CALCULUS WORKSHEET ON 5.6, INVERSE TRIG FUNCTIONS AND DIFFERENTIATION Work the following on notebook paper. No calculator. Evaluate. 1. arcsin 2. cos 1 1 2 1 2 6. arctan 3. arccos 4. sin 1 9. arctan 1 5. tan 1 3 3 2 3 2 3 3 10. arcsec 2 7. arccos 1 11. csc1 2 8. sin 1 1 12. arc cot 3 __________________________________________________________________________________ Evaluate. 3 4 4 14. sec sin 1 5 5 15. csc arctan 12 2 16. tan cos 1 3 13. sin arctan x 3 17. cos sin 1 2x 18. tan arcsec 19. sin arctan 5x _________________________________________________________________________________ Find the derivative. 20. f x arcsin 3x 24. y arctan e x 25. f x sin arccos 2 x 21. y cos 1 5 x 2 22. g x 2arcsec x3 26. g x x arcsin x3 x 3 23. h x tan 1 __________________________________________________________________________________ 1 27. Write an equation for the tangent line to the graph of y 2arcsin x at the point where x . 2 x 2 28. Write an equation for the tangent line to the graph of y tan 1 at the point where x = 2. 29. A fish is reeled in at a rate of 2 ft/sec from a bridge 16 ft above the water. At what rate is the angle between the line and the water changing when there are 20 ft of line out? Use inverse trig functions to find the answer. Answers to Worksheet on 5.6, Inverse Trig Functions and Differentiation 1. 6 4. 3 7. 2 3 13. 3 5 16. 11. 5 2 5. 3 6. 25 x 1 6 x 25. 27. y 28, y x6 1 20. 23. 4x 1 4x 2 4 1 x 2 3 3 4 2 rad 15 sec 1 x 2 4 2 4 12. 1 4x 2 3 1 9x 21. 2 3 9 x2 26. 24. 3x3 1 x 6 arcsin x3 6 9. 4 15. 13 5 18. x2 9 3 5 6 5 3 17. 2 22. 29. 3. 14. 5x 19. 3 8. 10. 5 6 2. 10 x 1 25 x 4 ex 1 e2 x CALCULUS BC WORKSHEET ON INVERSE TRIG FUNCTIONS AND REVIEW Work the following on notebook paper. Find the derivative. 2. y arccos 2 x3 arcsin 2x x 2 6. h x x arctan x 2 3. g x arcsec 3x 7. p x cos arcsin x x 5 8. q x sec arctan x 1. f x 3arcsin 5 x 5. y 4. f x arctan ____________________________________________________________________________________ Evaluate. dx 25 x 2 dx 10. 4 x2 13. dx x 6 x 34 9. 2 dx 8 2 x x2 2x 7 dx 15. 2 x 4 x 13 14. dx x x2 9 x3 dx 12. 16 x 2 11. 3 2x dx 10 x x 2 9 16. _________________________________________________________________________________________ 5 , find f 1 4 . 6 1 18. Let f x cos x, 0 x . Find f 1 . 2 17. If f 3 4 and f 3 __________________________________________________________________________________________ 19. (2005 Form B – AB 4) (No calc) The graph of the function f shown on the right consists of three line segments. (a) Let g be the function given by g x x 4 f t dt. For each of g 1 , g 1 , and g 1 , find the value or state that it does not exist. (b) For the function g defined in part (a), find the x-coordinate of each point of inflection of the graph of g on the open interval 4 x 3. Explain your reasoning. (c) Let h be the function given by h x f t dt. Find all values 3 x of x in the closed interval 4 x 3 for which h x 0. (d) For the function h defined in part (c), find all intervals on which h is decreasing. Explain your reasoning. Answers to Worksheet on Inverse Trig Functions and Review 2. 