What is Data Visualization?

DataVisualization
DaveStinchcomb
October12,2016
WhatisDataVisualization?
• Datavisualization
isabout
COMMUNICATION
• Usingvisualdesignprinciples
tofacilitatecommunication
ofquantitativedata
• Keyquestions:
– Whoisyouraudience?
– Whatisthemainmessage?
10/12/2016
2
DataVisualization|D.Stinchcomb
TheGalaxyofDataVisualization
• Staticgraphs,charts,andmaps
• Interactivegraphics
• Dashboards
• Infographics
• Reportdesign/webpagedesign
10/12/2016
3
DataVisualization|D.Stinchcomb
ViewsoftheGalaxyͲ StaticGraphs
10/12/2016
4
DataVisualization|D.Stinchcomb
ViewsoftheGalaxyͲ InteractiveGraphics
ChangesintheBritishDiet– http://britainsͲdiet.labs.theodi.org/
10/12/2016
5
DataVisualization|D.Stinchcomb
ViewsoftheGalaxyͲ Dashboards
10/12/2016
6
DataVisualization|D.Stinchcomb
ViewsoftheGalaxyͲ Infographics
10/12/2016
7
DataVisualization|D.Stinchcomb
ViewsoftheGalaxy– ReportDesign
http://stephanieevergreen.com/designͲofͲanͲawardͲwinningͲreport/
10/12/2016
8
DataVisualization|D.Stinchcomb
DataVizinCancerRegistryProjects
• Internalplanningandtracking
– Internalscheduletracking
– Reportingtoleadership
• Datacollection
– Trackingprogresstowardgoals
• Analysis
– Exploratorydatavisualization
•
•
•
•
Surveillancereports
Grantproposals
Academicpapers
Conferencepresentations
10/12/2016
9
DataVisualization|D.Stinchcomb
PrinciplesofVisualDesign– VisualHierarchy
• Visualhierarchy
– Whatstandsout?
Whatdrawsyoureye?
– Elements:
• Size
• Colorandcontrast
• Typography
• Spacing
• Composition
– Dothe“squint”test– whatstandsout?
10/12/2016
10
DataVisualization|D.Stinchcomb
VisualComparisons
• ClevelandandMcGill’scomparisonaccuracyscale:
1. Positionalongacommonscale
2. Positiononidentical
butnonalignedscales
3. Length,angle&direction
4. Area
5. Volume,curvature
6. Shading,colorsaturation
Cleveland&McGill,JASA,1984
10/12/2016
11
DataVisualization|D.Stinchcomb
MakeItEasyontheViewer
• Avoidlegendsandencodedmeaning
• Ifalegendisneeded,useplacement,order,andcolortomake
interpretationeasier
10/12/2016
12
DataVisualization|D.Stinchcomb
MakeItEasyontheViewer
• Avoiddiagonalorverticaltext
Betterredesign:
Adaptedfromhttp://annkemery.com/avoidingͲdiagonalͲtext/
10/12/2016
13
DataVisualization|D.Stinchcomb
MakeItEasyontheViewer
• Avoidclutterand“chartjunk”
http://visual.ly/topͲ4ͲdisasterͲrecoveryͲfindings
10/12/2016
14
DataVisualization|D.Stinchcomb
Transformation1– DataLookBetterNaked
http://www.darkhorseanalytics.com/blog/dataͲlooksͲbetterͲnaked/
10/12/2016
15
DataVisualization|D.Stinchcomb
Transformation2– EvaluatorBreakfasts
Original:
Redesign:
StephanieEvergreenͲ http://stephanieevergreen.com/datavizͲchecklist/
10/12/2016
16
DataVisualization|D.Stinchcomb
Makeover– Addingbarstodatatables
Original:
Redesign:
10/12/2016
17
DataVisualization|D.Stinchcomb
Makeover– Barchartwithtimeseries
Original:
Percentofusersreportingthattheyagreewithpositivestatements
abouttheProgram’seffectiveness:2013,2010,and2008
Program
Program
10/12/2016
18
DataVisualization|D.Stinchcomb
Makeover– Barchartwithtimeseries
Redesign:Ͳ timeserieslinechart
10/12/2016
19
DataVisualization|D.Stinchcomb
Makeover– Stackedbarcharts
Original:
Percentofemployersreportingallreasonsforagreeingto
ProgramparticipateintheProgram
To improve ability to accomplish objectives
Believed that using the Program would allow
us to avoid an audit, raid, or fine
10/12/2016
20
DataVisualization|D.Stinchcomb
Makeover– Stackedbarcharts
Pollresults:
Redesign– divergingstackedbarchart:
10/12/2016
21
DataVisualization|D.Stinchcomb
Makeover– Clusteredcolumnchart
Original:
100%
90%
80%
70%
60%
50%
40%
30%
20%
38.5%
33.3%
31.6%
24.0% 25.5%
20.0%
20.0%
10.5%
10%
0.0%
0%
10.0%
16.0% 17.6%
0.0%
Ages 12 to 17
Cohort1
SPF SIG Cohort 1
Cohort5
SPF
SIG Cohort 5
23.1%
Ages 18 or Older
Cohort2
SPF
SIG Cohort 2
Cohort3
SPF
SIG Cohort 3
AllCohorts
All
SPF SIG
AllStates&D.C.
