Faculty of Health Sciences Mobile genetic elements causing plasticity in E. faecium — Audun Sivertsen A dissertation for the degree of Philosophiae Doctor – December 2016 Mobilegeneticelements causingplasticityin Enterococcusfaecium AUDUNSIVERTSEN AdissertationforthedegreeofPhilosophiaeDoctor December2016 FacultyofHealthSciences DepartmentofMedicalBiology Host-MicrobeInteractionsgroup UiT–TheArcticUniversityofNorway 1 2 TableofContents Acknowledgements...........................................................................................................5 Preface...................................................................................................................................7 Thebasictraitsofenterococci......................................................................................8 ClinicalfeaturesofE.faecium........................................................................................8 Epidemiology...............................................................................................................................9 Virulence.......................................................................................................................................9 Host-microbeinteractions................................................................................................................10 Antimicrobialresistanceandtreatmentoptions................................................12 Vancomycin................................................................................................................................13 Beyondvancomycin–availableantibioticstotreatVREfmandtheirresistance mechanisms...............................................................................................................................16 Whydoesresistanceaccumulationoccur?.....................................................................18 Horizontalgenetransferandmobilegeneticelements....................................20 Horizontalgenetransfermechanisms.........................................................................................21 Type4secretionsystems..................................................................................................................21 Plasmids......................................................................................................................................22 Transposons,integrativeconjugativeelementsandgenomicislands..................24 Howdomobilegeneticelementspersistinhosts?.......................................................25 Toxin/Antitoxinsystems...................................................................................................................25 Restriction/modification(R/M)systems...................................................................................26 CRISPR-Cassystems.............................................................................................................................27 Howdowecomparebacteria?...................................................................................28 DNAfingerprints......................................................................................................................29 ReasonstoperformcomparisonsofbacteriausingDNAsequences.....................29 Allele-basedclusteringmethods....................................................................................................30 Wholegenome-basedcomparisons..............................................................................................30 WhatdocomparativemethodstellaboutE.faecium?................................................32 Summaryofpapers........................................................................................................35 Paper1:AmulticentrehospitaloutbreakinSwedencausedbyintroductionofa vanB2transposonintoastablymaintainedpRUM-plasmidinanEnterococcus faeciumST192clone...............................................................................................................35 Paper2:SilencedvanAgeneclusteronatransferableplasmidcauseoutbreakof Vancomycin-VariableEnterococci.....................................................................................35 Paper3:TheEnterococcusCassetteChromosome:anSCCmec-likemobilisable elementinenterococci...........................................................................................................36 Discussion.........................................................................................................................38 EpidemiologyofE.faeciuminScandinavia.....................................................................38 Wholegenomesequencingenhancespathogensurveillance..................................39 Phylogenetic-andtransmissionanalysesusingPFGEand/orcoregenomeSNPs onlytellpartsofthestory.....................................................................................................41 Challengeswithvancomycinsusceptibilitydetermination......................................43 MGEanalyses:wetgunpowderinthestartinggun......................................................45 DiscoveryandanalysisofMGEslikeECC:What’snext?..............................................48 References........................................................................................................................50 3 4 Acknowledgements OnethingIhavelearnedduringtheseyearsof‘sciencing’,isthatproducingaPhD candidateisinfactaresultofteamefforts.ThewholeenvironmentinwhichIhave beengiventrusttoplayaroundinalab,tosuggestexperimentalandanalyticideas likeI’mawalking&talkingbudgetdeficit,andhavethepossibilitytoerrwithout theworldfallingapart,haspavedthewayforsubmissionofthisthesis. I am greatly indebted to my main supervisor Kristin. Since 2010, when I first walkedaroundaskingpeoplewhethertheyhadaresearchprojecttospareforme, youhavealwaysknownwhattodoandhowtodoit.Iamalwaysbaffledbyyour greattalentoflisteningtothechaosIsometimesperceivethestateofmyresearch tobein,thinkforfiveseconds,andgiveapromptresolutiontoallmytroubles. You’retheChaosPilot! IalsoneedtogivegreatthankstomysecondsupervisorTorunn,whosetalentfor precision writing and focus on the conceptual thinking and scientific reasoning behindeverythingwedoreallyhelpedmestructuremythoughtsandimproved mywritingskills.You’reoneofthe(elsewhererarelyencountered)benevolent3rd reviewers! Ihavehadagreattimewiththetwoofyouassupervisors.Weshareacommon senseofhumourandgeneraljoiedevivre,whichledmetofeelthatthedoorsto yourofficeswerealwaysopen,bothliterallyandfiguratively. Next,Ihaveenjoyedtofollowofacollectionofvibrantresearchgroups.BothHostMicrobeinteractionsandK-Res,andthemembersofthesegroupsinadditionto Micro-Popandthepaediatricsinfectiongroupshavebeenreallygreattotalkto andbeinspiredby.We’vestarteddoingsomeseriousbioinformaticslately,andI thankEspenÅ,Joachim,JessinandEspenTangenforexchangingideas,teaching away what HPC is, and creating competition in the ‘heard it in the grapevine’exersiseof“Hey…seenthistoolyet?It’samazing!”. 5 Ialsohavetoextendahigh-fivetothefellow(andex)PhDcandidatesI’veshared most time with: Theresa, Ilya, Clement, Vidar, and the late newcomer and officemateAdriana.It’salwaysnicetohavepeoplewhounderstandtheprinciple behind“don’tworkwhileI’mdisturbing”. SinceI’mamedicaldoctor,Ididnotknowanythingaboutpipetting,mixinggels, what‘hygieniclabconditions’are,wheretotossmys**twhenI’mdonewithitand otherpresumablyessentiallab-relatedhoo-hahwhenIstarted.Luckily,theglass house has some excellent elephant handlers in technicians, and if you’re lucky, theymayhelpyououtwithdifficulttaskslike‘howtoweargloves–andwhich? Really,which?’.Bettina,Bjørg,Tracy&Alena,you’rethebest! Got to thank my social network for schticking around, and gracefully and sarcasticallyshootmedownwhenmyintricatestoriesofgenomicislands,spooky bugs and correct pipetting (thanks, technicians!) become too tedious to follow. AndformyfellowassociatesinKjoSivDesIndustriesformanufacturingbeer! Myparents.Mom,yourendlessrowsofbookshelvesleftmesittingaroundreading ridiculousamountsofbooks.Theyprovideperspectiveandideasitishardtocome byanyotherway,andwasimportantindevelopingmycuriousness.Nottoforget reading speed – THAT is needed to complete a thesis! Dad: these endless discussionsofpolitics,societyandlifewekeephavinghavesurelyhelpedmelearn whatindependentthinkingis.Ithankyoubothforgreatadviceinlife.IthinkI’ve donejustfine,yeah? Lastly,Ineedtoappreciatehavingyouinmylife,Bente.Iloveyou!HowdidIever manage to get such a lovely human being as my partner?! Let me dedicate this thesis to you, to state that the end of my days/years/decades as a student are finallyover.Now:timetolookforwardforbothofus.Exitingtimes.Iwannabring youalong! 6 Preface Clinicalmicrobiologyisavasttopicwithsomeoverarchingquestionsresearchers aimtoanswer.Wewanttoknowhowtoidentifyandtreatinfections.Wewantto avoid the spread of infectious agents by stopping transmission through surveillanceandappropriatecontainmentmeasures.Wewanttounderstandthe basalbiologicalprocessesexplaininghowpathogensspread,producedisease,and evade treatment. Pathogen discovery, surveillance and disease prevention has evolvedandmaturedgreatlythroughthelatestcenturies(1),andtheproblems we encounter today and the methods we use to solve them are both in rapid change. Infections is a major cause of morbidity and mortality in humans, and during the last century, the revolution of the antimicrobial made us optimistic abouteradicatingthisproblem.Indeed,manyeasilytreateddiseasesarenolonger suchalikelycauseofdeath.Asantimicrobialshavebeenincreasinglyusedand misused,thebugshaveevolvedthemselves,andsomearenolongerresponding to antimicrobial treatment. WHO estimates that resistant bugs are again to become a major cause of death relative to other diseases because of resistance developmentinimportantpathogens(2)eventhoughtheseprojectionsstillneed tobevalidated(3).Resistantorganismsposeathreattomodernmedicineaswe know it, as many of the species which have developed the most resistance, are particularly adapted to persist in health care facilities and cause disease in patientswithotherseriousconditionswhootherwiseenjoysthebestandmost advancedtreatmentmodernhealthcareisabletoprovide. The research presented in this thesis focus on basal biological processes governingthespread,evolutionandresistancetotreatmentinenterococci,and Enterococcus faecium in particular. This is in nature a ubiquitous bug, which recentlyhasemergedasamulti-resistantpathogenwithinhealthcareinstitutions. 7 Thebasictraitsofenterococci E.faeciumwasfirstdescribedbydistinctphenotypictraitsin1899byThiercelin, whoisolatedthebacteriumfromacaseofinfectiveendocarditis(4,5).E.faecium wasdescribedasasturdyGram-positivediplococcusabletosurviveat60°C,grow at10-45°C,growinsaltyconditionsupto6,5%NaCl,growinbasicmediaofupto pH9,6,andtogrowinmediacontaining40%bile.Althoughtwodifferentspecies today, E. faecium and E. faecalis, the two enterococci most prone to causing infections in humans, weren’t considered two different species before the midsixties (6, 7). Enterococci reacted to serum of group D by the Lancefield’s precipitintest,causingthemtobeclassifiedasgroupDstreptococci(8–10)until theywerereclassifiedtoenterococciin1984(11)duetoadvancesinmolecular classificationschemesshowingthatenterococciandstreptococciaretoodistantly relatedgeneticallytobelongtothesamegenus.Althoughenterococcifirstwere identified as parts of the human intestinal microbiota, we now know them as ubiquitous in nature (12). Found in and on other animals, insects and fish, on plants, in water and food, we now know of 54 species within the Enterococcus genus(12–19).Mostofthemhavebeencharacterizedduringthelast20-30years. Thus, this genus is likely to expand further as todays screening methods yield substantiallyhigherthroughputs. ClinicalfeaturesofE.faecium Historically, enterococci has been isolated predominantly as causes of bacteraemia,endocarditisandUTIs(20).Enterococciarealsocapableofinvading otherfociasanopportunisticpathogen,ifapatient’sabilitytocleartheinfection has been compromised. E. faecium has been included as one of the five major multi-resistantpathogenspredominantlycausingthelion’sshareofnosocomial infections–theESKAPEpathogens–theotheronesbeingStaphylococcusaureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa and Enterobacterspecies(21).Thecomplexitiesofmodernmedicineleadtoaseverely compromisedimmunedefenceinmanypatientsformanytreatments.Enterococci and E. faecium in particular have become increasingly prevalent as causes of nosocomial serious infections the last thirty years (22). This development is 8 pairedwithemergenceofahospital-associatedcladedemonstratinganincreasing antimicrobialresistancepatternaswellaspresenceoffactorslikelyinvolvedin virulenceandadaptationtohospitalenvironments(23,24).Thesethemeswillbe discussedinlatersections. Epidemiology