3. 4. 5. x 1 C 3 15 1. 1 25x 6x2 14. arcsin 2 x2 C 3 x 5 16. 2 10 x x 2 9 7 arcsin C 4 15. ln x 2 4 x 13 arctan 1 4 x6 1 x 9x2 1 5 25 x 2 17. 2 x arcsin 2 x 1 4 x 2 x 3 2 1 4x 2 2x 2 x arctan x 2 1 x4 x 7. 1 x2 x 6. 8. 1 x2 x 9. arcsin C 5 1 x 10. arctan C 2 2 x 1 11. arcsec C 3 3 x 4 12. 16 x 2 3arcsin C 13. 1 x 3 arctan C 5 5 6 5 18. 2 3 19. See AP Central CALCULUS BC WORKSHEET ON 8.1 Work the following on notebook paper. No calculator. Evaluate the given integrals. 3 2 x 5 dx 8. 0 x 2 2 1. 9 x 3 3sec x tan x 7sec2 x dx x x4 2. dx 2 x 8x 1 3. x 4. 5 sin 3x cos 3x dx 5. 2 1 x x 1 dx 3 cos 5 x 4 dx 10. 9 e2 x x cos e x dx 3 x4 7 dx 6 dx 10 x x 2 1 12. dx 2 x 4x 9 2x 7 dx 13. 2 x 4 x 13 sin 3x dx ln x 4 x 12 7. e 0 1 e 11. 3 2 6. 9. x3 dx 16 x 2 dx 14. __________________________________________________________________________________________ Multiple Choice. All work must be shown. 15. Which of the following represents the area of the shaded region in the figure above? c f y dy (D) b a f b f a (A) d a d f x dx (E) d c f b f a (B) b (C) f b f a _________________________________________________________________________________________ dy 16. If x3 3xy 2 y 3 17, then in terms of x and y, dx x2 y x2 y x2 y x2 y x2 (A) (B) (C) (D) (E) x 2 y2 x y2 x 2y 2 y2 1 2 y2 TURN->>> 3x 2 17. x3 1 dx (A) 2 x3 1 C (B) 3 x3 1 C 2 (C) x3 1 C (D) ln x3 1 C (E) ln x3 1 C _________________________________________________________________________________________ 18. For what value of x does the function f x x 2 x 3 have a relative maximum? 2 (A) 3 (B) 7 3 (C) 5 2 (D) 7 3 (E) 5 2 Answers to Worksheet on 8.1 9 x2 1 1. 2 3sec x 7 tan x C 2 x 2. x2 8x 1 C 3. 1 sin 5 x 4 C 20 4. 5. 6. 7. 8. 9. sin 6 3x C 18 609 8 1 1 2 3 2 2 31 5 3 2 ln 2 5 1 sin1 sin e 4 7x 10. C 4ln 7 x 5 11. 6arcsin C 5 1 x2 12. arctan C 5 5 x2 13. ln x 2 4 x 13 arctan C 3 x 14. 16 x 2 3arcsin C 4 15. B 16. A 17. A 18. D CALCULUS BC WORKSHEET ON INTEGRATION BY PARTS Work these on notebook paper. No calculator. Evaluate. xe dx 2. x sec2 x dx 2x 1. x sin x dx 4. x3 ln x dx x 5. 3x dx e 6. arctan 2x dx 3. 2 7. 8. e sin x dx 5x xe dx 4x 1 0 e e x ln x dx 10. arcsin 3x dx 11. x3e2x dx 12. ln x 2 1 dx 9. ________________________________________________________________________________________ 13. (2003 AB 5) (No calc) A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at a rate of 5 h cubic inches per second. (The volume V of a cylinder with radius r and height h is V r 2h.) (a) Show that dh h . dt 5 (b) Given that h = 17 at time t = 0, solve the differential equation for h as a function of t. (c) At what time t is the coffeepot empty? dh h dt 5 Answers to Worksheet on Integration by Parts 1 1 1. xe2 x e2 x C 2 4 2. x tan x ln cos x C 3. x 2 cos x 2 x sin x 2cos x C 4. 