DataVisualization DaveStinchcomb October12,2016 WhatisDataVisualization? • Datavisualization isabout COMMUNICATION • Usingvisualdesignprinciples tofacilitatecommunication ofquantitativedata • Keyquestions: – Whoisyouraudience? – Whatisthemainmessage? 10/12/2016 2 DataVisualization|D.Stinchcomb TheGalaxyofDataVisualization • Staticgraphs,charts,andmaps • Interactivegraphics • Dashboards • Infographics • Reportdesign/webpagedesign 10/12/2016 3 DataVisualization|D.Stinchcomb ViewsoftheGalaxyͲ StaticGraphs 10/12/2016 4 DataVisualization|D.Stinchcomb ViewsoftheGalaxyͲ InteractiveGraphics ChangesintheBritishDiet– http://britainsͲdiet.labs.theodi.org/ 10/12/2016 5 DataVisualization|D.Stinchcomb ViewsoftheGalaxyͲ Dashboards 10/12/2016 6 DataVisualization|D.Stinchcomb ViewsoftheGalaxyͲ Infographics 10/12/2016 7 DataVisualization|D.Stinchcomb ViewsoftheGalaxy– ReportDesign http://stephanieevergreen.com/designͲofͲanͲawardͲwinningͲreport/ 10/12/2016 8 DataVisualization|D.Stinchcomb DataVizinCancerRegistryProjects • Internalplanningandtracking – Internalscheduletracking – Reportingtoleadership • Datacollection – Trackingprogresstowardgoals • Analysis – Exploratorydatavisualization • • • • Surveillancereports Grantproposals Academicpapers Conferencepresentations 10/12/2016 9 DataVisualization|D.Stinchcomb PrinciplesofVisualDesign– VisualHierarchy • Visualhierarchy – Whatstandsout? Whatdrawsyoureye? – Elements: • Size • Colorandcontrast • Typography • Spacing • Composition – Dothe“squint”test– whatstandsout? 10/12/2016 10 DataVisualization|D.Stinchcomb VisualComparisons • ClevelandandMcGill’scomparisonaccuracyscale: 1. Positionalongacommonscale 2. Positiononidentical butnonalignedscales 3. Length,angle&direction 4. Area 5. Volume,curvature 6. Shading,colorsaturation Cleveland&McGill,JASA,1984 10/12/2016 11 DataVisualization|D.Stinchcomb MakeItEasyontheViewer • Avoidlegendsandencodedmeaning • Ifalegendisneeded,useplacement,order,andcolortomake interpretationeasier 10/12/2016 12 DataVisualization|D.Stinchcomb MakeItEasyontheViewer • Avoiddiagonalorverticaltext Betterredesign: Adaptedfromhttp://annkemery.com/avoidingͲdiagonalͲtext/ 10/12/2016 13 DataVisualization|D.Stinchcomb MakeItEasyontheViewer • Avoidclutterand“chartjunk” http://visual.ly/topͲ4ͲdisasterͲrecoveryͲfindings 10/12/2016 14 DataVisualization|D.Stinchcomb Transformation1– DataLookBetterNaked http://www.darkhorseanalytics.com/blog/dataͲlooksͲbetterͲnaked/ 10/12/2016 15 DataVisualization|D.Stinchcomb Transformation2– EvaluatorBreakfasts Original: Redesign: StephanieEvergreenͲ http://stephanieevergreen.com/datavizͲchecklist/ 10/12/2016 16 DataVisualization|D.Stinchcomb Makeover– Addingbarstodatatables Original: Redesign: 10/12/2016 17 DataVisualization|D.Stinchcomb Makeover– Barchartwithtimeseries Original: Percentofusersreportingthattheyagreewithpositivestatements abouttheProgram’seffectiveness:2013,2010,and2008 Program Program 10/12/2016 18 DataVisualization|D.Stinchcomb