Enterococcihavebecomemoreprevalentascauseofnosocomialinfectionsthe last30years.Thisdevelopmenthasbeenassociatedwithuseofthirdgeneration cephalosporins in U.S.A., of which enterococci are naturally resistant (25). In Europe,vancomycinresistantenterococcus(VRE)occurrencehasbeenlinkedto the glycopeptide farm-animal growth-promoter avoparcin (26), but the overall prevalenceisstilllowerthantheU.S.Thelargerimpactofenterococcalinfections duringthelasttwodecadescanbeexplainedbyariseofE.faeciuminfections(22, 27),astherateofE.faecalisinfectionshasremainedstable.Increasednumbersof enterococcalinfectionshasco-occurredwithincreasedantimicrobialresistance, which mostly has occurred in E. faecium (27). The latest systemic surveys assessing hospital-acquired infections described enterococci as the second or thirdmostcommonpathogenintheU.S.A.andEuroperespectively(28,29). Virulence Causal factors of pathogenicity and virulence in E. faecium has to be seen in connection to the extensive resistance levels this species demonstrates when encountered in hospital settings, permitting survival and transfer to patients susceptibletoinfection.Nosingledefiningvirulencefactorhasbeenidentifiedin E. faecium, but several genes are enriched in clinical lineages that may aid in invasiveness. As an opportunistic pathogen mostly causing severe disease in immunocompromised hosts, E. faecium has proven to be elusive to accurately characteriseintermsofvirulence. It is difficult to assess the contribution of any particular putative virulence determinant in E. faecium as there are few reliable ways of knocking out or insertingageneintoexperimentalstrains(30).Thesearchforvirulencefactorsin E.faeciumhasoftenconsistedoffindingsecretion-andcellwall-associatedgenes 9 enrichedinhospital-associatedstrains(31).Thisincludesgenesassociatedwith biofilmformation[espandsgrA(32,33)],collagenadhesion[acm,(34)]andother genes associated with the enterococcal cell-wall [efaAfm, hyl, ecbA, scm, orf903, orf2010andorf2514(33,35,36)].Hospital-acquiredinfection(HAI)isolatesare alsoenrichedwithgenesconstructingpili[pilA,pilB,ebpfm(37,38)].Somegenes havebeenassociatedwithvirulenceinE.faecalisandcorrespondingvirulencein E.faeciumisextrapolated,butofthefewgenesofwhichexperimentaldataexist, acm,esp,andebpfmhavebeenshowntocontributetovirulencebyexertingthe assumedphenotypesininvivosettings(38–40).Inaddition,twogenesassociated with two different phosphotransferase systems (PTS) are associated with improved intestinal colonization during antibiotic treatment [ptsD (41)] or implicatedinbiofilmformationandpathogenesisofendocarditis[bepA(42)]. Althoughthesefactorsmaycontributetovirulence,itisimportanttoconsiderthat infectionwithE.faeciumismostlikelytooccurindebilitatedhosts.Obtaininga more comprehensive pathogenesis model would require examining the whole system in which infection occurs, which includes health state of the host, the intestinalenvironmentwhereE.faeciumresides,andobtainingaricherpictureof howallpartsinteractwitheachother. Host-microbeinteractions Thereisadeepandcurrentlynotfullydefinedinteractionbetweenhumansand themicrobiotaresidinginandonus.Manyrecentarticleshaveemergedthatrefer totheimbalanceofbacterialspeciesinthegutwhereovergrowthofpathogenic bacteria(ofwhichE.faeciumisone)leadstoincreasedriskofdisease,andrefer tothisimbalanceas‘dysbiosis’(43).Disentanglinghowchangesingutmicrobiota occur and what consequence they confer is a complex subject, and some controversyexistsoverwhetherdysbiosis/imbalanceisasatisfactoryexplanation or whether other models need to be used in order to gauge how bacterial composition in the gut contributes to human diseases (44, 45). Outside the hospital and the selective effect of antimicrobial exposure, E. faecium from the commensal clade seem to outcompete nosocomial isolates in persistence over time(46).Thissuggeststhatmodernadvancedmedicaltreatment,mostlydonein medicalinstitutions,maycreateanignitionfordysbiosisandactsasa“virulence 10 enabler”byitself.Thepaperspresentedinthenextparagraphsaimtodescribe howVREhavebeenimpliedindysbiosis,diseaseandprotectionfromdisease. Brandletal.(47)presentsamodelofhowenterococcimayendupdominatingthe gut flora as a result of broad-spectrum antibiotic use, thereby facilitating host invasion. They experimented on a feedback-loop where Paneth cells in the gut lining excretes an antimicrobial peptide with activity against Gram-positive bacteriacalledRegIIIγinresponsetopresenceoflipopolysaccharidesoriginating fromGram-negativebacteria(48).WhenGram-negativebacteriaareclearedfrom the gut, the intraluminal concentration of RegIIIγ decreases, permitting VRE to dominateandtherebycreatingadysbiosis.VREovergrowthisthusperceivedto increasetheriskofinvasiveness. Asacontinuation,Hendrickxetal.(49)createdasimilarVRE-dominantdysbiosis andfounddramaticchangesofthegutliningofmiceasaresponsetoVREinjection andconcurrentantimicrobialtreatment,withhostfactorssegregatingfromthe gutwallandcreatinganextracellularmatrixaroundtheVREtoprotectthegut epithelium. The apical cell wall mucus layer thickness decreased during VRE dysbiosis. Epithelial architecture was also altered, which they were able to connect to intraluminal biochemical changes resulting in displacement of intercellular adherence junctions from the cell wall to the extracellular matrix surrounding the VRE. All these intra-luminal changes were clinically observed onlyasmildnon-inflammatorydiarrhoea. Enterococciinhabitacrowdedenvironmentinsidethehumangutandcompete with other species to survive. Their low virulence in immunocompetent hosts perturbs clear assertions of whether enterococci and their hosts co-exists in antagonistic,neutralorsynergisticfashion(50).Infact,VREintroducedpriorto induced cecal puncture giving a polymicrobial invasive infection actually protected mice by giving lower polymicrobial bacterial loads, milder inflammatoryreactionsandswifterrecoverycomparedtoVREnegativecontrol mice (51). E. faecium excretes the biofilm-associated peptidoglycan hydrolase SagA (52), which according to recent studies is able to prevent Salmonella pathogenesisthroughdegradingpartsoftheSalmonellacellwall(53).Thesecell wall fragments induce changes in the immunological pathways of the gut 11 epithelium which prevent Salmonella pathogenesis during infection (54) suggestingsynergybetweenpatientandE.faeciumduringSalmonellainfectionof immunocompetenthosts. Antimicrobialresistanceandtreatmentoptions Already in 1929, Alexander Fleming noted that enterococci were resistant to penicillin(55),asapreludetoreportsofthelimitedtreatmentoptionsoftoday. Intrinsicresistancereferstoanantimicrobialdrugnotworkingduetoinherent featuresinaspecies,likerestrictingdrugaccessibilitytotargetornothavingthe drug target at all. Acquired resistance occurs when the bacterium is baseline susceptible,butdevelopsresistanceeitherbysomaticmutationorbyacquisition ofgenesbyhorizontaltransfer.Tostartwith,E.faeciumisonbaselineintrinsically non-susceptibletopenicillin,ampicillin,cephalosporinsandotherß-lactams(25, 56)duetomutationsinthepenicillin-bindingproteinPBP5(57–60)(geneisalso horizontallytransferrable(61))aswellaspresenceofothergeneticdeterminants (62). Enterococci are in vivo resistant to clindamycin by efflux pumps, trimethoprim-sulfamethoxazolebymissingtarget,andclinicallyachievablelevels of most aminoglycosides due to enzymatic degradation (56, 63). E. faecium has also swiftly gained resistance through mutations or by acquiring resistance determinants towards antimicrobials such as quinolones, rifampicin and chloramphenicol,precludingtheiruse(56,64–68). Eventhoughenterococciareinherentlylow-levelresistanttowardsß-lactamsand aminoglycosidessuchasgentamicin,invivothesedrugsincombinationappears to have had synergistic effect as long as the bacterium does not harbour any additional gentamicin resistance determinants providing high-level resistance (60, 69–71), and has been considered standard treatment for decades. Mobileelement located enzymes modifying aminoglycosides are widespread in enterococci (60, 72), effectively obstructing the ampicillin plus gentamicin treatment alternative. In the case of high-level resistance and likely treatment failureusingthisregimen,vancomycinhasbeenareliablealternative. 12 Vancomycin Vancomycin was isolated from Amycolatopsis orientalis in 1953 as a cell wall compoundactiveagainstGram-positives,butwasconsideredsecondarytoother antimicrobials with better bactericidal effects, and as initially thought, better toxicity profiles (73). This changed in the 70s and 80s, as ß-lactam-resistant staphylococci (MRSA) began to emerge, prompting better characterizations of Figure1.Globalprevalenceofantimicrobialresistance,andtrendsinScandinavia Left:maps showingglobalburdenofresistancetowardsvancomycin,gentamicinand aminopenicillins from resistancemap.cddep.org. Data from 2014. Regions for which datadoesnotexistismarkedingrey,resistancedataaspercentageofisolatesinblue shades,thedarkershadethehigherpercentageareresistant.Right:Resistancetrends aspercentageresistantisolates/year,relatingtoNorway,SwedenandDenmarkforthe correspondingantimicrobials.NotedifferencesinY-axis.Surveillancedataandfigures downloadedfromEARS-Nethttp://atlas.ecdc.europa.eu/public/index.aspx 13 vancomycinuse(74)andsubsequententryintotreatmentrecommendations(75) as a last-resort antibiotic when other options were depleted. Vancomycin’s glycopeptidecousin,teicoplanin,wasalsointroducedinthisperiod(76,77),and several other less-used glycopeptides have appeared from the drug pipelines since(78–81). Normally,thecellwallisconstructedbyinterlinkingpeptidoglycansthroughthe terminalD-alanyl-D-alanine(D-ala-D-ala)aminoacidsofthepeptidemoietiesby transpeptidases (82). Vancomycin attaches to D-ala-D-ala through a hydrogen bond and denies transpeptidases to access peptidoglycans and thus polymerisation(82),seeFigure2.Vancomycinisabigmoleculelargelyinefficient as an antimicrobial towards Gram-negative pathogens since it cannot cross the Gram-negative outer membrane, but recent research on vancomycin analogues show that increasing polarity through modification may circumvent this issue (83). Vancomycin became increasingly used in the 80s, and the first reports of a vancomycin-resistant E. faecium (VREfm) outbreak (84) and first described occurrenceofaplasmid-mediatedvancomycinresistancedeterminant(85)(both in1988)signalledadevelopmenttothetroublingsituationwehavetoday.The dissemination of vancomycin-resistant E. faecium occurred swiftly in North American hospitals after that initial outbreak, while the later vancomycin resistance spread in Europe has been associated to the use of the glycopeptide avoparcinasagrowthpromoterinfarms(86–88).NorthAmericastillexperiences higher prevalence of vancomycin resistance in clinical isolates compared to Europe, as seen in the point prevalence figure obtained from resistancemap.cddep.organdearssnet.org(Figure1). E. faecium, called a “drug resistance trafficker”, has acquired no less than eight different vancomycin resistance gene clusters – vanA, vanB, vanD, vanE, vanG, vanL,vanMandvanNtodefenditself(89–92).Additionally,avanCgenecluster has been found in E. casseliflavus and E. gallinarum chromosomes (89). The functionofthesegenesistoprovideapathwaytoaltertheterminalD-alanineof theD-ala-D-alavancomycinbindingsitetoD-lactate(D-lac-vanA,B,D,M)orDserine(D-ser-vanC,E,G,L,N).Inmodifiedpeptidoglycanaminoacidside-chain productsterminatinginD-Lac,VanHproducesD-Lacfrompyruvate,VanXcleaves 14 Figure2.Thevancomycinresistancegeneclustersandresistancemechanism Functionsof the proteins encodedby eachgene in thevanAgenecluster(upper). Comparisons of several vancomycin resistance clusters found in enterococci, showingthevariationinorganizationoftheoperonsofvanA,vanB,vanC,vanD,vanE, andvanGgeneclusters(lower).Geneswithsimilarfunctionssharecolours.Upper figurereprintedwithpermissionfromHughes(265),lowerfigurefromDepardieu etal.(94). 