5. 6. 7. 8. 9. x 4 ln x x 4 C 4 16 1 1 xe 3 x e 3 x C 3 9 1 x arctan 2 x ln 1 4 x 2 C 4 1 4 e4 x cos x e4 x sin x C 17 17 6 5 1 e 25 25 e2 4 1 9 x2 C 3 1 3 3 3 11. x 3e2 x x 2e2 x xe2 x e2 x C 2 4 4 8 2 12. x ln x 1 2 x 2arctan x C 10. x arcsin 3x 13. See AP Central CALCULUS WORKSHEET ON 8.1 – 8.2 Work the following on notebook paper. No calculator. 2x 1. dx x4 x 1 dx x2 2 x 4 2. 1 dx 2 2 x x2 8. 9. arctan 3x dx 1 3. 3x xe dx 10. 4. sec 4x dx 11. ln x 5. 2 dx x sin x 6. dx cos x 7. 0 x sin 2 x dx 0 e x sin x dx 2x 5 dx x 2x 2 12. 2 arcsin 5x dx 3 x dx 13. 2 x 4 14. 1 2 x x e dx 0 _________________________________________________________________________________________ Multiple Choice. All work must be shown. 3 x 15. If f x sin , then there exists a number c in the interval that satisfies the x 2 2 2 conclusion of the Mean Value Theorem. Which of the following could be c? 2 3 5 3 (A) (B) (C) (D) (E) 3 4 6 2 _________________________________________________________________________________________ 2 16. If f x x 1 sin x, then f 0 (A) 2 (B) 1 (C) 0 (D) 1 (E) 2 _________________________________________________________________________________________ 17. The acceleration of a particle moving along the x-axis at time t is given by a t 6t 2. If the velocity is 25 when t = 3 and the position is 10 when t = 1, then the position x t (A) 9t 2 1 (B) 3t 2 2t 4 (C) t 3 t 2 4t 6 (D) t 3 t 2 9t 20 (E) 36t 3 4t 2 77t 55 _________________________________________________________________________________________ d x 18. cos 2 u du is dx 0 1 1 (A) 0 (B) (C) (D) cos 2 x (E) 2 cos 2 x sin x cos 2 x 2 2 Answers to Worksheet on 8.1 – 8.2 1. 2 x 8ln x 4 C 2. 3. 4. 5. 6. x2 2 x 4 C 1 1 xe 3 x e 3 x C 3 9 1 ln sec 4 x tan 4 x C 4 1 1 ln x C x x 2 cos x C 7. 2 x 1 8. arcsin C 3 1 9. x arctan 3x ln 1 9 x 2 C 6 e sin1 e cos1 1 10. 2 2 11. ln x 2 x 2 7arctan x 1 C 12. x arcsin 5x 1 1 25x 2 C 5 x2 2ln x 2 4 C 2 14. e 2 13. 15. D 16. D 17. C 18. D CALCULUS BC WORKSHEET 1 ON 8.1 – 8.3 Work the following on notebook paper. No calculator. 1. 3 2 cos 2 x sin 2 x dx 7. 4 cos 6x dx 2 2x 1 dx x 6 x 25 8. x sin 3x dx 9. e 2. 3. x 4. arcsin 4x dx 10. 5. 2 sin 5x dx 11. 3 2 x 3x dx x2 1 12. 2 2 ln x dx 2x sin x dx dx 12 4 x x 2 0 6. 0 2 2 cos3 x dx x cos x dx __________________________________________________________________________________________ Multiple Choice. All work must be shown. x f x 2 10 5 30 7 40 8 20 13. The function f is continuous on the closed interval [2, 8] and has values that are given in the table above. Using the subintervals [2, 5], [5, 7], and [7, 8], what is the trapezoidal approximation of (A) 110 (B) 130 (C) 160 (D) 190 2 f x dx ? 