SAPT
20% Set-Aside
Cohort4
SPF SIG Cohort 4
10/12/2016
22
DataVisualization|D.Stinchcomb
Makeover– Clusteredcolumnchart
Redesign– backͲtoͲbackbarchart(withlegend):
10/12/2016
23
DataVisualization|D.Stinchcomb
Makeover– Makeiteasyontheviewer
Original:
Productusebyincomelevel
10/12/2016
24
DataVisualization|D.Stinchcomb
Makeover– Makeiteasyontheviewer
Redesign– horizontalbarchart,divergingcolorscheme:
Productusebyincomelevel
10/12/2016
25
DataVisualization|D.Stinchcomb
Makeover– Piecharts
Original:
PercentParticipationbyOrganization
Redesign:
PercentParticipationbyOrganization
10/12/2016
26
DataVisualization|D.Stinchcomb
Makeover– changefrombaseline
Original:
10/12/2016
27
DataVisualization|D.Stinchcomb
Makeover– changefrombaseline
Redesign– slopegraph,
highlightsignificantresults:
10/12/2016
28
DataVisualization|D.Stinchcomb
Makeover– Confidenceintervalsintables
Redesign–
Original: addgraphtothetable:
Group1
Overall
Overall
Previous
Revised
Percent
change (LCL,UCL)
Ͳ2.2 (Ͳ4.7,0.4)
0.1
(Ͳ0.8,1.1)
NonͲHispanic Previous
NonͲHispanic Revised
1.2
0.2
(0.1,2.2)
(Ͳ0.8,1.2)
Hispanic
Hispanic
Previous
Revised
2.7
7.9
(Ͳ2.2,7.9)
(2.8,13.3)
Previous
Revised
Ͳ0.5
0.0
(Ͳ1.5,0.5)
(Ͳ0.9,0.9)
NonͲHispanic Previous
NonͲHispanic Revised
0.5
0.0
(Ͳ0.5,1.5)
(Ͳ0.9,1)
Hispanic
Hispanic
5.7
10.7
(Ͳ0.3,12)
(4.4,17.4)
Group2
Overall
Overall
Previous
Revised
Ͳ5
0
5
10
15
20
10/12/2016
29
DataVisualization|D.Stinchcomb
Makeover– Confidenceintervalsintables
Redesign–
Original: addgraphtothetable:
Group1
Overall
Overall
Previous
Revised
Percent
change (LCL,UCL)
Ͳ2.2 (Ͳ4.7,0.4)
0.1
(Ͳ0.8,1.1)
NonͲHispanic Previous
NonͲHispanic Revised
1.2
0.2
(0.1,2.2)
(Ͳ0.8,1.2)
Hispanic
Hispanic
Previous
Revised
2.7
7.9
(Ͳ2.2,7.9)
(2.8,13.3)
Previous
Revised
Ͳ0.5
0.0
(Ͳ1.5,0.5)
(Ͳ0.9,0.9)
NonͲHispanic Previous
NonͲHispanic Revised
0.5
0.0
(Ͳ0.5,1.5)
(Ͳ0.9,1)
Hispanic
Hispanic
5.7
10.7
(Ͳ0.3,12)
(4.4,17.4)
Group2
Overall
Overall
Previous
Revised
Ͳ5
0
5
10
15
20
10/12/2016
30
DataVisualization|D.Stinchcomb
Makeover– Confidenceintervalsingraphs
Original:
10/12/2016
31
DataVisualization|D.Stinchcomb
Makeover– Confidenceintervalsingraphs
Redesign– errorbands:
10/12/2016
32
DataVisualization|D.Stinchcomb
Makeover– Multiplelinegraph
Original:
10/12/2016
33
DataVisualization|D.Stinchcomb
Makeover– Multiplelinegraph
Redesign–
smallmultiples:
10/12/2016
34
DataVisualization|D.Stinchcomb
Tools– ChoosingtheRightChartType
• DataVisualizationCatalog
http://www.datavizcatalogue.com/
10/12/2016
35
DataVisualization|D.Stinchcomb
