metals & alkaline-earth metals! Slowpbar, RIKEN March 16, 2005 – P. Strasser Future Prospects Muon Beam Requirement for µA* Experiment: X Muon Stopping in Solid Deuterium · Momentum: ~ 27 MeV/c · Width (∆p/p): ≤5% · Beam intensity: > 1 x 10 · Beam size: ≤ 1cm 7–8 s 2 X X-Ray and γ-Ray Detection System · Muon beam: XMuonic Atoms (in brief) Transfer Rate: YX = single · Pulse width: ≤ 20–50 ns · Repetition rate: 1–10 kHz φλ Z λ 0 + φλ Z λ Z ≈ C Z Z × 1010 s −1 We need pulsed · Pulse structure: Slowpbar, RIKEN March 16, 2005 – P. Strasser -1 (approximation) 1017 NZ Nµ ≈ Z (λZ<< λ0) to produce 1 µA* per cm2. NZ, Nµ: Z and µ¯ in 0.5-mm D2 SUPER OMEGA Project (K. Shimomura et al., KEK) X Injection at J-PARC Muon Facility · 2 normal solenoids ~ 400mSr · Residual magnetic field on the proton beam line ~10 Gauss X Transport · Curved superconducting solenoid · Reduction of neutral background · Selection of charged particle X Extraction · Dai Omega type axial focusing channel · Strong focusing at the experimental position · Selection of muon and positron by electric separator Not funded yet ! Slowpbar, RIKEN March 16, 2005 – P. Strasser SUPER OMEGA Project (K. Shimomura et al., KEK) Beam Optics Calculation X Yield Estimation · Solid angle: ~ 400mSr · Momentum: 27 MeV/c · Momentum width: 4–10% + 8 · Surface Muons (µ ): 2–5 x 10 s - · Cloud Muons (µ ): -1 6 4–10 x 10 s -1 + X Science (µ ) 4 · Ultra-Slow Positive Muon 2–5 x 10 s -1 · Muon micro-beam, ... – XScience (µ ) · µA* Formation · Element Analysis by Muon Spectroscopy · ... Slowpbar, RIKEN March 16, 2005 – P. Strasser by K. Ishida (RIKEN) My Dream at J-PARC Muon Facility 3GeV Proton ~1x107 µ~5x108 µ+ 29MeV/c µ+/µ- Muon Target Slowpbar, RIKEN March 16, 2005 – P. Strasser Summary X In the near future, investigations of unstable nuclei using muonic atom spectroscopy will become possible at facilities with intense µ¯ and RI beams. X Meanwhile, using dedicated long-lived RI ion source, radioactive muonic atom study will soon be a reality at new intense muon facility. There will be a unique opportunity at the new J-PARC MUON FACILITY. and maybe in the near future at a NEUTRINO FACTORY ! Slowpbar, RIKEN March 16, 2005 – P. Strasser
© Copyright 2026 Paperzz