15 offD-alafromthevancomycin-bindingregionoftheaminoacidside-chain,and VanA/B adds D-lac as the terminal peptide (93). See Figure 2 for graphical depictionoftheVanAresistancemechanismandvariationsinoperonstructureof some of the vancomycin resistance clusters encountered in enterococci. The terminalpeptidealterationprovidessignificantreductioninglycopeptidebinding affinity.D-ala-D-lacprovideshigherresistancelevelthanD-ala-D-ser.Vancomycin resistance generally occurs via activation of resistance effectors by a feedback loop consisting of a sensor (VanS) that phosphorylates a regulator/activator (VanR)whenvancomycinispresent.PhosphorylatedVanRsubsequentlybindsto nucleotides in vicinity of the promoters of the resistance effector genes, and activatestranscription.Vancomycinresistanceitselfismediatedbyseveralgenes (vanH/T, vanA/B/C/D/E/G/L/M/N and vanX) that when expressed forms a pathwayreplacingD-ala-D-alatoD-ala-D-lac(orD-ala-D-ser).Inadditiontothese essential effector genes, accessory effectors that increases glycopeptide MIC (VanY)orhavepoorlycharacterizedfunctions(vanZAVanWB)exist.SeeDepartieu etal.foranextensivereviewofthetopic(94).Theoriginsofthesegeneclusters seemtobediverse,anditislikelythatvancomycinresistancepredatesantibiotic usebymillenniaaccordingtoDNAextractionsfromglaciers(95). OnlyvanAandvanBseemtobeepidemiologicallysignificanttoprovideresistance in clinical isolates (22). Globally, vanA has been and is still the most abundant resistanceclusterinclinicalisolates,whereasvanBhasincreasinglybeenfound the last decade in Europe, and is the most abundant vancomycin resistance mechanism found in Australia (22, 23, 96). They are associated with mobile genetic elements. The vanA gene cluster is normally part of the Tn3-family transposonTn1546(89)andthemostprevalentvanBsubtypeisanintegralpart of the integrative conjugative element Tn1549/5382 (61, 97). This may explain their high relative abundance compared to the other vancomycin resistance clusters. Beyondvancomycin–availableantibioticstotreatVREfmandtheirresistance mechanisms Asvancomycinresistance,especiallyintheU.S.A.hasbecomerampant,several recently approved drugs for which E. faecium often show susceptibility have 16 entered into treatment recommendations to clear VRE infections. Thus, several recent reviews have addressed options beyond the ‘last resort treatment’ vancomycin(98,99).Iwillrefertotheseforfurtherdocumentation. Daptomycin,alipopeptidebactericidalagainstenterococcithroughbacterialcell membranedisturbance,isusedtotreatVREeitherbyitselforincombinationwith ß-lactams. Resistance towards daptomycin has been shown to arise through mutationsingenesassociatedwithcellmembraneconstructionpathways(liaFSR, yycFG) after prolonged daptomycin exposure (98), and de novo resistance developmentmayspontaneouslyariseovertimeduetoclinicaldaptomycinuse (100). Lipoglycopeptidedrugsliketelavancin,dalbavancinandoritavancinaremodified versionsofglycopeptidessuchasvancomycin.Theybindtothesametargetasthe glycopeptides but are thought to possess superior bactericidal action by closer association with the cell membrane by appendage of a lipophilic moiety. Both telavancinanddalbavancinhavepoorantimicrobialeffectsagainstVREduetothe alteredbidingsiteprovidedbyvancomycinresistancegeneclusters,andarethus notusedclinically.OritavancinontheotherhandshowactivityagainstbothvanA- andvanB-containingenterococciduetowiderinteractionstothepeptidoglycan precursors.Sinceithasrecentlybeenintroducedintothemarket,largestudies describing oritavancin activity have not been published yet. Oritavancin is consequentlynotinwidetherapeuticuse. Otherantimicrobials,theoxazolidinoneslinezolidandtedizolid,actbybindingto ribosomes and prohibiting mRNA-protein translation through abrogation of aminoacyl-tRNAdocking.Thismechanismensuresbacteriostasisinenterococci unlessspecificmutationsoccurinthe23SrRNAgene.Suchmutationsgenerally confer cross-resistance to linezolid and tedizolid (101). Enterococci possess severalcopiesof23SrDNA,andbecomeincreasinglyresistantasmoreofthegene copies gain these mutations. The horizontally transmissible resistance determinantscfrandoptrA,respectivelyencodinganrRNAmethylaseconferring resistancetolinezolidandanABCtransporterpumpingoutbothlinezolidand tedizolidhavealsobeenfoundinenterococci(102,103). Streptograminsalsoattacktheribosomethroughbindingtothe50Ssubunit,and the two drugs dalfopristin and quinopristin (Q/D) are delivered together since 17 theysynergisticallyprovidebactericidebyirreversibleinhibitionoftheribosome. Resistance towards Q/D is mediated by multiple identified resistance determinantsthataltertheribosome,providehindrancetotarget,pumpQ/Dout of the cell or break either one or both Q and D thus hampering the synergistic effectsandthereforebactericide. Tigecycline also binds to the ribosomal subunit 16S and prohibits docking of aminoacyl-transferRNAresultingintranslationhalt.Reservationsagainsttheuse ofthisdrughasarisensinceithasahighvolumeofdistribution,whichcauseslow concentrations of free tigecycline at infection sites. This becomes a problem as observedmutationsinrelevantribosomalgenes,whichslightlyincreasesMICfor thisantimicrobialrapidlycreateproblemssinceobtainableantibioticlevelsareso low. Whydoesresistanceaccumulationoccur? In E. faecium, resistance development seems to occur in an additive manner in which certain strains amass one resistance determinant after another, while others stay susceptible and easier to manage during infection. As mentioned above, rise in E. faecium infection incidence is able to explain the rise of the Enterococcus(22). AhighlyinterestingtheoreticalpaperbyChangetal.(104)attemptstoidentify theoriginsandproliferationofmulti-resistanceinbacteriaandattempttosingle out individual causes. Several of these multi-drug resistance development mechanismsshowninFigure3havealreadybeenshowneffectiveinE.faecium. Resistancegenesmaybeco-localisedonmobilegeneticelements[examples:(61, 103,105–107)]andmayassuchbesubjecttolinkageselection.Thenosocomial clade of E. faecium is known to contain a wealth of MGEs and lack ‘immune defences’againstthemsuchasrestriction/modificationsystemsandCRISPR-cas (24),whichimplyapotentialforincreasedmutationrateintermsof 18 Figure 3. Mechanisms by which multiple resistance (MDR) patterns arise in bacteria(A->D)aswellastheirdisseminationandpersistencewithinsusceptible bacterial communities (E->I). Resistance genes or gene clusters may confer resistance to multiple antibiotics or even multiple classes of antibiotics, here exemplifiedbyamulti-drugeffluxpump(A).DiverseresistancemechanismsoftencoresideonMGEsand/orinproximityonthechromosome,andareco-inherited(B).High mutation/recombination rates permit swifter acquisition of resistance trough mutations or horizontally transferred DNA (C), but may also be an effect of antimicrobialexposuresincebacterialstressincreasesmutationrates.The“slippery slope” thesis states that minorities of a bacterial population statistically may be resistanttooneorsomeoftheantimicrobialsusedduringmultidrugtherapy(using severalantibioticsatoncetofightoffinfections)andhasahigherpropensitytoacquire additionalresistance(D). Resistance determinantsmay persist withinbacteriaeven withoutantibioticexposureduetogeneticlinkagetoothergenesencodingseparate favorabletraitstothebacterium(E).Thebystandereffect(F)happensassystemically administered antibiotics kill susceptible bacteria wherever they are present in the body(notonlywherevertheinfectionisat),leavingresistantbystanderstoproliferate intheirdeadcomrade’sabsence.Resistancephenotypesmayconferafitnesscostto bacteria,meaningthattheygrowmoreslowlyandlosetheirplaceinthepopulationto susceptibleones.Ontheotherhand,thecombinationoffitnesseffects(epistasis)may be positive (leading to better fitness) in MDR strains compared to single-resistant strains (G). Niche differentiation (H) refers to MDR bug proliferation in niche environments(suchashospitals)thatcontainfrequentexposuretoselectingstressors (like antibiotics). Finally, a MDR strain introduced into a bacterial population of susceptiblestrains(inforinstanceapatient)arewellabletoreplacethemifthereis antibioticselectionofwhichtheMDRstrainisresistant.Printedwithpermissionfrom Changetal.(104). 19 MGEreorganisation.Inaddition,duetotheintrinsicresistancetowardsarangeof commonlyusedantimicrobialsthatE.faeciumdemonstrates,bystanderselection during treatment for other infections is intuitively a present factor. Use of antimicrobials is more densely occurring in hospitals than in the community, which may explain how high-risk E. faecium clones are often found in health institutions. As demonstrated by Brandl et al. and Hendrickx et al. (47, 49), E. faecium has a potential of ‘taking over’ the gut during broad spectrum antimicrobial treatment as other bacteria succumb to the treatment while E. faeciumsurvives.Finally,ahostandaresistancegenecontainingelementmaycoevolvetoalleviateanyinitialfitnesscostintroductionoftheelementmayhave burdenedthehostwith(108,109). Horizontalgenetransferandmobilegeneticelements E. faecium is considered a master of HGT and understanding how genes move aroundinthebacterialpopulationandwhichtraitstheyconferisacomplexbut important task in order to reveal their basal biology. Mobile genetic elements blendinaPandora’sboxwheremultiplemovementmechanismsoftenco-existin vicinity of each other, creating multiple recombination- and gene arrangement possibilities. HGT as a phenomenon is a large field to embrace in some small sentences and paragraphs,andhastobeseeninthelargerscopethanthespreadofantimicrobial resistanceandputativevirulencegenes(110).IfweconsideranystretchofDNA as under selection, following the thinking of Dawkins’ selfish gene (111) or Baquero’sterm‘piece’–anorderedstructurethatformspartofaseparatehigherorderedstructure(112)–HGTenlargesthe‘playground’inwhichanyDNAisable to exist, and contribute to disseminate genetic structures throughout different lifeforms.Indeed,horizontaltransferisshownastheprimarydriverofexpansion ofproteinfamiliesthroughprokaryotesasopposedtoslowerprocesseslikegene duplication and subsequent specialisation (113). The transferred genetic structuresthemselvesoftenseemtocodeforperipheralfunctionspredominately underneutralselection(114)andtendinaggregatetobelessexpressedthancore genes to mitigate the potential for reduced fitness in hosts that harbour them (115, 116) in order to persist in new hosts. Gene exchange between bacteria 20 seemsdependentona‘habitat-specificgenepool’whereniche-adaptivegenesare shared(114,117).ThemajorityofHGTeventsoccurbetweengenomesofhigh sequencesimilarityandsimilarGCcontent(genomesvaryinamountofguanines and cytosines compared to adenines and thymines), and these two traits representthelargestbarrierofHGTbetweendifferentstrainsandspecies(118). Taking this discussion down to the ground again, several mechanisms are responsibleforshuttlinggenesfromonebacteriumtoanother,andthosewillbe brieflyexplained.Inaddition,specificMGEtypeslikeplasmids,transposons,ICEs and so forth will conceptually be described. Furthermore, bacterial immune defencesaffectingthedynamicsbywhichMGEsmayormaynotenterandsurvive in the cell are described, as the nosocomial clade of E. faecium seemingly lacks thesesystems. Horizontalgenetransfermechanisms Horizontalgenetransferisaprocesspermittingtheexchangeofgeneticmaterial betweenorganisms.Geneticexchangehappensthroughdifferentmechanisms. • ConjugationisaprocesswheretypeIVsecretionsystemscreatechannels between bacterial cells through which DNA is transferrable, and is the dominantHGTmechanismofenterococci. • Transformationoccurswhenbacteriaareabletoassembleanapparatus abletointernalizenakedDNAfloatinginthecells’immediateenvironment. • Transduction happens when DNA is trapped within bacteriophages (bacterialviruses)thathaveinfectedahost,andisreleasedandinserted intothegenomeofanewhostafterbacteriophagetransmission. In addition, several less characterized gene transfer mechanisms such as nanotubes(119),micro-vesicles(120)andgene-transferagents(121)havebeen described,nodocumentationfortheexistenceofthesemechanismsinenterococci hasbeenpublishedtomyknowledge. Type4secretionsystems Type4secretionsystems(T4SS)arethechannelsbywhichplasmids,ICEsand sometimesotherDNAmaypassthroughfromcelltocell.InE.faecium,conjugation 21 isconsideredthemostimportantHGTmechanism(122)andthusneedadditional functional explanation. There are several system variants as determined by comparison of T4SS from Gram-positive, Gram-negative and mobile element sources (123–126), but most systems share some basal common features. The process of conjugation starts with nicking the double-stranded (ds) DNA into single-stranded(ss)DNAbyarelaxase,oftenreferredtoasaMOBprotein.The relaxase recognises a specific site, the origin of transfer (oriT), which must be present for initiation of transfer to occur (127). See Figure 4. Using the nomenclatureofthemodelT4SSfoundinAgrobacteriumtumefaciens,therelaxase then interacts with a Type 4 Coupling Protein (T4CP), called VirD4. VirD4, an ATPase fuelling propagation of transfer-DNA, subsequently interact with other ATPasessometimespresent(VirB4,VirB11)topasstheDNAthroughthechannel (123,128).TheT4SSchannel,alsocalledMatingPairFormation(MPF)complex, is a large cell membrane-spanning assembly of multi-copy proteins guiding the DNAfromdonortorecipient(126). Plasmids Plasmidsareextrachromosomalstructuresabletoautonomouslyreplicatewithin its host. They are widespread in enterococci, and enterococcal strains often harbourseveralplasmids.Plasmidsvaryincomplexity,andmayrangeinsizefrom afewkilobasesto0,2-0,3megabases(127).Thissizerangeisalsoreflectedinthe numberofgenestheypossessandthuswhatrangeoffunctionstheyencode.The simplestandsmallestplasmidsoftenjustencodetheirownreplicationapparatus, are often present in many