Tools– DataVizChecklist
http://stephanieevergreen.com/datavizͲchecklist/
Textsizeishierarchicalandreadable
210n/a
Dataarelabeleddirectly
210n/a
GraphistwoͲdimensional
210n/a
Colorisusedtohighlightkeypatterns
210n/a
Colorislegibleforpeoplewithcolorblindness
210n/a
10/12/2016
36
DataVisualization|D.Stinchcomb
Tools– Creatingstaticgraphs
• Excelisyourfriend
– MostexampleshavebeendonewithExcel
• ButExcelgraphdefaultsareNOT yourfriends!
– Getinthehabitofmodifyingeachgraph
http://thewhyaxis.info/defaults/
• Programmingtoolsforstaticgraphs:
– Randthe“ggplot2”package
– SASstatisticalgraphics:
SGprocedures(SGPLOT,SGSCATTER,SGPANEL)
10/12/2016
37
DataVisualization|D.Stinchcomb
Tools– ExcelHowͲToGuides
• EvergreenData stepͲbyͲstep
• YouTubevideosbyDougH
http://stephanieevergreen.com/tag/stepͲbyͲstep/
10/12/2016
38
DataVisualization|D.Stinchcomb
InteractiveDataVisualizationTools
• Interactivedatavisualization:
– Tableau
• Commercialtoolforquickinteractivegraphsanddashboards
• Inexpensiveforpublicdata;canbepriceyforprivatedata
– BrowserͲbasedJavaScriptlibraries:
• Highcharts
• D3(popularandpowerful)
• Dygraphs
10/12/2016
39
DataVisualization|D.Stinchcomb
GeneralDataVizResources
• DataVizBlogs:
– EvergreenData– StephanieEvergreen
• http://stephanieevergreen.com/blog/
– PeltierTechBlog– JonPeltier
• http://peltiertech.com/
– FlowingData – NathanYau
• http://flowingdata.com/
• Booksby:
–
–
–
–
EdwardTufte
StephenFew
StephanieEvergreen
ColeNussbaumerKnaflic
10/12/2016
40
DataVisualization|D.Stinchcomb
Conclusions– KeyPoints
• Datavisualizationisaboutcommunication
– Bringdatatolife
– Whoistheaudience;whatisthekeymessage?
• Builddatavisualizationintoregistryplans
– Operations,datacollection,analysis,reporting
• Visualdesignprinciples:
– Visualhierarchy
– Effectivevisualcomparisons
– Makingiteasyontheviewer
10/12/2016
41
DataVisualization|D.Stinchcomb
Conclusions– TheBottomLine
• Datavisualizationcanmaketheworkyoudo
– Moreaccessible
– Moreimpactful
– Moreeffective
10/12/2016
42
DataVisualization|D.Stinchcomb
ThankYou
UsefulLinks
•
•
•
•
•
•
DataVizCatalog
http://www.datavizcatalogue.com/
DataVizChecklist
http://stephanieevergreen.com/datavizͲchecklist/
BreakingExcelDefaults
http://thewhyaxis.info/defaults/
EvergreenData StepͲbyͲstep
http://stephanieevergreen.com/tag/stepͲbyͲstep/
Colorselection:
http://colorbrewer2.org/
Colorblindtestingtools:
http://www.colorͲblindness.com/coblisͲcolorͲblindnessͲsimulator/
http://www.vischeck.com/vischeck/
10/12/2016
44
DataVisualization|D.Stinchcomb