Makeover– Barchartwithtimeseries Redesign:Ͳ timeserieslinechart 10/12/2016 19 DataVisualization|D.Stinchcomb Makeover– Stackedbarcharts Original: Percentofemployersreportingallreasonsforagreeingto ProgramparticipateintheProgram To improve ability to accomplish objectives Believed that using the Program would allow us to avoid an audit, raid, or fine 10/12/2016 20 DataVisualization|D.Stinchcomb Makeover– Stackedbarcharts Pollresults: Redesign– divergingstackedbarchart: 10/12/2016 21 DataVisualization|D.Stinchcomb Makeover– Clusteredcolumnchart Original: 100% 90% 80% 70% 60% 50% 40% 30% 20% 38.5% 33.3% 31.6% 24.0% 25.5% 20.0% 20.0% 10.5% 10% 0.0% 0% 10.0% 16.0% 17.6% 0.0% Ages 12 to 17 Cohort1 SPF SIG Cohort 1 Cohort5 SPF SIG Cohort 5 23.1% Ages 18 or Older Cohort2 SPF SIG Cohort 2 Cohort3 SPF SIG Cohort 3 AllCohorts All SPF SIG AllStates&D.C. SAPT 20% Set-Aside Cohort4 SPF SIG Cohort 4 10/12/2016 22 DataVisualization|D.Stinchcomb Makeover– Clusteredcolumnchart Redesign– backͲtoͲbackbarchart(withlegend): 10/12/2016 23 DataVisualization|D.Stinchcomb Makeover– Makeiteasyontheviewer Original: Productusebyincomelevel 10/12/2016 24 DataVisualization|D.Stinchcomb Makeover– Makeiteasyontheviewer Redesign– horizontalbarchart,divergingcolorscheme: Productusebyincomelevel 10/12/2016 25 DataVisualization|D.Stinchcomb Makeover– Piecharts Original: PercentParticipationbyOrganization Redesign: PercentParticipationbyOrganization 10/12/2016 26 DataVisualization|D.Stinchcomb Makeover– changefrombaseline Original: 10/12/2016 27 DataVisualization|D.Stinchcomb Makeover– changefrombaseline Redesign– slopegraph, highlightsignificantresults: 10/12/2016 28 DataVisualization|D.Stinchcomb Makeover– Confidenceintervalsintables Redesign– Original: addgraphtothetable: Group1 Overall Overall Previous Revised Percent change (LCL,UCL) Ͳ2.2 (Ͳ4.7,0.4) 0.1 (Ͳ0.8,1.1) NonͲHispanic Previous NonͲHispanic Revised 1.2 0.2 (0.1,2.2) (Ͳ0.8,1.2) Hispanic Hispanic Previous Revised 2.7 7.9 (Ͳ2.2,7.9) (2.8,13.3) Previous Revised Ͳ0.5 0.0 (Ͳ1.5,0.5) (Ͳ0.9,0.9) NonͲHispanic Previous NonͲHispanic Revised 0.5 0.0 (Ͳ0.5,1.5) (Ͳ0.9,1) Hispanic Hispanic 5.7 10.7 (Ͳ0.3,12) (4.4,17.4) Group2 Overall Overall Previous Revised Ͳ5 0 5 10 15 20 10/12/2016 29 DataVisualization|D.Stinchcomb Makeover– Confidenceintervalsintables Redesign– Original: addgraphtothetable: Group1 Overall Overall Previous Revised Percent change (LCL,UCL) Ͳ2.2 (Ͳ4.7,0.4) 0.1 (Ͳ0.8,1.1) NonͲHispanic Previous NonͲHispanic Revised 1.2 0.2 (0.1,2.2) (Ͳ0.8,1.2) Hispanic Hispanic Previous Revised 2.7 7.9 (Ͳ2.2,7.9) (2.8,13.3) Previous Revised Ͳ0.5 0.0 (Ͳ1.5,0.5) (Ͳ0.9,0.9) NonͲHispanic Previous NonͲHispanic Revised 0.5 0.0 (Ͳ0.5,1.5) (Ͳ0.9,1) Hispanic Hispanic 5.7 10.7 (Ͳ0.3,12) (4.4,17.4) Group2 Overall Overall Previous Revised Ͳ5 0 5 10 15 20 10/12/2016 30 DataVisualization|D.Stinchcomb Makeover– Confidenceintervalsingraphs Original: 10/12/2016 31 DataVisualization|D.Stinchcomb