copies within a bacterial cell, and are referred to as “cryptic”meaningthatthereisnoapparentfunctionalbenefittoharbourthem. Plasmidsthataremorecomplexcontainadditionalgenesencodingfunctionssuch as antimicrobial resistance genes, stability modules (discussed below) and conjugation modules. They need other mechanisms to persist in the cell than smaller ones, and by looking at gene content, are more likely to contain genes encodingcentralfunctionstotheirhostssurvival(127).Plasmidsareconjugative whentheyencodetheT4SSdescribedabove,andmobilisableiftheycontainoriT and parts of the conjugation apparatus, most commonly the relaxase and sometimes a T4CP. Recent compilations of plasmid sequences and attempts to 22 Figure4.Mobilityofplasmids(A,B),andorganizationofmobileelements(C-F).A: basalelementsofamobilisableorconjugativeplasmid,andthesizedistributionofthese plasmids (B). C: IS-element. D: typical transposon. E: composite transposon. F: Integrative Conjugative element. A and B printed with permission fromSmillie et al. (127),C-FfromDarmon&Leach(137). classify them have shown that every scheme carries downsides due to the observed complexity. As reported by Shintani et al. (129) which analysed over 4600plasmidsdepositedinNCBI,classificationbyreplicationgenesismuddled byfrequentmosaicismwithpresenceofmultiplereplicons.Classificationsusing relaxases/MOB genes excludes non-mobilisable plasmids, which accounted for themajorityofthedataset. Inenterococci,alargecompilationandclassificationofenterococcalplasmidshas recentlybeenproduced(122),toserveasasubsetofthatreportedinShintaniet al.Inshort,plasmidreplicationproteinsmaybeclassifiedbymodeofreplication, sequence similarity and subdomains present within the translated gene. 23 Replicationproteinsmayreplicateplasmidsbytoways–uni-directionalleading strand Rolling Circle Replication (RCR) and bi-directional Theta (q) replication (130,131).RCRplasmidsareoftencrypticandsmall,asthisreplicationmethodis prone to mistakes and becomes unstable when they are over 10-15 kb. qreplicatingplasmidsaresubdividedintorepliconfamiliesinenterococci;Rep_3, Inc18 and RepA_N. Briefly, Rep_3 plasmids are narrow host range plasmids of similarsizeasRCRplasmidsandlikewiseareoftencryptic.Inc18plasmidsare often conjugative 25-50 kb broad host-range plasmids frequently harbouring resistancedeterminants.RepA_NplasmidsareprevalentinlowGCcontentGrampositives,andarepresentinawidesizerange(10-300kb).Individualplasmids show a narrow host range. This classification scheme is often disturbed by recombination and merging of especially Inc18 and RepA_N plasmids, creating mosaicstructures(127,132–135). Transposons,integrativeconjugativeelementsandgenomicislands Ever since Barbara McClintock discovered genes which only apparent function wastoencodetheirowntransposition(movement)fromonegenomiclocationto another(136),multipleclassesoftransposableelementsusingadiversearrayof transfer mechanisms located throughout all lifeforms including bacteria have been described (137). As extensively reviewed by Darmon & Leach (137) and Siguieretal.(138),transposasescomeinmanyshapesandformsinbacteria,and combine to create an enormous amount of elements able to jump around the genome through diverse mechanisms. The basal unit of mobile elements is the transposase(Tnp)itself.Tnpsnormallybindstospecificinverted(IR)ordirect (DR)repeatsup-anddownstreamofthetnpgene,andexcisesandintegratesthe region between the repeats by two main mechanisms – cut-and-paste or copyand-paste.Tnpsare organizedinto differentfamiliesbasedontheirproperties. FirstandforemostistheactiveproteinsitecleavingDNAduringtransposition,of which there are five main motifs: DDE, DEDD, HUH, and site-specific transposases/resolvases containing serine or tyrosine in the active site [also functionally reviewed (139, 140)]. General mode of transposition, length and sequence of IRs/DRs, functional domains in transposase proteins, and target 24 specificityarealsoamongthepropertiesconsideredtoplaceeachelementwithin anIS/transposonfamily. A unit transposon carries passenger genes in addition to the tnp within the IRs/DRs.Compositetransposonsarerecognisedbytwotransposonsofthesame ISfamilysurroundingastretchofDNAcontaininggenes,whichmaybepassengers if the transposase recognises the IR’s on either side and thus moves both IS elementsandtheintermediateDNAstretch. Mobile elements may grow even larger, engulfing multiple passenger genes or even complete pathways of gene clusters supporting complex functions. These larger elements, often called genomic islands (GIs), integrative conjugative elements(ICEs)iftheyareconjugativeorintegrativemobilisableelements(IMEs) iftheyareabletohitch-hikewithotherconjugativesystems,areverydiverseand likely more prevalent in nature than currently shown as we still struggle to identify them (141). Evidence suggests that ICEs may be more abundant than conjugativeplasmidsinprokaryotes(142).ICEsandIMEsmostoftendemonstrate site-specific integration and excision mediated by tyrosine or serine recombinases,mayrecombinebystackingthemselvesintheirinsertionsite,and insomecasesdemonstratereplicativepropertiesoncetheyareexcisedandinan extrachromosomal,circularform(141). Howdomobilegeneticelementspersistinhosts? BacteriaandtheMGEsthattransfersbetweenthemaretakingpartsinanarms race where both parties harbour mechanisms designed to defend against MGE inclusion for the bacterial host, or ensuring persistence for the MGE. These systemsmayalsodemonstrateotherfunctionsinthecell,whichintroducesexiting dynamics we do not fully understand. The three most studied attack/defence mechanismsinteractingwithHGTaredescribedbelow. Toxin/Antitoxinsystems Toxin-Antitoxin (T/A) systems, also called post-segregational killing systems, consistofaT/Apairdesignedtokillthebacteriumifthegenesencodingthem becomesegregated(thatis:lost)fromthegenome.Thisworksastheantitoxin inhibitstoxinfunction,butisinherentlylessstableinthecellthanthetoxin.Asthe 25 genes encoding T/A are lost, the unstable antitoxin will not be transcribed anymoreandsinceitisswiftlydegraded,thestabletoxinwillkillthecell(122). ThereexistfivetypesofT/Asystems,ofwhichonlyType2seemtobeprevalent inenterococci.Briefly,T/Atypesaredividedbythetoxin/antitoxininteractions; antitoxin binding to toxin for inhibition: mRNAantitoxin/mRNAtoxin (Type 1), proteinantitoxin/proteintoxin (Type 2), and mRNAantitoxin/proteintoxin (Type 3), antitoxinbindingtotoxinsubstrates(type4),andantitoxindegradingthetoxin (143,144).EventhoughT/AsystemswereoriginallyassociatedwithMGEsasa factor ensuring their persistence in cells, T/A systems are also found in chromosomesofbacteriawithoutassociationtoMGEs.Thissurprisingfindinghas ledtoanuancedviewofT/Asystemsfunction,astheyalsoseemtobeapartof down-regulating cell growth and division under stressful conditions, apoptosis and/or other cellular processes (144). Type 2 T/A-systems found in E. faecium includesAxe/Txeandomega/epsilon/zeta(145,146).Theseplasmid-locatedT/A systems are enriched in clinical MDR isolates (147, 148). Also, chromosomally locatedHigBAEfandMazEFEfT/Asystemshavebeenassociatedwithexpression patternsofseveralenterococcalvirulencegenes(149). Restriction/modification(R/M)systems R/M systems consists of a restriction enzyme cleaving unmethylated DNA in a site-specificmannerandamethylationenzymeattachingamethylgrouptothe samesitetherebyprohibitingDNAcleavage(150).Therearefourmaintypesof R/Msystems,ofwhichtypeIIcomposedofaseparatemethylaseandrestriction enzymeandtypeIconsistingofacomplexofmethylation/restriction/specificity subunitsarethemostcommoninprokaryotes(151).3rdgenerationsequencing byPacBioenablesidentificationofmethylatedsitesongenomesindicativeofR/M activity, and a recent survey of 230 diverse bacteria and archaea found methylationin93%ofthegenomes.Thesemethylationmotifscouldinmostcases beconnectedtoaR/Msystem(151).BroadersearchesidentifyingR/Msystems ingenomicdatasetsalsofounddispersalofR/Msystemsinprokaryotes,implying thattheyserveimportantandcurrentlyunknownfunctionstoprokaryotebiology (150). 26 R/MsystemshasbeenproposedasabacterialdefenceagainstforeignDNAasthe hostgenomewillbeprotectedagainstcleavageduetomethylation,whereasthe unmethylated foreign DNA will be cleaved at arrival (152–154). This genomic defenceisonlyactiveaslongastheinvadingMGEdoesnotsucceedininhabiting the cell for long enough to methylate its restriction-susceptible sites therefore becomingimmune(155).R/MsystemsarealsofoundonmanyMGEtypes,and are then thought to act as post-segregational killing systems by killing the new host if it doesn’t allow persistence of the acquired MGE by methylation of its chromosome(150,156).This“geneticaddiction”alsoappeartoalterdynamicsof movementofMGEsthroughbacterialpopulations(157).TypeIImethylasesare frequently found without their corresponding restriction enzyme, and these appear to alter expression of genes selectively leaving gene-regulatory regions unmethylated(151,158). CRISPR-Cassystems Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas enzymes work by cleaving foreign DNA and RNA through sequence specific cleavage by Cas nucleases through hybridization of guiding sequences (spacers/crRNA)totheDNAorRNA,seereviewbyHille&Charpentier(159).The CRISPRregionconsistsofshortsequencesbearinghighidentitytoDNA/RNAof phages and conjugative elements previously encountered by the isolate and its ancestors.Spacersareseparatedbyshortrepeatsequencesthatservetoseparate eachuniquespacerthroughcleavageofthefullytranscribedCRISPRarray,andto provide interaction with the Cas nuclease apparatus. In addition to adaptive immunedefence,CRISPR-CashasalsobeenimplicatedinDNArepair(160,161), gene regulation (162) and structural genomic rearrangements (163) by containingself-recognisingspacers.Thiswouldimplythatbacteriaareproneto auto-immune disease (164) and that presence of CRISPR-Cas may have both adaptiveandmaladaptiveeffects. Interestingly,thenosocomialcladeofE.faeciumislargelydeficientoftheCRISPRCassystems(24,165),whichisassociatedwithincreasedpresenceofMGEs.This poseaquestionofwhetheramountofHGTandactivityofCRISPR-Cassystemsis negatively correlated, of which the answer seems to be no (166). Conversely, 27 CRISPR-Cas presence and activity is positively associated with resource availability (food) (167) and inversely correlated to mesophilic (temperate habitat) lifestyle (167, 168). Authors suggests mutation rate is correlated with temperature,asbacteriaandMGEsinmesophilicenvironmentsaremorerapidly mutating. High mutation rate would imply that spacers need to be frequently exchangedtoaccommodatemutatedtargets,whichisastrenuoustasklikelyto causenegativefitnesseffectsandsoadaptivesystemsarelikelylessefficientthan innatedefenceslikeR/Msystems.Thisprovidesanalternativetheoryforabsence ofCRISPR-CasinE.faecium. Howdowecomparebacteria? Animportantaspecttoconsiderwhendealingwithbacteriaisthenotionofhow they evolve. Unlike us, who seemingly only accumulate mutations through the vertical route – that is, from parent to child – many prokaryotes additionally possesstheabilitytotransfergenesbetweenthemselvesandtherebytobothgain andlosetheminaprocesscalledhorizontalgenetransfer(HGT).Treatinggenes asacommodity,abacterialisolatemayrapidlyalteritsgenecontentandthereby phenotypetoaccommodateadifferentenvironment,andassuch,evolve. This aspect thus initiate thoughts of a concept where we no longer merely are interestedinwhetherthereisanE.faeciuminfectionornot,butalsowhichisolate. Canthisisolateberelatedtootherisolatesalsocausinginfection?Doesitcontain specific traits able to at least give some indication of why exactly this isolate invadedapatientandcausedseriousproblems? Beingabletoanswersomeofthesequestionsrequirethehelpofcertainmethods. Pathogen surveillance obviously require recording data of when and where a pathogen caused an infection to seed suspicions of an outbreak – that one particularlyvirulentbugwasabletodisseminateitselftoseveralpatientsfroma commonsource.Earlymethodsforbacterialtypingincludedphenotypictyping systems using serotypes, biotypes, phage-types and antibiograms (169). In addition to that, there exist several methods able to assess genomic relations betweenbacteria,whichhavefollowedthegeneralscientificdevelopment.Widely used early adoptions in pathogen surveillance include wet-lab based molecular 28 methods which takes advantage of subtle genomic changes which can be visualizedthroughpatternsonagelandthuscreatea“fingerprint”ofeachstrain. DNAfingerprints Pulse-Field Gel Electrophoresis (PFGE) (170, 171) has been the most widely adopted method in enterococcal outbreaks since the nineties. It involves immersingisolateculturesinagaroseplugs,chemicalandenzymaticcelllysisand subsequent cutting of intact whole-genome DNA by a restriction enzyme that cleaves DNA sequences in a sequence-specific manner, ideally fragmenting the chromosome into 20-30 fragments. The