3.6 Derivatives of Logarithmic Functions Marius Ionescu 10/06/2010 Marius Ionescu 3.6 Derivatives of Logarithmic Functions The derivative of log Fact Marius Ionescu 3.6 Derivatives of Logarithmic Functions The derivative of log Fact d 1 (ln x ) = dx x Marius Ionescu 3.6 Derivatives of Logarithmic Functions The derivative of log Fact d 1 (ln x ) = dx x d 1 (loga x ) = dx x ln a Marius Ionescu 3.6 Derivatives of Logarithmic Functions The chain rule Fact d g 0 (x ) ln g (x ) = . dx g (x ) Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Dierentiate Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Dierentiate y = ln(cos x ) Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Dierentiate y = ln(cos x ) √ y = 3 ln x. Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Dierentiate y = ln(cos x ) √ y = 3 ln x. y = x ln(1 + e x ) Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Dierentiate y = ln(cos x ) √ y = 3 ln x. y = x ln(1 + e x ) +ln x y = 11− ln x Marius Ionescu 3.6 Derivatives of Logarithmic Functions Example Example Dierentiate y = ln |x |. Marius Ionescu 3.6 Derivatives of Logarithmic Functions Example Example Dierentiate y = ln |x |. Marius Ionescu 3.6 Derivatives of Logarithmic Functions Logarithmic Dierentiation Fact (Steps in Logarithmic dierentiation) Marius Ionescu 3.6 Derivatives of Logarithmic Functions Logarithmic Dierentiation Fact (Steps in Logarithmic dierentiation) Take natural logarithms of both sides of an equation y = f (x ) and use the Laws of Logarithm to simplify Marius Ionescu 3.6 Derivatives of Logarithmic Functions Logarithmic Dierentiation Fact (Steps in Logarithmic dierentiation) Take natural logarithms of both sides of an equation y = f (x ) and use the Laws of Logarithm to simplify Dierentiate implicitly with respect to x Marius Ionescu 3.6 Derivatives of Logarithmic Functions Logarithmic Dierentiation Fact (Steps in Logarithmic dierentiation) Take natural logarithms of both sides of an equation y = f (x ) and use the Laws of Logarithm to simplify Dierentiate implicitly with respect to x Solve the resulting equation for y 0 . Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example √ 2 y = xe x (x 2 + 1)10 Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example √ 2 y = xe x (x 2 + 1)10 y = xx Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example √ 2 y = xe x (x 2 + 1)10 y = xx y = x cos x Marius Ionescu 3.6 Derivatives of Logarithmic Functions Examples Example y y y y = √ 2 xe x (x 2 + 1)10 = xx = x cos x = (ln x )sin x Marius Ionescu 3.6 Derivatives of Logarithmic Functions
© Copyright 2026 Paperzz