8 (E) 210 _________________________________________________________________________________________ 14. What is the minimum value of f x x ln x ? (A) e (B) 1 (C) 1 e (D) 0 (E) f x has no minimum value. _________________________________________________________________________________________ 1 1 15. At what value of x does the graph of y 2 3 have a point of inflection? x x (A) 0 (B) 1 (C) 2 (D) 3 (E) At no value of x Answers to Worksheet 1 on 8.1 – 8.3 1 1 1. sin 3 2 x sin 5 2 x C 6 10 5 x 3 2. ln x 2 6 x 25 arctan C 4 4 1 2 2 3. x 2 cos 3x x sin 3x cos 3x C 3 9 27 1 2 4. x arcsin 4 x 1 16 x C 4 1 1 5. x sin 10 x C 2 20 x2 1 6. 3x ln x 2 1 3arctan x C 2 2 3 1 1 7. x sin 12 x sin 24 x C 8 24 192 x3 x3 8. ln x C 3 9 1 2 9. e2 x cos x e2 x sin x C 5 5 x2 10. arcsin C 4 2 11. 3 12. 2 13. C 14. C 15. C 1 CALCULUS BC WORKSHEET 2 ON 8.1 – 8.3 Work the following on notebook paper. No calculator. 1. sec 4 x tan 4 x dx 7. sin 3x cos 2 x dx 2. tan 3x sec 3x dx 8. sec 7 x tan 7 x dx 3. cos 2 x sin 2 x dx 9. sin 5x cos 5x dx 6 5 3 2 2 3 2 2 2x 3 dx x 10 x 41 10. 5. 2 x sin 3x dx 11. 0 6. arcsin 3x dx 12. cos 5x cos 4 x dx 4. 2 e 3x 6 cos x dx x cos 2 x dx _________________________________________________________________________________________ 13. (2004 Form B - AB 2) (Calc ) For 0 t 31, the rate of change of the number of mosquitoes on Tropical Island at time t days is t modeled by R t 5 t cos mosquitoes per day. There are 1000 mosquitoes on Tropical Island at 5 time t = 0. (a) Show that the number of mosquitoes is increasing at time t = 6. (b) At time t = 6, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer. (c) According to the model, how many mosquitoes will be on the island at time t = 31? Round your answer to the nearest whole number. (d) To the nearest whole number, what is the maximum number of mosquitoes for 0 t 31? Show the analysis that leads to your conclusion. Answers to Worksheet 2 on 8.1 – 8.3 sec6 4 x 1 2 1 1 1. C or tan 4 x tan 4 4 x tan 6 4 x C 24 8 8 24 6 tan 3x 1 1 1 2. C or sec6 3x sec4 3x sec2 3x C 18 18 6 6 sin 3 2 x sin5 2 x 3. C 6 10 7 x 5 4. ln x 2 10 x 41 arctan C 4 4 x2 2x 2 5. cos 3x sin 3x cos 3x C 3 9 27 1 6. x arcsin 3x 1 9 x 2 C 3 1 1 7. cos x cos 5 x C 2 10 sec3 7 x 8. C 21 1 1 9. x sin 20 x C 8 160 1 3x 3 10. e sin x e3 x cos x C 10 10 33 11. 24 1 1 12. sin x sin 9 x C 2 18 13. See AP Central CALCULUS BC WORKSHEET ON 8.1 – 8.4 Work the following on notebook paper. No calculator. 1 1. 25 x 1 2. 1 x 3. 2 2 2 2 3 dx 4. 2 cos 4 x dx x 2 7. x 2 5. tan 3 sec3 dx dx cos 5x sin 5x dx 3 x 2 6. 2 0 16 4x 2 dx sin 4x dx 2 1 dx 2 x 9 8. 9. cos 3x cos 2 x dx __________________________________________________________________________________________ 10. Given the region bounded by the graphs of y ln x, y 0, and x e . Find (a) the area of the region (b) the volume of the solid generated by revolving the region about the x-axis. __________________________________________________________________________________________ Multiple Choice. All work must be shown. 