resulting large genomic fragments are separated by agarose electrophoresis overnight by an electrophoresis chamber withelectricpulsefieldsalternatinginanglerespectiveofthedirectionDNAruns throughthegeltoimproveseparationoftheselargefragments.TheDNAisthen dyed, and the fragments appear as fingerprint patterns, which can be directly compared to other isolates in the same gel. From there, comparison between bands (number of matches and relative size and presence/absence of mismatches)isusedtodeterminerelatednessbydefinedcriteria(170). Other methods in the same “fingerprint” category includes amplified fragment length polymorphism (AFLP) (172) and restriction fragment length polymorphism(RFLP)(173)whicharevariationsofcuttingDNAwithrestriction enzymesandamplificationofDNAbyPCR.Ribotypingisathirdmethod,involving cutting whole-genome DNA with restriction enzymes, perform a gel electrophoresis and then transfer the fragments onto a membrane (Southern blotting) which is then hybridized with probes specific to labelled rRNAs, producingfingerprints(174,175). ReasonstoperformcomparisonsofbacteriausingDNAsequences Giventhatthe“fingerprintmethods”mentionedabovearejustproxiesforactually comparingtheDNAsequencesthemselvesandarecostlyandtime-consumingto perform,furtherdevelopmenthaslargelycentredaroundcomparingsequences directly.Otherdrawbackstoabove-mentionedmethodsincludepoorportability between labs and maybe within labs, as well as difficulty assessing level of 29 difference between strains. Different methods needed to be used to address differentquestions:methodswithhighdiscriminationsensitivityareneededto group outbreak strains within a hospital, whereas lower discrimination thresholdsareneededtoanalyseglobalevolution. Allele-basedclusteringmethods The most important early adoption of genomic global-scale comparisons of bacteriaonstrainlevelcamewithmulti-locussequencetyping(MLST)(176),first developedforNeisseriameningitidisandlateradoptedtomanyotherbacteria.The method is based on choosing seven house-keeping genes ideally dispersed as muchaspossiblethroughoutthebacterialchromosome,sequencethem,andthen adopt them into an allele-based scheme. ‘House-keeping genes’ refer to genes present in all strains of a species which are not super-conserved and never mutating,andnotactivelyselectedupon–neutralselectionpressure.Eachallele isassignedanumber,andifthealleleinyourgeneisdifferenttothosealready present in the database by any means, it gets a new number. The allele combinationscombinetocreateaSequenceType(ST),whichclustersbynumber of allele differences between the STs. As clinical isolates are sequenced in increasing numbers, additional genes are included in these schemes to gain resolution. Other approaches extending the allele comparison principle include MLSTofribosomalgenes(rMLST),genescommontoallormostoftheisolatesof a species (core-gene/cgMLST), or comparisons of all encountered genes in the entirebacterialpopulation(pan/wgMLST)(177). Wholegenome-basedcomparisons Many comparative studies in the microbiological field seek to explain what the populationstructureofaspecieslookslike.Canstrainsbeseparatedbyecology, geographicalboundaries,pathogenicity,amountofantimicrobialresistanceorby othertraits?Canthephylogeny(’familytree’)ofaspeciestellanythingaboutthe evolution of that species, and possibly anything about adaptation to certain environments? Mostly, such studies start with a phylogeny, which may be created by multiple methods(178).ThebasalprocessistoidentifywhichstretchesofDNAispresent 30 in all isolates in the dataset (the core genome – interchangeable with common genes),andthenidentifyindividualbasesthataredifferentbetweentheisolates –so-calledsingle-nucleotidepolymorphisms,orSNPs.Asmostofthesestudiesuse large amounts of isolates sequenced by short-read technologies like Illumina, a common method to identify SNPs is to find one or a few well-assembled reference(s),andmapalltheoutputfromthesequencertothatreferencetofind theseSNPs.Theoutputfromthesequencerispaired-endreads–normally1000 baseslongDNAmoleculeswith≈100to300knownbasesineitherend.Thereare several land-mark papers using this approach (179, 180). It is also possible to assemblethereadstoobtainwholegenomesequences,andidentifycommonDNA through whole-genome alignment, see Treangen et al. and references therein (181). SeveraladditionalanalysesmaybedoneontheseSNPstovalidatethem.Youmay usestatisticsofeachSNPtoensurethatthisparticularSNPoccurinallreadsand isnotproducedbyaflukeduringread-mapping,forexamplewithGATK(182). PhylogeneticsoftwareproducingtreestendtoassumethatallSNPsarevertically inherited,whichisoftennotthecaseasmany/mostofthespeciestransfergenes horizontally, thus skewing inference of how they are related. Several methods existtoremoveoraccountforSNPsthatlikelyoriginatefromhorizontaltransfer andrecombination,tocreatealess‘polluted’collectionofSNPsfromwhichamore correcttreecanbeinferred–forexampleGubbins(183),BratNextGen(184)and ClonalFrameML (185). The finished dataset of SNPs will then be fed into a phylogenetic software, of which there are several algorithms to choose from (178). Identifying common DNA content between strains is also possible to do by clustering genes by similarity, subsequently gaining a matrix of which encounteredgenesarepresentinwhichgenomesasoutput(186).Sizeofthecore genome (genes present in all strains – interchangeable with common DNA segments) and pan-genome (genes present in some or one strain) is then computed (187). These questions are then often put in context with metadata pertaining to each isolate to possibly say something about the evolution and adaptationofthespeciesbasedonpresenceandabsenceofgenes.Manysoftware packagesareavailabletoperformsuchanalyses(188–191),butnotallscalewell 31 tolargedatasetsduetodifferencesincomputationalefficiency.Asanextensionof pan-genomics, bacterial Genome-Wide Association Studies (GWAS) pairing phenotypeswithSNPs,presenceandabsenceofgenesandothergeneticregions likeregulatorysequenceshasbeguntoemerge(192–194). The field is rapidly changing with introduction of new softwares which do the sametypeofanalysisasthepreviousones,butfaster,slightlymoreaccurately, and/orwithadditionalavailableanalysisstepsandoutputs. WhatdocomparativemethodstellaboutE.faecium? Comparative analyses of E. faecium from different origins using molecular fingerprintingmethodslikeAFLPandribotypingwereabletoshowthatE.faecium could be divided by which hosts they originate from, as well as identifying a subgroup associated with hospital-acquired infections (195–199). An MLST schemeforE.faeciumwascreated(200),whichpermittedglobalcomparisonsof which STs and ST clusters (clonal complexes - CCs) dominated in different environmentsregionallyandglobally.Soonafter,reportsarrivedwhichindicated thatSTslocatedinCC17wereoverrepresentedamongclinicalsamples,andlikely weremoreresistanttoantimicrobials,andmorevirulentthanstrainsinotherCCs (201–203). The method normally used to assess relatedness of STs is eBURST (204,205),whichclusterSTstothelikelyancestorandcreaterelationnetworks basedonnumberofsharedalleles.InacomparisonofeBURST-generatedrelation networks,Turneretal.showedthatexcessiverecombinationwithinaspecieswill distortthenetwork,withconsequentlystraggledeBURSTnetworkswherelikely unrelatedCCsbecameincorrectlylinked(206).TheE.faeciumeBURSTnetwork wasoneofthese.Asaresult,Willemsetal.addressedtheissuebyusingadifferent analysis(BayesianAnalysisofPopulationStructure–BAPS)onthesameMLST data.Thisanalysisrevealedthatnosocomialisolateslargelycouldbefoundintwo subgroups,comprisedofthreeCCsoffoundersST17,18and78(207).Theyalso performed an analysis aimed at assessing how much recombination occurred between the different defined groups, and found it to occur rarely. The overall conclusion was that eBURST-generated clusters were indeed artificially linked. TheyalsofoundassociationofthenosocomialCCstoSTsoriginatingfromstrains found in livestock. At this point, not many strains had been whole-genome 32 sequenced,butthefewthatweregotincludedinawholegenomesequence(WGS) phylogenyshowingthatthenosocomialCCs(andthusthetwoassumedseparate BAPSgroups)weredistinctfromlivestock-andcommensalisolates.Initialwholegenomestudiesassessingthepopulationstructureofenterococci(208,209)also suggested a deep division between strains found in nosocomial settings and elsewhere to the point where there was suggested to create a new subspecies based on average nucleotide identity (ANI) scores dividing this clade from the others.Inallthesestudies,thenosocomialstrainscontainedmoreresistance-and virulence determinants, in addition to enrichment of certain mobile genetic elements. Withaccesstomoreisolates,Lebretonetal.couldascertainwithbetterresolution theresultsfrominitialWGSanalyses.Theyalsofurtherelaboratedtheassertions ofhowlongagothedifferentE.faeciumlineagesdiverged,andfoundindications that the livestock lineage departed from the commensal lineage roughly 3000 years ago, corresponding with humans domesticating animals, and that the nosocomial lineage departed from the livestock lineage within a decade ago, parallelwiththeuseofantimicrobials.TheyalsofoundthatHAIstendedtolack CRISPR-cas9 and restriction/modification systems, commonly regarded as bacterial immune defence systems (24), an aspect also specifically investigated before(165,210).Furthercharacteristicsdividingtheselineagesaregenomesize. Nosocomial isolates are on average larger with an additional gene content associatedwithMGEs,resistanceandvirulencedeterminants(24,211). ThereexistsacgMLST-schemeforE.faecium(212),butitisnotopensource,and hasnotbeenwidelyimplementedyetsinceyouhavetopaytouseit.However, cgMLSThasshownthatthenosocomial-andlivestocklineagemaybepartedinto severalsub-clusterswherenosocomialstrainsclusterbythemselves,commensals likewise, and some strains from nosocomial- and livestock origins cluster in between(23). 33 34 Summaryofpapers Paper1:AmulticentrehospitaloutbreakinSwedencausedbyintroductionof avanB2transposonintoastablymaintainedpRUM-plasmidinanEnterococcus faeciumST192clone Inpaper1,theaimwastodeterminetheoriginandmolecularcharacteristicofa vancomycin-resistant E. faecium clone spreading through hospitals in three countiesinSweden. • A nosocomially adapted ST192 E. faecium clone caused an outbreak in Sweden.Theclonespreadintodifferenthospitalsinthreecounties. • The outbreak clone was resistant to vancomycin at variable levels, in additiontociprofloxacinandampicillinathighlevels. • VancomycinresistancewascausedbyavanB2resistanceclusterlocated onaTn1549ICE,whichwasinsertedonareppRUMplasmidcontainingan axe/txetoxin/antitoxinstabilizationmodule. • This plasmid was able to transfer between strains, and in the process mergedwithareppRE25plasmidco-localisedintheclinicaldonor.Afterthe merge, the reppRUM+reppRE25 plasmid was able to transfer at a higher frequencyinsubsequentfiltermatingexperiments. • TheoccurrenceofclonalE.faeciumbothwithandwithoutvanBindicate thatthecloneinitiallywasasuccessfulvancomycinsusceptiblecolonizer ofhospitalizedpatientsinwhichTn1549containingvanB2wasintroduced, likelyviaanaerobegutbacteriawithinthesameenvironment. • ThephenotypicmethodtoscreenforVREpriortotheoutbreakusedahigh concentrationofvancomycin(32mg/L),whichproducedanunnecessary risk of false negative results for low-MIC (4-32 mg/L) vanB VRE, thus underestimatingfactualVREincidence. Paper2:SilencedvanAgeneclusteronatransferableplasmidcauseoutbreak ofVancomycin-VariableEnterococci Intwopatients,anE.faeciumstraincontainingthevanAgenebutwassusceptible to vancomycin gained resistance towards vancomycin during the course of 35 treatment.Asubsequentscreeningrevealeddisseminationofthisstraininseveral hospitals.Theaiminpaper2wastodeterminewhythisstrainconvertedfrom vancomycinsusceptibletoresistant. • A clonal outbreak of ST203 E. faecium occurred in multiple hospitals in Trøndelag,Norway • All studied isolates carried the vanA gene cluster with additional IS elementsinsertedintheintergenicregions. • One of these IS elements (an ISL3 element) silenced the vanHAX operon resultinginsusceptiblephenotypesbyhamperingtranscriptionactivation bythevanRSregulatorloop. • Prolongedinvitroexposuretovancomycinatsub-lethalconcentrationlead to excision of the ISL3 element upstream of the vanHAX operon. This restored the regulator loop and resulted in high-level glycopeptide resistancewithintwodaysofvancomycinexposure.Twopatientsfromthe startoftheoutbreaksufferedtreatmentfailureasaconsequenceofthisIS elementsilencingtheresistanceexpression. • The vanA gene cluster was located on a reppRE25 plasmid, which was transferrabletoanE.faeciumlabstrainandinvivointoclinicalE.faecium isolatesnotbelongingtotheoutbreakclone.Thisplasmidwasevenfound inaclinicalE.faecalisisolatesampledlateintheoutbreak. Paper3:TheEnterococcusCassetteChromosome:anSCCmec-likemobilisable elementinenterococci TherearepossibleorthologuesofccrAB,theserinerecombinasesresponsiblefor transpositionofSCCmec,inseveralspeciesoftheEnterococcusgenus.Theaimin paper 3 was to determine if the ccrABEnt genes mobilised a larger MGE in enterococci. • WesucceededtohorizontallytransferanSCCmec-likeelementfromanE. faecium donor to two E. faecium recipients through letting the element hitchhikewithaconjugativereppLG1megaplasmid. 