STANDING WAVES IN AN AIR COLUMN (Wind Instruments) Sound waves (longitudinal) reflect from open and closed tube ends Twopossibleboundaryconditions CanalsodescribewaveintermsofPRESSUREorDISPLACEMENT AT A CLOSED TUBE END Nolongitudinaldisplacementofairnexttoend→DISPLACEMENTNODE Largeamplitudepressurechanges→PRESSUREANTINODE AT AN OPEN END Airfreetooscillate→DISPLACEMENTANTINODE Airisfreetomovesopressuredoesnotchange→PRESSURENODE Realboundaryattheendofanopentubeisoutsideby~0.6xtuberadius o Endcorrection We will use DISPLACEMENT to describe normal modes of an air column. HOW DO WE “REPRESENT” STANDING WAVES IN AN AIR COLUMN? RepresentAMPLITUDEOFLONGITUDINALDISPLACEMENTbywidthof “loops”indiagram o CAREFUL:thereisnotransversecharactertomodes o Each“loop”inthemodediagramisλ/2 LONGITUDINAL MODES OF A TUBE OPEN AT BOTH ENDS Boundaryconditionisadisplacementantinodeateachend 1 2 L 2 L 3 2L 3 v f1 f2 1 v 2 f3 v 3 v 2L v 2 f1 L 3v 3 f1 2L v f n where n 1, 2, 3, Foratubeopenatbothends n 2L o ALLharmonicspossible (fundamental) (2nd harmonic) (3rd harmonic) LONGITUDINAL MODES OF A TUBE WITH ONE OPEN & ONE CLOSED END Boundaryconditionisadisplacementnodeattheclosedendanda displacementantinodeattheotherend v 1 4 L f1 3 4L 3 f3 5 4L 5 f5 1 v 3 v 5 v 4L 3v 3 f1 4L 5v 5 f1 4L (fundamental) (3rd harmonic) (5th harmonic) v f n where n 1, 3, 5, n Foratubewithoneopenandoneclosedend, 4L o OnlyODDharmonicspossible o Fundamentalfrequencyhalfthatforsamelengthtube,bothendsopen BEATS (14.6 in text) Considertwowaveswithslightlydifferentfrequenciesarrivingatobserver o Willgoinandoutofphase→resultantintensityisperiodic To find “BEAT” frequency, find resultant of two waves at x=0 o y1 A cos2 f1t and y2 A cos2 f 2t Resultant: yR y1 y2 Acos2 f1t cos2 f 2t To evaluate, use trigonometric identity a b ab cos a cos b 2 cos cos o 2 2 f1 f 2 f1 f 2 y 2 A cos 2 t cos 2 2 t Resultant: R 2 f1 f 2 f o average 2 istheaverageofthetwointerferingfrequencies f1 f 2 2 A cos 2 2 t actslikeatime‐dependentamplitude o modulateswavewithaveragefrequency “envelope”repeatswithfrequency f beat f1 f 2 NON-SINUSOIDAL WAVES → COMPLEX WAVES tonefromatuningfork(orrecorder)ismostlyfundamental→sinusoidal cangetnon‐sinusoidalwaves(morecomplexsounds)byaddingharmonics EXAMPLE: Can make a square wave by adding odd harmonics. 1 y n n sin 2nf1t Character of sound depends on harmonics o Trumpet, clarinet, etc. act like tubes open both ends (all harmonics) 1.0 0.5 IN TEN SITY This is a Fourier series o Get spectrum (intensity vs harmonic number) by Fourier analysis sin(2f1t) (1/3)sin(2*3*f1t) (1/5)sin(2*5*f1t) (1/7)sin(2*7*f1t) sum 0.0 -0.5 -1.0 0 20 40 60 TIM E 80 100
© Copyright 2026 Paperzz