11. If y xy x 2 1 , then when x 1, 1 dy is dx 1 (C) 1 (D) 2 (E) nonexistent 2 2 __________________________________________________________________________________________ (A) (B) 12. Let f be a function defined for all real numbers x. If f x 4 x2 x2 , then f is decreasing on the interval (A) , 2 (B) , (C) 2, 4 (D) 2, (E) 2, __________________________________________________________________________________________ x3 for x 0 . Which of the following statements x for x 0 13. Let f be the function defined by f x about f is true? (A) f is an odd function. (B) f is discontinuous at x = 0. (C) f has a relative maximum. (D) f 0 0 . (E) f x 0 for x 0. __________________________________________________________________________________________ 14. The graph of f , the derivative of f is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a, b)? (A) One relative maximum and two relative minima (B) Two relative maxima and one relative minimum (C) Three relative maxima and one relative minimum (D) One relative maximum and three relative minima (E) Three relative maxima and two relative minima Answers to Worksheet 1 on 8.1 – 8.4 x 1. C 25 25 x 2 1 x 2. arctan x C 2 2 1 x2 3. 4. 5. 6. 7. sin 5 x sin 5 x C 15 25 x2 x 1 sin 4 x cos 4 x sin 4 x C 4 8 32 x x 2sec5 2sec3 2 2 C 5 3 2 1 1 x sin 8 x C 2 16 3 8. ln x 3 5 x2 9 C 3 1 1 sin 5x sin x C 10 2 10. (a) 1 (b) e 2 9. 11. B 12. A 13. E 14. A CALCULUS BC WORKSHEET 2 ON 8.1 – 8.4 Evaluate. Do not use your calculator. cos 4 x dx 1. x 2. 2 sin 3x dx 3. 4. dx 2 x 2 25 x 2 3 0 2 arcsin x 1 x 2 dx arctan 5x dx 5. 3 cos 2x dx 6. x 7. 2x 3 x2 8x 25 dx 11. 8. x 2 9 dx x 12. 5 ln x dx 9. 10. 2x 5 4 x x2 dx x3 4 x 2 16 0 1 0 dx xe 2x dx __________________________________________________________________________________________ Use your calculator, and give your answers correct to three decimal places. 13. (2003 Form B - AB 4) A particle moves along the x-axis with velocity at time t 0 given by v t 1 e1 t . (a) Find the acceleration of the particle at time t = 3. (b) Is the speed of the particle increasing at time t = 3? Give a reason for your answer. (c) Find all values of t at which the particle changes direction. Justify your answer. (d) Find the total distance traveled by the particle over the time interval 0 t 3 . Answers to Worksheet 2 on 8.1 – 8.4 x2 x 1 1. sin 4 x cos 4 x sin 4 x C 4 8 32 1 1 2. x sin 6 x C 2 12 3. 25 x 2 C 25 x 2 18 1 1 5. sin 2 x sin 3 2 x C 2 6 6 6 x ln x x 6. C 6 36 4. 5 x4 7. ln x 2 8 x 25 arctan C 3 3 x 8. x 2 9 3arcsec C 3 1 9. x arctan 5x ln 1 25 x 2 C 10 x2 10. 2 4 x x 2 arcsin C 2 64 2 128 11. 3 3 3 1 12. e 2 4 4 13. See AP Central CALCULUS BC WORKSHEET ON 8.1 – 8.5 Work the following on notebook paper. No calculator. 5 dx 1. 2 2 x 1 4. 5 x 2. dx 2 2x x 1 2 7 x 16 x 5 dx 5. 3 x 2 x2 x 3. 0 3 2 x2 1 x 2 3 sin 6x dx 1 6. dx x 3 2 7. arctan 5x dx 3 2 3 2 x 1 8. dx 2 1 x x 1 dx 9. 