36 • In accordance with the mechanism of SCCmec, the enterococcal element containedattsitespermittingsite-specificintegrationinthehostgenome downstreamoftherlmHgene,andtheattsitemotifsbetweenS.aureusand E.faeciumweresimilar. • ThedonorregionsurroundingccrABEntcontainedmanytransposons,and thepresenceoftwoISEfm1elementscontainedwithina10kbrepeaton eitherendofccrABEntalsoenabledthisregiontotransferontotheplasmid throughhomologousrecombination. • AfterdownloadingallenterococciassembliesfromNCBI,wefoundccrAB genes in 48 E. faecium genomes and one E. durans. Elements residing downstreamofrlmHandcontainingattsiteswereextractablefrom25of these49genomes. • Comparisons of identified elements show very high variation of gene content suggesting high plasticity of this genomic region, in agreement withsimilarstudiesdonewithSCCmec. 37 Discussion EpidemiologyofE.faeciuminScandinavia As reported from several sources [(213–219), paper 1, paper 2)] clinical infectionswithVREinScandinaviafirstoccurredintheninetiesandhasnowbeen thecauseofseveraloutbreaksinhospitalenvironmentsthroughoutthisregion. Accordingtothenationalsurveillanceinstitutes(220–222)receivingreportsof any encountered VRE, a surge of VRE has been seen from 2008 in Sweden and 2010 in Norway and Denmark, which seems to have flattened and started declininginSwedenandNorwaysince2014.Itshouldbenotedthattherehave occurred several outbreaks in this period, and that these numbers also include identification of carriers during outbreak investigations, which outnumber clinicalinfections.VREwererarelyencounteredbeforethelatenineties,andthe outbreaks of VRE in Scandinavia described in paper 1, paper 2 and others indicate that VRE are a problem in hospital environments likely to persist. The sourcesofVREseemtobeacomplexsubjecttodisentangle.Severalreportshas linkedVREtransmissiontofarm-animalrelatedsources,andidentifiedzoonotic transmissionasalikelysource(109,223–225),inadditiontoimportofVREfrom foreignpatients(220–222),internationalflighttravel(226)andhospital-related reservoirs (227, 228). Another important pathway for multi-resistance development relates to horizontal gene transfer of resistance genes from environmental co-inhabitants into hospital-related lineages of enterococci, as reportedinpaper1andbyothers(96,229). The isolates originating from the two outbreaks were from ST192 and ST203. TheseSTsaresinglelocusvariantsofST78,oneofthemajorlineageswhichhas spreadgloballyandhavebecomemorecommonthanthelineagewhichemerged anddominatedearlier,ST17(207).ST78anddaughterSTswerebyWillemsetal. connected to BAPS group 2-1, which consisted of a mesh of clinical and farmanimalrelatedstrains.Pinholtetal.(213,214)findothersingleanddouble-locus variants of ST78 (ST117, ST80) making a lion’s share of their data set. This suggeststhatthislineageisprevalentinScandinavia,andcausesmostregionally encounteredpathogenicVRE. 38 Wholegenomesequencingenhancespathogensurveillance Paper1andpaper2usedahybridofPFGEofallisolatesandWGSofsubsampled isolates as the foundation for genetic comparison, due to the high cost of sequencing all strains at those time points. The WGS strains were thought to provide the “prototype” of the strain and PFGE the larger analysis assessing relationshipbetweenstrains. In paper 1, we concluded that all representative isolates from the prolonged outbreakwereclonalinspiteofmultiplebanddifferencesbetweensomestrains andattributedthebanddifferencestothelongsamplingperiod.Wholegenome sequencingofallstrainswouldhaveprovidedaricherdatasetbywhichonecould strengthensuchconclusions. Inpaper2,thepresenceofISelementsinthevanAgeneclusterwasdetermined byPCRslinkingcontigstoeachother.WeinitiallyfoundtheISL3elementinsertion by observing a contig break in the interoperonic region between vanRS and vanHAXinsusceptibleisolatesbutnotinresistantonesafterWGSandassembly. Maybeothervariantscouldhavebeenhiddenintheisolateswedidnotsequence? Sequencingallthestrainsweanalysedinthisoutbreak,includingtheE.faecalis VVE isolate, could have given more details than the PCRs, and possibly help determinethewholesequenceofthevanA-containingplasmid.HGToftheplasmid containing the silenced vanA gene cluster from E. faecium to E. faecalis was confirmedbyS1nucleasePFGEandSouthernhybridizationofvanAandreplicon probes. We knew the size of the plasmid (45-50 kb), but only 22 kb of the sequence. WGS analyses of the presumably identical plasmid in two different species backgrounds could possibly have identified the rest of the plasmid sequence by DNA identity scores between contigs. Presently, long-read technologiescanclosetheseplasmids,andwouldbethesuperioralternative. Global population structures can be analysed by MLST (207, 230), but only sampling seven genes is unlikely to provide necessary resolution for local and regionaloutbreakinvestigations.Recently,theMLSTschemehasalsobeenshown to be unreliable in certain cases, as one gets superior and zoomable resolution usingthewholesequenceandmayseeuntypeableE.faeciumduetodeletionof MLSTloci(229,231). 39 Importantly, the common unit for comparison of isolates has become the sequenced genome (232). Data sharing on a global scale has not been implementedyetduetochallengesrelatedtodatastorage,limitationsinanalytic methodology and speed and form of submission among other things, see Aarestrupetal.(233).Thisopinionarticlehighlightsthepotentialforglobalopen accesstosequencedataandcurrentinitiativestryingtoaccomplishthis.Several early papers using sequence data to compare global population structures in bacteriabyMLST(forinstanceMaidenetal.(176))mentionedportabilityasakey measureasassembledgenomicdataarecontainedinsmallfileswhichareeasily transferred online. Portability of WGS data is currently not possible with the envisionedease,asthedatapreferredsharedbetweenscientistsissequencereads whichforeachstrainamasstohugefilesthatarenoteasilytransferred.Aarestrup etal.suggestbringinganalysistoolstothedatathroughcloud-basedstorageand analysis resources, which may provide a plausible pathway for allowing data miningofcompletedatasetsandglobalsurveillanceofimportantpathogens. DataminingbecameanissueduringsearchesforECCelementsinpaper3.We decided to use published assemblies from NCBI as search queries and omitted published raw data sets as downloading them, assembling them and thereafter probingforcompleteECCelementswouldtakealongtimeandcreateissueswith datastorageanddataanalysisandpresentation.Secondgenerationsequencing withIlluminaiscurrentlydoneatamassivescale.Semi-automatedqualitychecks, assemblyandannotationarealreadyimportantinitialstepsforanalysisofthese datasets.Submissionoftheseannotatedassemblieswithproperdescriptionofthe employedsoftwareshouldbepossibletodoatalargerscalethanwhatispresently done. Publication of assemblies may become more common as long-read technologies connecting the genomic fragments into full-size replicons gain tractionbylowercostsandincreasedavailability.Wecouldthusimproveonboth global,regionalorevenlocalpathogensurveillanceasinpaper1andpaper2,as wellaseasingdataminingtoanswerbasalmicrobiologicalquestions,asinpaper 3. 40 Phylogenetic-andtransmissionanalysesusingPFGEand/orcoregenomeSNPs onlytellpartsofthestory Connectingaclonecausinganoutbreaklocallytoaglobalphylogenyinorderto identify likely origins is a challenging task, and present methods seem to have issueswiththis.Anobservationnotmentionedinpaper2wasanattempttofind internal phylogenetic relations between the six sequenced strains, which producedresultstoounlikelytobeincludedinthepaper.Wewantedtomapthe six Vancomycin-Variable Enterococci (VVE) to Aus0085 (234) which was genetically closest according to the parsnp WGS phylogeny. After the read mapping, we got help from Marc Stegger at the Statens Serums Institut in Copenhagen to identify probabilistically sound SNPs by validation through the GATK pipeline (182). The result showed that the index isolate was identical (0 SNPs)toAus0085,andthattheotherswereseparabletothesetwostrainsby0-4 SNPs. The reads from our sequenced strains were able to cover 96% of the Aus0085 chromosome, implying that these isolates indeed shared much of the chromosome,andthatthechromosomalDNAdidnotdiffer.Thestrongrelation was highly surprising as Aus0085 was isolated on the other side of the world seven years before our isolates. We examined the accessory genome through Roary (190), which found significant differences in gene content between Aus0085 chromosome and plasmids on one side, and our fragmented VVE assembliesontheother.Subsequently,weattemptedtousethecgMLSTscheme ofcolleaguesinUtrecht(212),wheretheywereabletofindthatAus0085andthe VVE were not particularly close in the network (163 alleles different from the indexisolate),butactedwithsurprisewhenourisolateswerethesamecluster type(under20allelesdifference)asanisolate(E7987)fromAmsterdam,isolated inDecember2013. It has been a challenge to create a comprehensive population structure of nosocomial E. faecium. Constructing this with MLST data using the eBURST algorithmproducedlikelyskewedresults,andperformingBayesiananalyseson thesamedata(207)yieldedmoreaccurate,butstillcontestedresults.Thepresent consensus states that there is a clear distinction between a commensal/ environmentallineageandanosocomiallineage(208).Therehasbeendebateon whether livestock- and nosocomial strains are actually two separate clades, as 41 phylogenetic distinctions vary by the datasets used (23, 24). In addition to the unpublished analyses done by us, others have remarked this seemingly lack of core-genomediscriminationbetweenisolatesconnectedbyphylogenybutnotin periodandlocation,andattributesuchobservationstosilentglobalcirculationof E.faeciumclones(96,235).ArecentstudyofE.faeciumgatheredfromAustralia (235) suggest extensive intra-species recombination as a prominent force of speciesevolution,andalsofindslimiteddifferencemeasuredassinglenucleotide variants between isolates gathered at different places within Australia. This suggeststhatanalysisofpatienttransmissionofE.faeciumisadifficulttaskwith presentmethods[exemplifiedbyBrodricketal.(236)],andthatrecruitmentof currentlyun-useddatamayyieldbetterresolution. AnexcellentexamplecomesfromMcNallyetal.(237),whohadaglobaldatasetof ST131 E. coli found in different environments at different times, but appeared clonal by SNPs extracted from the common genetic content. By differentiating theseverysimilargenomesthroughaccessorygenomecontentandvariationsin regulatory(inter-genic)regions,abetterresolvedpopulationstructurewithsubclusters could be achieved. Similar analyses are currently being pursued for a largeE.faeciumdatasettoo(RobWillems,personalcommunication),andcould provideadditiveknowledgehere. Lastly, phylogenetic analyses that also take into account the accessory genome couldenhancehowweviewoutbreaksandwhatweregardasclinicallyimportant transmission events. Paper I and II describe that resistance markers are horizontally transferrable. Plasmids harbouring resistance determinants may transfertocreatemulti-resistantstrainswhichreducetreatmentoptions,andmay crucially disturb clinical decisions made on basis of whether an outbreak is occurringornot.AsSheppardetal.(238)found,rapidplasmiddisseminationand frequent MGE rearrangements caused resistance genes to spread into several MGEs residing in several strains of several species of Enterobacteriaceae. The transferredresistancegeneblaKPCortheMGEonwhichitresidedcouldassuchbe regardedthe“functionalunit”oftheoutbreak,andmolecularorgenetic/genomic comparativeanalysesoftheharbouringstrainswouldgivemisleadingresults.As E.faeciumisalsoknowntofrequentlyperformintra-andinterspeciesHGT,mobile 42 geneticelementanalysismayalsocontributetoexplaintherelativesuccessofthis pathogeninnosocomialsettings,aswellastheoriginsofpathogenicstrains. Challengeswithvancomycinsusceptibilitydetermination As was already noted in the epidemiological paper by Söderblom et al. which coupled paper 1 (215), the Swedish guidelines performed vancomycin phenotypic susceptibility tests with enrichment broth containing 32 mg/L vancomycin. This practice stopped in 2009 as vanB-containing isolates phenotypicallymayhaveMICswellunder32mg/L,aswasseeninsomeofthe isolatesincludedformolecularanalysisinpaper1andinSöderblometal.The highconcentrationofvancomycinintheenrichmentbrothwasprimarilydesigned to identify enterococci containing vanA, which phenotypically give consistently higherMICs. Little is known of the observed variability of vancomycin MICs in E. faecium containingvanB,butsomestudiesexistonvanBactivationbyglycopeptides.An importantfeatureofvanBistheinabilitytobeactivatedbyteicoplanin,thereby only providing resistance to vancomycin (239). The failure of vanB protection againstteicoplaninexposurerelatestopresenceofhydrophobicmoietiesonthis glycopeptide which leads to impaired interaction with the vanB activator loop (240, 241). Changes within VanSB has previously been shown to modulate the activation loop thereby causing constitutive, teicoplanin-induced or variable vanHAXBexpression(242,243).Tomyknowledge,nosystematicstudyassessing themolecularreasonsforvariableMICsinvanBpositiveclinicalstrainshasbeen done,althoughseveralstudiesindicatethatlow-MICvanB-containingstrainsmay escape identification in standardized tests (244–247), making this issue important. The vancomycin resistance clusters contain a whole pathway consisting of different genes, and changes in this pathway is likely to alter resistance phenotype. As mentioned in paper 2, altered phenotypes associated with IS elementinsertionsandotherrearrangementsofthevanAgeneclusterhadalready beenseeninisolatesgatheredforTn1546typingpurposes(248–253),andshould hinttowardsexistenceofVVE. 