R7. Addition of Rational Expressions with Unlike Denominators Before adding fractions with unlike denominators, a warm-up, based upon the previous lesson is important. First, try the four warm-up exercises below, then check your results with the results that follow. Warm-up Exercises. 1. Find the LCM of 2, 3, and 6. 2. Find the LCM of 3x and x2 . 3. Find the LCM of x2 + x − 6 and 2x2 − 3x − 2. 4. Find the LCM of x − 2, x + 2, and x2 − 4. Solutions to the Warm-up Exercises. 1. Find the LCM of 2, 3, and 6. 2 3 6 LCM = 2 = 3 = 2 3 = 2 3 2. Find the LCM of 3x and x2 . 3x x2 LCM = 3 = = 3 x x2 x2 3. Find the LCM of x2 + x − 6 and 2x2 − 3x − 2. x2 + x − 6 = 2x2 − 3x − 2 = LCM = (x + 3)1 (x + 3) (x − 2)1 (x − 2)1 (x − 2) 4. Find the LCM of x − 2, x + 2, and x2 − 4. x−2 = x−2 x+2 = x+2 x2 − 4 = (x − 2) (x + 2) LCM = (x − 2) (x + 2) 1 (2x + 1)1 (2x + 1) In this section the skills of changing the denominator and finding the lowest common multiple come together. In the four problems above, the problem was to find the Lowest Common Multiple. When adding unlike fractions, the first step is to find the common denominator. Finding the common denominator is the exact same process as finding the LCM of the denominators. When the LCM is needed to find a common denominator, the result is referred to as the Lowest Common Denominator (LCD). Example. Simplify 1 2 + 1 3 + 1 6 The fractions in this problem do not have like denominators. Before fractions can be added, the fractions must change form to all have the same denominator. Using the results in warm-up excercise (1) the LCD of 2, 3, and 6 is 6; thus, the LCD of the fractions is also 6. Using the process learned in Lesson 3: Changing the Denominator, write each fraction with the LCD of 6. 1 = 2 1 = 3 Then . . . 1 1 1 + + = 2 3 6 1 2 1 3 3 3 1 = Writing with the LCD. 3 6 2 2 2 1 · = Writing with the LCD. 2 6 3 · 3 2 1 + + 6 6 6 3+2+1 = 6 6 = Simplify the fraction. 6 = 1. Example. Simplify 2y 3y − . 3x x2 The fractions are not like fractions, so the LCD must be determined. In warmup exercise (2), the LCM of 3x and x2 was found to be 3x2 . Thus, the LCD for this problem is the same as the LCM in the warm-up exercise. 2 2y = 3x 3y = x2 Then . . . 2y 3y = − 3x x2 2y 2y x 2xy . Writing · = with the LCD. 3x x 3x2 3x 3y 3 3y 9y · = 2 . Writing 2 with the LCD. x2 3 3x x 2xy 9y − 2 3x2 3x 2xy − 9y = . 3x2 y(2x − 9) = 3x2 Example. Simplify Or, x−5 x+1 + . x2 + x − 6 2x2 − 3x − 2 The fractions are unlike, so a common denominator must first be found. Remember that finding the LCD is the same problem as finding the LCM of x2 + x − 6 and 2x2 − 3x − 2. Fortunately, this was accomplished in warm-up exercise (3). The LCM=LCD=(x + 3)(x − 2)(2x + 1). Each fraction will first be written with the LCD, then the fractions can be added. x−5 x−5 = x2 + x − 6 (x + 3)(x − 2) x−5 2x + 1 = · (x + 3)(x − 2) 2x + 1 2x2 + 1x − 10x − 5 = Distribute the numerators. (x + 3)(x − 2)(2x + 1) 2x2 − 9x − 5 Combine like terms. = (x + 3)(x − 2)(2x + 1) x+1 x+1 = 2 2x − 3x − 2 (x − 2)(2x + 1) x+1 x+3 = · (x − 2)(2x + 1) x + 3 x2 + 3x + 1x + 3 = Distribute the numerators. (x − 2)(2x + 1)(x + 3) x2 + 4x + 3 = Combine like terms. (x − 2)(2x + 1)(x + 3) 3 Add the fractions using their new forms. x−5 x+1 2x2 − 9x − 5 x2 + 4x + 3 + = + x2 + x − 6 2x2 − 3x − 2 (x + 3)(x − 2)(2x + 1) (x − 2)(2x + 1)(x + 3) 2x2 − 9x − 5 + x2 + 4x + 3 = LCD 3x2 − 5x − 2 Combine like terms. = LCD (3x + 1)(x − 2) = Factor numerator and denominator. (x + 3)(x − 2)(2x + 1) (3x + 1) (x − 2) = Notice the common factor of x − 2. (x + 3) (x − 2)(2x + 1) (3x + 1) Or, = (x + 3)(2x + 1) 3x + 1 = Or, (x + 3)(2x + 1) 3x + 1 = 2 2x + 7x + 3 Sometimes the numerator will be distributed and written as a sum; most often, it is left in the factored form. Sometimes the denominator will be distributed and written as a sum; most often, it is left in the factored form. Example. Simplify 5 2 x+3 − + . x − 2 x + 2 x2 − 4 Try this problem yourself first. Hint: see warm-up exercise (4). Solution. The LCM found in warm-up exercise (4) is the LCD. Notice that the fraction xx+3 2 −4 is in the correct form, i.e., already has the LCD. 5 x+2 5 = · x−2 x−2 x+2 5x + 10 = 2 x −4 2 2 x−2 = · x+2 x+2 x−2 2x − 4 = 2 x −4 5 2 x+3 (5x + 10) − (2x − 4) + (x + 3) − + = x − 2 x + 2 x2 − 4 x2 − 4 5x + 10 − 2x + 4 + x + 3 = Distribute the negative. x2 − 4 4x + 17 = 2 x −4 4 0.1 Practice Problems 1. 2 3 + x y 2. 2y 3y − 2 3x x 3. 2 1 + 2 2 2 3x y 6y 4. 5 3 − 2 12x 8xy 2 5. 2x − 3 5 − y + 16x 4y 6. x+1 −1 x−1 x−1 x+1 8. 3 4 + x+1 x−3 9. 1 4 − x−5 x+2 10. 2x 3 − x−4 x+2 11. x 7 − x + 1 2x 12. x x − x+2 x−2 13. 2x 5 + x − 3 x2 − 6x + 9 14. 2 3x − x + 2 x2 + 2x 15. 4 2x − x + 1 x2 + 2x + 1 16. 4 7x + x − 5 2x2 − 10x 17. 2x + 1 x − 2 + x−7 x+3 18. x − 4 2x − 1 − x+5 x−3 19. x−2 x+2 + x+3 x−4 20. −4xy x+y + x2 − y 2 x−y 21. 22. 2 y + y 2 − y − 20 y + 4 23. 3a + 6 3a − 4 + 4a2 + 9a + 2 4a + 1 24. 1 a−1 + 2 a + 6 a + 8a + 12 25. x+5 3 + 2 x −1 x+1 7. 2 − 26. x2 x+1 x+3 − 2 + 5x − 14 x + 8x + 7 27. x2 y3 8y 2 4y − − 16y y 2 − 4y x−5 x+1 + 2 + x − 6 2x − 3x − 2 28. x−2 x−3 − x2 + 2x − 15 x2 + 3x − 10 29. x + 12 x − 10 + x2 − x − 6 x2 − 2x − 8 30. 5 2 y+3 − + y − 2 y + 2 y2 − 4 31. x 3 − +1 x2 − 10x + 24 x − 6 32. 2x 1 1 − + x2 − y 2 x+y y−x 33. 5 2y 8y − + y − 2 y2 − 4 y + 2 34. y 21 3 − + 2y + 2 y 2 − 5y − 6 y − 6 5 0.2 Solutions 1. 2y + 3x xy 2. 2xy − 9y 3x2 3. 4 + x2 6x2 y 2 4. 10y 2 − 9x 24x2 y 2 5. −2xy − 3y + 20x 16xy 6. 2 x−1 7. x+3 x+1 8. 7x − 5 (x + 1)(x − 3) 9. −3x + 22 (x − 5)(x + 2) 12. −4x (x − 2)(x + 2) 15. 2(x + 2) (x + 1)2 2x2 − 7x − 7 2x(x + 1) 10. 2x2 + x + 12 (x − 4)(x + 2) 11. 13. 7x − 15 (x − 3)2 14. − 16. 15 2(x − 5) 17. 3x2 − 2x + 17 (x − 7)(x + 3) 18. − 19. 2x2 − x + 14 (x − 4)(x + 3) 20. x−y x+y 21. 22. 3y − 10 (y − 5)(y + 4) 23. 3a − 1 4a + 1 24. 2a + 1 (a + 2)(a + 6) 25. 2(2x + 1) (x − 1)(x + 1) 26. 1 (x − 2)(x + 1) 27. 3x + 1 (x + 3)(2x + 1) 29. 2x − 9 (x − 3)(x − 4) 31. x−6 x−4 33. 2y + 5 y+2 28. 0 30. 4y + 17 (y − 2)(y + 2) 32. 0 1 x+2 34. 6 (x − 1)(x + 17) (x − 3)(x + 5) 4 y+4 y+6 2(y + 1)
© Copyright 2026 Paperzz