Makeover– Confidenceintervalsingraphs Redesign– errorbands: 10/12/2016 32 DataVisualization|D.Stinchcomb Makeover– Multiplelinegraph Original: 10/12/2016 33 DataVisualization|D.Stinchcomb Makeover– Multiplelinegraph Redesign– smallmultiples: 10/12/2016 34 DataVisualization|D.Stinchcomb Tools– ChoosingtheRightChartType • DataVisualizationCatalog http://www.datavizcatalogue.com/ 10/12/2016 35 DataVisualization|D.Stinchcomb Tools– DataVizChecklist http://stephanieevergreen.com/datavizͲchecklist/ Textsizeishierarchicalandreadable 210n/a Dataarelabeleddirectly 210n/a GraphistwoͲdimensional 210n/a Colorisusedtohighlightkeypatterns 210n/a Colorislegibleforpeoplewithcolorblindness 210n/a 10/12/2016 36 DataVisualization|D.Stinchcomb Tools– Creatingstaticgraphs • Excelisyourfriend – MostexampleshavebeendonewithExcel • ButExcelgraphdefaultsareNOT yourfriends! – Getinthehabitofmodifyingeachgraph http://thewhyaxis.info/defaults/ • Programmingtoolsforstaticgraphs: – Randthe“ggplot2”package – SASstatisticalgraphics: SGprocedures(SGPLOT,SGSCATTER,SGPANEL) 10/12/2016 37 DataVisualization|D.Stinchcomb Tools– ExcelHowͲToGuides • EvergreenData stepͲbyͲstep • YouTubevideosbyDougH http://stephanieevergreen.com/tag/stepͲbyͲstep/ 10/12/2016 38 DataVisualization|D.Stinchcomb InteractiveDataVisualizationTools • Interactivedatavisualization: – Tableau • Commercialtoolforquickinteractivegraphsanddashboards • Inexpensiveforpublicdata;canbepriceyforprivatedata – BrowserͲbasedJavaScriptlibraries: • Highcharts • D3(popularandpowerful) • Dygraphs 10/12/2016 39 DataVisualization|D.Stinchcomb GeneralDataVizResources • DataVizBlogs: – EvergreenData– StephanieEvergreen • http://stephanieevergreen.com/blog/ – PeltierTechBlog– JonPeltier • http://peltiertech.com/ – FlowingData – NathanYau • http://flowingdata.com/ • Booksby: – – – – EdwardTufte StephenFew StephanieEvergreen ColeNussbaumerKnaflic 10/12/2016 40 DataVisualization|D.Stinchcomb Conclusions– KeyPoints • Datavisualizationisaboutcommunication – Bringdatatolife – Whoistheaudience;whatisthekeymessage? • Builddatavisualizationintoregistryplans – Operations,datacollection,analysis,reporting • Visualdesignprinciples: – Visualhierarchy – Effectivevisualcomparisons – Makingiteasyontheviewer 10/12/2016 41 DataVisualization|D.Stinchcomb Conclusions– TheBottomLine • Datavisualizationcanmaketheworkyoudo – Moreaccessible – Moreimpactful – Moreeffective 10/12/2016 42 DataVisualization|D.Stinchcomb ThankYou UsefulLinks • • • • • • DataVizCatalog http://www.datavizcatalogue.com/ DataVizChecklist http://stephanieevergreen.com/datavizͲchecklist/ BreakingExcelDefaults http://thewhyaxis.info/defaults/ EvergreenData StepͲbyͲstep http://stephanieevergreen.com/tag/stepͲbyͲstep/ Colorselection: http://colorbrewer2.org/ Colorblindtestingtools: http://www.colorͲblindness.com/coblisͲcolorͲblindnessͲsimulator/ http://www.vischeck.com/vischeck/ 10/12/2016 44 DataVisualization|D.Stinchcomb
© Copyright 2026 Paperzz