43 Aswecurrentlyreportvancomycinresistancebasedonphenotypictraits,silent vancomycin resistance operons are not likely to be registered. Routine WGS of both VSE and VRE for international pathogen surveillance has not been implemented yet. We are incentivised to enable WGS as standard method of pathogencharacterizationasthisbetterenablesdiscoveryofsusceptibleisolates containing silent vancomycin resistance operons. Such discoveries are already occurring.AccordingtoRavenetal.(229),vanB-containingVSEwerealsofound intheirdataset,andintheseisolates,thevanRBandvanSBregulatorygeneswere missing,likelyexplainingthesusceptiblephenotype.Theyfoundthatoutof256 VSE, 10 containedvanB and one contained vanA. Why the vanA-containingVSE wassusceptiblewasnotdiscussed.Recently,Knightetal.discoveredaTn1549locatedvanB2operoninClostridiumdifficilefromaruminantcarcasssilencedby aninsertioninthe5’endofvanRB,likelyabruptingtranscriptionoftheactivator loop(254).Theseresults,inconjunctionwithourresultsfrompaper2,suggest thatsilencedvancomycinresistanceclustersofbothmajortypes(vanAandvanB) may exist, located on unknown MGEs in unknown bacteria. Future thirdgeneration sequencing technologies such as Oxford Nanopore may improve genotypic resistance determination by providing real-time genetic content in additiontostructuralcompositionbylongreads.Eventhoughalargereportby Woodford et al. (255) recently cautioned against using WGS in general for antimicrobial susceptibility testing (or rather – resistance testing) of strains in clinical settings as the technology still appears slightly immature, testing for vancomycin resistance – especially with long-read technologies – seems like a goodidea. Several mechanisms may contribute to phenotypic vancomycin resistance variabilityinvanAandvanB-containingstrains.Insertionsofmobileelementsinto geneclustersrepresentonepathway,eithercausingsilencingofanoperon(paper 2) or providing an accessory promoter giving constitutive expression (256). PolymeraseslippageinpromoterregionsofvanHAXmaycreateabetterpromoter forun-inducedexpressionofvanHAXgenes(257).SNPsinthevancomycingene clusters or promoter regions may give rise to variable expression and protein function.Vancomycinresistancegeneoperonscomingfromotherbacteriamay containpromoters,whichduetovariableadaptiontothetranscriptionapparatus 44 in diverse strains or species can cause variable expression of vanRS and/or vanHAX.PromoteradaptationislikelytoplayaroleinvanBresistanceoperons, astheyfrequentlyseemtotransferbetweenanaerobespeciesinthegutandinto E. faecium (96). Also, vancomycin is shown to act as a zinc chelator (258). It is unclearifZn(II)-depletionhavedeleteriouseffectsonsurvivaland/orreplication of E. faecium, and how transport and retention of this ion is affected by vancomycinexposure. ArecentarticlebySanMillanetal.(259)assessedtheevolutionoftheampicillin resistance gene blaTEM-1 on the chromosome or a small multi-copy-number plasmid given a challenge of ceftazidime against which blaTEM-1 may evolve to additionallyprovideresistance.ResultsshowedthatplasmidlocatedblaTEM-1was abletogainceftazidimeresistancefasterthanwhenchromosomallylocated,and thatadaptationsleadingtoincreasingplasmidcopy-numberalsocontributedto the quicker ceftazidime resistance development. The vancomycin resistance clustersdescribedhere(vanAandvanB)arefrequentlyharbouredbyplasmids,as seeninpaper1andpaper2.Theroleofplasmidsinacceleratingtheevolutionof plasmid-encoded genes such as resistance determinants could further be addressedinenterococci.Forinstance,inlargerlow-copy-numberplasmidslike those frequently harbouring vanA or vanB, other adaptations may be at play. These adaptations include structural rearrangements of genes caused by homologous recombination and movement of replicative transposons, as seen experimentallyinEnterobacteriaceae(260)andinvivoincollectionsofclinical andsurveillanceisolates(261,262). MGEanalyses:wetgunpowderinthestartinggun Discovery of horizontal gene transfer of particular MGEs through WGS is precludedbyshortreadtechnologies,asMGEsoftenbecomefragmenteddueto presenceofrepeatedregionssuchasISelementswithinthem.E.faeciumcontain a wealth of such repetitions, and circularization of chromosomes and large plasmidsisthusimpossiblewithshort-readtechnologies.Thus,identificationof horizontally transferred genetic elements is currently often done by extracting and connecting contigs if (as most often is the case) the element has remained fragmentedaftergenomeassembly. 45 Vancomycinresistancedeterminantsareoftenlocatedonconjugativeplasmidsas seeninpaper1andpaper2.Interestingly,inpaper1weencounteredthatthe plasmid harbouring vanB had merged with another plasmid after conjugation. HGTandlargestructuralrearrangementsarenotrareevents(132,133),butthe molecularmechanismsbehindaredifficulttopreciselydisentanglewithPFGEand Southern hybridisation, or with short-read sequence data. In paper 2, we saw HGTofthevanA-harbouringplasmidintobothE.faeciumandE.faecalis,which suggeststhatthisplasmidposesahigherdisseminationriskduetoabroadhost range.Eventhoughwewereabletolink22kbofgenomicsequencecontainingthe vanA gene cluster, a cat chloramphenicol resistance gene and other plasmidrelatedgenesinallsixsequencedisolates,theplasmidwaslarger,about25kb according to Southern hybridization of S1 nuclease PFGE separated plasmids. Locatingapossiblesourceorspeciesdistributionanddegreeofconservationin genomic content of this particular plasmid would have added a strength to the analysis. Several scientific questions are difficult to assess due to hampered analysisoflargerstructuralrearrangements. One of the principal problems we encountered in paper 3 related to circularizationoftheelement.First,whenwechosetheccrABEntcontainingstrain UWECCcatformobilisationexperiments,wedidnotknowtherewasa10kbrepeat on either side of the MGE. This repeat is visible in yellow in lower sequence depictionsinFigure2Aand2Binpaper3,andshowthatanyproductwithinverse primerslocatedadjacenttoattLandattRinUWECCcatwouldshowchromosomal DNAsurroundingattRifitwassequenced.Thisproductwouldappearasaband afterfewcycles,andwouldlikelybeafalsepositive,oratleastwoulddrownout any PCR product originating from a circularized ECC. UWECCcat was thus not a suitable isolate to test excision of ECCcat. The second feature of the observed duplicationinUWECCcatwhichcreatedseveralproblems,wastheduoofISEfm1 elements which inconveniently also was present in the reppLG1 plasmid and permitted homologous recombination of the entire ECC into the plasmid. Remarkably,ifISEfm1wouldcreateacircularexcisedcompositetransposonby excisingfromUWECCcatortheplasmidcontainingECCcat,theDNAcirclewouldbe identical to ECCcat, except containing two adjacent ISEfm1. Unfortunately, how ISEfm1movementoccursisstillanopenquestionandfindingouthowwouldbe 46 outsidethescopeofpaper3.Wethereforehadtodesignprimersfacingoutwards fromthe5’and3’endsofECCcatandperformthePCRinBMECCcat.Weobserved bandscorrespondingtoacircularizedelement,buttheyreachedsaturationinthe PCR after <30 cycles, which was surprisingly early, but not indicative of any specificexcisionrate.ApossiblewayofassessingrateofexcisioncouldbeqPCR ashasbeendoneforSCCmecbyStojanovetal.(263),whichwehaveyettodo. AnotherwayofdemonstratingandquantifyingECCexcisionhaspresenteditself through identifying additional ECC elements in other strains by searching publishedE.faeciumgenomesequences.Theseelementscouldbeverifiedtonot containsequenceduplicationsbioinformatically.Specifically,wehavefourstrains (E.faeciumDO,9-F-6,C68andK59-68)inourcollection,whosechromosomehave beenclosedandECCboundarieshavebeenidentified.Apositivecircularization qPCR of cultured cells would further show that CcrAB serine recombinases recogniseandrecombineidentifiedattsitesinenterococciaswellasquantifying excision in several isolates, and is thus something we intend to do before publication. WearealsoplanningtodoexperimentsaddingfunctionaldatatoCcrABEntsince wehaveobservedtransferofanelementbutnotthattheccrABEntgenesaresolely responsibleformobilizingtheECCcatelement.Intheory,knock-outofccrABEntin UWECCcat and repetition of a filter mating experiment should yield no transconjugants.Unfortunately,ECCmobilisationbyhomologousrecombination into the mobilisation plasmid has already been demonstrated and results from ccrABEntknock-outandfiltermatingthereforecannotbetrustedinthissystem. Misiura et al. (264) have designed a reporter system which shows promise. ExpressionofccrABEntinE.coliandCcrABEntactionagainstvectorscontainingatt sites could show action of CcrABEnt on att sites in a cleaner system. Properly designed vectors containing both attL/R1 and attL/R2 (see paper 3, figure 3) could determine specifically whether CcrABEnt activity on att sites occur, and whether base substitutions in the presumed central recognition motif affect recombinationfrequency.AsUWECCcatcontainsattL1/R1andC68ECCcontains attL2/R2,compatibilitybetweenattsitevariantsmayalsobeassessed. 47 DiscoveryandanalysisofMGEslikeECC:What’snext? Inadditiontoissuesconcerningexperimentsandtheextentofconclusionstobe drawn from them, we also leave a central question unanswered: what mechanism(s)createtheobservedgenevariabilityintheECCregion?Howdoes thegenesyntenyofthisregioncomparetotheoverallgenesyntenyofE.faecium chromosomes,orevenothermobilegeneticelementsencounteredinthisspecies? Prevalence of ECC elements is 9% in published genomes (paper 3). Does this meanthatitisrarelyoccurring,orisitacommonGIinE.faecium?Itispossibleto arguethatitiscommon,asECCmaybemoreprevalentthanforexampleelements harbouringvancomycingeneclusters,forwhichactiveselectionoccursthrough use of glycopeptides. As seen by the global resistance map (Figure 1) and prevalence data from cddep.org, VRE are often occurring more rarely than ECC elements.VREfromtheclinicalsetting(asisreportedtothedatabasescombined in cddep.org) are skewed towards nosocomial clades which results in a higher reportedprevalenceofvancomycinresistancesincecommensalisolatesarerarely VRE. As we find ECC elements throughout several environments and dispersed throughthewholeE.faeciumlineage,itispossibletostatethatitisasuccessful elementabletoexistinmanydifferentbackgrounds. Similarly, obtaining structural information of genomes can extend the scope of mobilegeneticelementsfrom‘prototypes’aspublicsequencesnoware,toalarger network of MGEs uniting the basal constituents they are now classified from – transposase or replication gene, mobilization modules, resistance genes and so forth–toamorecomprehensivenetworkshowinggeneticrelationandvariation usingalltheDNA. It is possible to gain knowledge by shifting methods, and new 3rd generation sequencingtechnologiespermittingstructuralinformationofgenomesislikelyto allowabetterviewoftheaccessorygenomeandthestructureofmobileelements than has been possible with short-read technologies. Currently, the commercializedtechnologies(PacificBiosciencesandOxfordNanopore)arestill too expensive to allow for widespread sequencing and closure of genomes, but thismayrapidlychangeasnewapparatusesandSMRTcell/flowcelldisposables withimprovedthroughputsarereleased. 48 Anotherbenefitof3rdgenerationsequencersistheadditionofmethylationdata tothemix(151),whichallowsforanalysisofR/Msystems.Asdescribedearlier, R/MsystemsinfluencethedynamicsofbothhostdefenceagainstMGEsandMGE stabilisationinprokaryotes.MGEsharbouringR/MsystemsincludeECC,SCCmec andlargeconjugativeplasmidsencodingresistancedeterminants,anditwouldbe interestingtoexperimentallyanalysewhetherthesesystemsareactive,andifthey conferbenefitstotheseMGEs. 49 References 1. GradYH,LipsitchM.2014.Epidemiologicdataandpathogengenome sequences:apowerfulsynergyforpublichealth.GenomeBiol15:538. 