2 e x cos 2 x dx _________________________________________________________________________________________ x 2 10. Given the region bounded by the graphs of y cos , y 0, x 0, and x . Find the volume of the solid generated by revolving the region about the x-axis. ________________________________________________________________________________________ Find the derivative. 11. f x arcsin 3x 13. y arctan e x 14. f x sin arccos 2 x 12. y cos 1 5 x 2 __________________________________________________________________________________________ Multiple Choice. All work must be shown. 1 15. An antiderivative for 2 is x 2x 2 2 x2 (A) x 2 2 x 2 (B) ln x 2 2 x 2 (C) ln x 1 (D) arc sec x 1 (E) arctan x 1 _________________________________________________________________________________________ 16. The region enclosed by the x-axis, the line x = 3, and the curve y is the volume of the solid generated? (B) 3 3 (A) 3 (C) 9 (D) 9 x is rotated about the x-axis. What (E) 36 3 2 5 _________________________________________________________________________________________ 17. 0 (A) 3 3 dx 4 x2 (B) 4 (C) 6 (D) 1 2 ln 2 (E) ln 2 Answers to Worksheet on 8.1 – 8.5 1 1. ln 2 2 3 2. ln 2 x 1 2ln x 1 C 2 3. 4. 5. 6. 7. 8. 9. 10. 3 3 1 1 cos 6 x cos3 6 x C 6 18 4 5ln x 2ln x 1 C x 1 x C 3 x2 3 1 x arctan 5x ln 1 25 x 2 C 10 3 1 ln 2 ln5 arctan 2 2 2 4 1 x 2 x e cos 2 x e sin 2 x C 5 5 2 2 11. 12. 3 1 9x 2 10 x 1 25 x 4 ex 1 e2 x 4x 14. 1 4x2 13. 15. E 16. C 17. A CALCULUS BC MIXED INTEGRATION WORKSHEET Work the following on notebook paper. No calculator. 1. x ln x dx 3 2. 0 4 5. 6. sin 3 x dx 4. x 2 4 3 x2 9 3. dx x sin 4 x dx 9. tan x sec x dx 3 4 3 3 3x 2 x 9 dx x x2 9 dx x 4 10. sin 3x cos 2 x dx 11. 13 2 e x sin 5 x dx 3 7. 0 8. sin 5x cos 5x dx 2 2 3 dx 9 x2 1 2 __________________________________________________________________________________________ 12. Solve for y: y arctan 3x __________________________________________________________________________________________ Find the derivative. 13. f x arcsin x3 15. y arctan 7 x 14. y cos 1 e x 16. f x cos arcsin 5 x __________________________________________________________________________________________ Multiple Choice. All work must be shown. dy 17. If 2 y 2 and if y 1 when x 1, then when x = 2, y = dx 2 1 1 2 (A) (B) (C) 0 (D) (E) 3 3 3 3 _________________________________________________________________________________________ 18. The top of a 25-foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall? 7 7 (A) feet per minute (B) 24 feet per minute (C) feet per minute 24 8 7 21 (D) feet per minute (E) feet per minute 8 25 Answers to Mixed Integration Worksheet x 4 ln x x 4 1. C 4 16 2 5 2 2. 3 12 x 3. x 2 9 3arcsec C 3 1 1 1 4. x 2 cos 4 x x sin 4 x cos 4 x C 4 8 32 sec6 x sec4 x tan 4 x tan 6 x 5. C or C 6 4 4 6 1 5 6. ln 4 3 3 7. 5 1 1 8. x sin 20 x C 8 160 1 27 9. ln 2 4 36 1 x 5 10. e sin 5x e x cos 5x C 26 26 1 2 3 11. ln 3 2 1 1 12. x arctan 3x ln 1 9 x 2 C 6 13. 14, 3x 2 1 x6 ex 1 e2 x 7 15. 1 49x 2 25 x 16. 1 25 x 2 17. B 18. D
© Copyright 2026 Paperzz