2. WHOpressWHO.2014.Antimicrobialresistance:globalreporton surveillance.Report,WorldHealthOrganization. 3. deKrakerMEA,StewardsonAJ,HarbarthS,O’NeillJ,KrakerMDe, DaveyP,GrundmannH,StewardsonA,AllignolA,BeyersmannJ, GravesN,SchumacherM,GavaldaL,MasuetC,BeltranJ,GarciaM, GarciaD,SamoreM,HarbarthS,SchumacherM,AllignolA, BeyersmannJ,BinderN,WolkewitzM,GaieskiD,EdwardsJ,KallanM, CarrB,KaukonenK,BaileyM,SuzukiS,PilcherD,BellomoR.2016. Will10MillionPeopleDieaYearduetoAntimicrobialResistanceby2050? PLOSMed13:e1002184. 4. ThiercelinM.E.1899.Morphologieetmodesdereproductionde l’enterocoque.ComptesRendusdesSeanceslaSocBioldessesFil551– 553. 5. ThiercelinM.E.JL.1899.Surundiplococquesaprophytedel’intestin susceptiblededevenirpathogene.CRSocBiol269–271. 6. BarnesEM.1956.Tetrazoliumreductionasameansofdifferentiating StreptococcusfaecalisfromStreptococcusfaecium.JGenMicrobiol14:57– 68. 7. DeibelRH.1964.ThegroupDStreptococci.BacteriolRev28:330–66. 8. ShermanJM.1937.Thestreptococci.BacteriolRev1:3. 9. ShermanJM.1938.TheEnterococciandRelatedStreptococci.JBacteriol 35:81–93. 10. AndrewesFW,HorderTJ.1906.AstudyoftheStreptococcipathogenic forman.Lancet168:708–713. 11. SchleiferKH,Kilpper-BalzR.1984.TransferofStreptococcusfaecalis andStreptococcusfaeciumtotheGenusEnterococcusnom.rev.as Enterococcusfaecaliscomb.nov.andEnterococcusfaeciumcomb.nov.Int JSystBacteriol34:31–34. 12. LebretonF,WillemsRJL,GilmoreMS.2014.EnterococcusDiversity, OriginsinNature,andGutColonization,p.1–56.InEnterococci:From 50 CommensalstoLeadingCausesofDrugResistantInfection.Massachusetts EyeandEarInfirmary,Boston. 13. FacklamRR,CarvalhoMdaGS,TeixeiraLM.2002.TheEnterococci. AmericanSocietyofMicrobiology. 14. Lucena-PadrosH,GonzalezJM,Caballero-GuerreroB,Ruiz-BarbaJL, Maldonado-BarraganA.2014.Enterococcusolivaesp.nov.,isolatedfrom Spanish-stylegreen-olivefermentations.IntJSystEvolMicrobiol 64:2534–2539. 15. GuCT,WangF,LiCY,LiuF,HuoGC.2012.Lactobacillusxiangfangensis sp.nov.,isolatedfromChinesepickle.IntJSystEvolMicrobiol62:860– 863. 16. CottaMA,WhiteheadTR,FalsenE,MooreE,LawsonPA.2013.Erratum to:TwonovelspeciesEnterococcuslemaniisp.nov.andEnterococcus eurekensissp.nov.,isolatedfromaswine-manurestoragepit.AntonieVan Leeuwenhoek103:1409–1418. 17. KimJY,ShinN-R,NaH-K,HyunD-W,WhonTW,KimPS,YunJ-H,BaeJW.2013.Enterococcusdiestrammenaesp.nov.,isolatedfromthegutof Diestrammenacoreana.IntJSystEvolMicrobiol63:4540–4545. 18. FrolkovaP,SvecP,SedlacekI,MaslanovaI,CernohlavkovaJ,GhoshA, ZurekL,RadimerskyT,LiterakI.2013.Enterococcusalcedinissp.nov., isolatedfromcommonkingfisher(Alcedoatthis).IntJSystEvolMicrobiol 63:3069–3074. 19. KadriZ,SpitaelsF,CnockaertM,PraetJ,ElFarrichaO,SwingsJ, VandammeP.2015.Enterococcusbullienssp.nov.,anovellacticacid bacteriumisolatedfromcamelmilk.AntonieVanLeeuwenhoek 108:1257–1265. 20. AgudeloHiguitaNI,HuyckeMM.2014.EnterococcalDisease, Epidemiology,andImplicationsforTreatment,p.1–36.InEnterococci: FromCommensalstoLeadingCausesofDrugResistantInfection. MassachusettsEyeandEarInfirmary,Boston. 21. RiceLB.2008.Federalfundingforthestudyofantimicrobialresistancein nosocomialpathogens:noESKAPE.JInfectDis197:1079–81. 22. AriasCA,MurrayBE.2012.TheriseoftheEnterococcus:beyond 51 vancomycinresistance.NatRevMicrobiol10:266–78. 23. GuzmanPrietoAM,vanSchaikW,RogersMRC,CoqueTM,BaqueroF, CoranderJ,WillemsRJL.2016.GlobalEmergenceandDisseminationof EnterococciasNosocomialPathogens:AttackoftheClones?Front Microbiol7:1–15. 24. LebretonF,vanSchaikW,McGuireAM,GodfreyP,GriggsA, MazumdarV,CoranderJ,ChengL,SaifS,YoungS,ZengQ,WortmanJ, BirrenB,WillemsRJL,EarlAM,GilmoreMS,MansonMcGuireA, GodfreyP,GriggsA,MazumdarV,CoranderJ,ChengL,SaifS,YoungS, ZengQ,WortmanJ,BirrenB,WillemsRJL,EarlAM,GilmoreMS.2013. Emergenceofepidemicmultidrug-resistantEnterococcusfaeciumfrom animalandcommensalstrains.MBio2013/08/22.4:e00534-13-e0053413. 25. MurrayBE.1990.ThelifeandtimesoftheEnterococcus.ClinMicrobiol Rev3:46–65. 26. WernerG,CoqueTM,HammerumAM,HopeR,HryniewiczW,Johnson A,KlareI,KristinssonKG,LeclercqR,LesterCH,LillieM,NovaisC, Olsson-LiljequistB,PeixeLV,SadowyE,SimonsenGS,TopJ,VuopioVarkilaJ,WillemsRJ,WitteW,WoodfordN.2008.Emergenceand spreadofvancomycinresistanceamongenterococciinEurope.Euro Surveill13:1–11. 27. MendesRE,CastanheiraM,FarrellDJ,FlammRK,SaderHS,JonesRN. 2016.Longitudinal(2001-14)analysisofenterococciandVREcausing invasiveinfectionsinEuropeanandUShospitals,includinga contemporary(2010-13)analysisoforitavancininvitropotency.J AntimicrobChemotherdkw319. 28. SievertDM,RicksP,EdwardsJR,SchneiderA,PatelJ,SrinivasanA, KallenA,LimbagoB,FridkinS,NationalHealthcareSafetyNetwork (NHSN)TeamandParticipatingNHSNFacilities.2013.Antimicrobialresistantpathogensassociatedwithhealthcare-associatedinfections: summaryofdatareportedtotheNationalHealthcareSafetyNetworkat theCentersforDiseaseControlandPrevention,2009-2010.InfectControl HospEpidemiol34:1–14. 52 29. ECDC.2013.AntimicrobialresistancesurveillanceinEurope2013.Annual ReportoftheEuropeanAntimicrobialResistanceSurveillanceNetwork (EARS-Net).ECDC,Stockholm. 30. GarsinDa.,FrankKL,SilanpääJ,AusubelFM,HartkeA,ShankarN, MurrayBE.2014.PathogenesisandModelsofEnterococcalInfection,p. 1–57.InEnterococci:FromCommensalstoLeadingCausesofDrug ResistantInfection.MassachusettsEyeandEarInfirmary,Boston. 31. SillanpääJ,PrakashVP,NallapareddySR,MurrayBE.2009. DistributionofgenesencodingMSCRAMMsandPiliinclinicalandnatural populationsofEnterococcusfaecium.JClinMicrobiol47:896–901. 32. LeavisH,TopJ,ShankarN,BorgenK,BontenM,vanEmbdenJ, WillemsRJL.2004.Anovelputativeenterococcalpathogenicityisland linkedtotheespvirulencegeneofEnterococcusfaeciumandassociated withepidemicity.JBacteriol186:672–82. 33. HendrickxAPA,vanLuit-AsbroekM,SchapendonkCME,vanWamel WJB,BraatJC,WijnandsLM,BontenMJM,WillemsRJL.2009.SgrA,a Nidogen-BindingLPXTGSurfaceAdhesinImplicatedinBiofilmFormation, andEcbA,aCollagenBindingMSCRAMM,AreTwoNovelAdhesinsof Hospital-AcquiredEnterococcusfaecium.InfectImmun77:5097–5106. 34. NallapareddySR,WeinstockGM,MurrayBE.2003.Clinicalisolatesof Enterococcusfaeciumexhibitstrain-specificcollagenbindingmediatedby Acm,anewmemberoftheMSCRAMMfamily.MolMicrobiol2003/03/08. 47:1733–47. 35. RiceLB,CariasL,RudinS,VaelC,GoossensH,KonstabelC,KlareI, NallapareddySR,HuangW,MurrayBE.2003.Apotentialvirulence gene,hylEfm,predominatesinEnterococcusfaeciumofclinicalorigin.J InfectDis187:508–12. 36. HendrickxAPA,vanWamelWJB,PosthumaG,BontenMJM,Willems RJL.2007.FiveGenesEncodingSurface-ExposedLPXTGProteinsAre EnrichedinHospital-AdaptedEnterococcusfaeciumClonalComplex17 Isolates.JBacteriol189:8321–8332. 37. HendrickxAPA,BontenMJM,vanLuit-AsbroekM,SchapendonkCME, KragtenAHM,WillemsRJL.2008.Expressionoftwodistincttypesofpili 53 byahospital-acquiredEnterococcusfaeciumisolate. Microbiology2008/10/04.154:3212–23. 38. SillanpääJ,NallapareddySR,SinghKV,PrakashVP,FothergillT,TonThatH,MurrayBE.2011.Characterizationoftheebp(fm)pilus-encoding operonofEnterococcusfaeciumanditsroleinbiofilmformationand virulenceinamurinemodelofurinarytractinfection.Virulence1:236–46. 39. NallapareddySR,SinghKV.,MurrayBE.2008.Contributionofthe collagenadhesinAcmtopathogenesisofEnterococcusfaeciumin experimentalendocarditis.InfectImmun76:4120–8. 40. HeikensE,SinghKV.,Jacques-PalazKD,vanLuit-AsbroekM,Oostdijk EAN,BontenMJM,MurrayBE,WillemsRJL.2011.Contributionofthe enterococcalsurfaceproteinEsptopathogenesisofEnterococcusfaecium endocarditis.MicrobesInfect13:1185–90. 41. ZhangX,TopJ,deBeenM,BierschenkD,RogersM,LeendertseM, BontenMJM,vanderPollT,WillemsRJL,vanSchaikW.2013. IdentificationofageneticdeterminantinclinicalEnterococcusfaecium strainsthatcontributestointestinalcolonizationduringantibiotic treatment.JInfectDis207:1780–6. 42. PaganelliFL,HuebnerJ,SinghKV.,ZhangX,vanSchaikW,WobserD, BraatJC,MurrayBE,BontenMJM,WillemsRJL,LeavisHL.2016. Genome-wideScreeningIdentifiesPhosphotransferaseSystemPermease BepAtoBeInvolvedinEnterococcusfaeciumEndocarditisandBiofilm Formation.JInfectDis214:189–195. 43. HondaK,LittmanDR.2016.Themicrobiotainadaptiveimmune homeostasisanddisease.Nature535:75–84. 44. OlesenSW,AlmEJ.2016.Dysbiosisisnotananswer.NatMicrobiol 1:16228. 45. HanageWP.2014.Microbiology:Microbiomescienceneedsahealthy doseofscepticism.Nature512:247–8. 46. MontealegreMC,SinghKV,MurrayBE.2016.GastrointestinalTract ColonizationDynamicsbyDifferentEnterococcusfaeciumClades.JInfect Dis213:1914–1922. 47. BrandlK,PlitasG,MihuCN,UbedaC,JiaT,FleisherM,SchnablB, 54 DeMatteoRP,PamerEG.2008.Vancomycin-resistantenterococciexploit antibiotic-inducedinnateimmunedeficits.Nature455:804–7. 48. CashHL,WhithamCV,BehrendtCL,HooperLV.2006.Symbiotic bacteriadirectexpressionofanintestinalbactericidallectin.Science 313:1126–30. 49. HendrickxAPA,TopJ,BayjanovJR,KempermanH,RogersMRC, PaganelliFL,BontenMJM,WillemsRJL.2015.Antibiotic-Driven DysbiosisMediatesIntraluminalAgglutinationandAlternative SegregationofEnterococcusfaeciumfromtheIntestinalEpithelium.MBio 6:e01346-15. 50. BerticsPJ,WiepzGJ.2009.NewDevelopmentswithVancomycinResistantEnterococci:E.faecium—FriendorFoe?JInfectDis200:679– 681. 51. LeendertseM,WillemsRJL,OeiGA,FlorquinS,BontenMJM,vander PollT.2009.IntestinalEnterococcusfaeciumColonizationImprovesHost DefenseduringPolymicrobialPeritonitis.JInfectDis200:735–744. 52. PaganelliFL,deBeenM,BraatJC,HoogenboezemT,VinkC,Bayjanov J,RogersMRC,HuebnerJ,BontenMJM,WillemsRJL,LeavisHL.2015. DistinctSagAfromHospital-AssociatedCladeA1Enterococcusfaecium StrainsContributestoBiofilmFormation.ApplEnvironMicrobiol 81:6873–82. 53. RanganKJ,PedicordVA,WangY-C,KimB,LuY,ShahamS,MucidaD, HangHC.2016.Asecretedbacterialpeptidoglycanhydrolaseenhances tolerancetoentericpathogens.Science353:1434–1437. 54. PedicordVA,LockhartAAK,RanganKJ,CraigJW,LoschkoJ,RogozA, HangHC,MucidaD.2016.Exploitingahost-commensalinteractionto promoteintestinalbarrierfunctionandentericpathogentolerance.Sci Immunol1:eaai7732-eaai7732. 55. FlemingA.1929.OntheAntibacterialActionofCulturesofaPenicillium, withSpecialReferencetotheirUseintheIsolationofB.influenzæ.BrJExp Pathol10:226–236. 56. KristichCJ,RiceLB,AriasCA.2014.EnterococcalInfection—Treatment andAntibioticResistance,p.1–63.InEnterococci:FromCommensalsto 55 LeadingCausesofDrugResistantInfection.MassachusettsEyeandEar Infirmary,Boston. 57. FontanaR,GrossatoA,RossiL,ChengYR,SattaG.1985.Transitionfrom resistancetohypersusceptibilitytobeta-lactamantibioticsassociatedwith lossofalow-affinitypenicillin-bindingproteininaStreptococcusfaecium mutanthighlyresistanttopenicillin.AntimicrobAgentsChemother 28:678–83. 58. FontanaR,AldegheriM,LigozziM,LopezH,SucariA,SattaG.1994. Overproductionofalow-affinitypenicillin-bindingproteinandhigh-level ampicillinresistanceinEnterococcusfaecium.AntimicrobAgents Chemother38:1980–3. 59. WilliamsonR,leBouguénecC,GutmannL,HoraudT.1985.Oneortwo lowaffinitypenicillin-bindingproteinsmayberesponsiblefortherangeof susceptibilityofEnterococcusfaeciumtobenzylpenicillin.JGenMicrobiol 131:1933–40. 60. MillerWR,MunitaJM,AriasCA.2014.Mechanismsofantibiotic resistanceinenterococci.ExpertRevAntiInfectTher12:1221–36. 61. DahlKH,LundbladEW,RokenesTP,OlsvikO,SundsfjordA.2000. GeneticlinkageofthevanB2geneclustertoTn5382invancomycinresistantenterococciandcharacterizationoftwonovelinsertion sequences.Microbiology146:1469–79. 62. ZhangX,PaganelliFL,BierschenkD,KuipersA,BontenMJM,Willems RJL,vanSchaikW.2012.Genome-wideidentificationofampicillin resistancedeterminantsinEnterococcusfaecium.PLoSGenet8:e1002804. 63. HollenbeckBL,RiceLB.2012.Intrinsicandacquiredresistance mechanismsinenterococcus.Virulence3:421–33. 64. LautenbachE,SchusterMG,BilkerWB,BrennanPJ.1998.Theroleof chloramphenicolinthetreatmentofbloodstreaminfectiondueto vancomycin-resistantEnterococcus.ClinInfectDis27:1259–65. 65. AndrewsJ,AshbyJ,JevonsG,MarshallT,LinesN,WiseR.2000.A comparisonofantimicrobialresistanceratesinGram-positivepathogens isolatedintheUKfromOctober1996toJanuary1997andOctober1997 toJanuary1998.JAntimicrobChemother45:285–93. 56 66. WernerG,FleigeC,EwertB,Laverde-GomezJa.,KlareI,WitteW. 2010.High-levelciprofloxacinresistanceamonghospital-adapted Enterococcusfaecium(CC17).IntJAntimicrobAgents2009/12/17. 35:119–25. 67. HawkeyPM.2003.Mechanismsofquinoloneactionandmicrobial response.JAntimicrobChemother51Suppl1:29–35. 68. DeshpandeLM,FritscheTR,MoetGJ,BiedenbachDJ,JonesRN.2007. AntimicrobialresistanceandmolecularepidemiologyofvancomycinresistantenterococcifromNorthAmericaandEurope:areportfromthe SENTRYantimicrobialsurveillanceprogram.DiagnMicrobiolInfectDis 58:163–70. 69. WilliamsonR,CalderwoodSB,MoelleringRC,TomaszA.1983.Studies onthemechanismofintrinsicresistancetobeta-lactamantibioticsin groupDstreptococci.JGenMicrobiol129:813–22. 70. RobbinsWC,TompsettR.1951.Treatmentofenterococcalendocarditis andbacteremia;resultsofcombinedtherapywithpenicillinand streptomycin.AmJMed10:278–99. 71. BaddourLM,WilsonWR,BayerAS,FowlerVG,BolgerAF,LevisonME, FerrieriP,GerberMa,TaniLY,GewitzMH,TongDC,SteckelbergJM, BaltimoreRS,ShulmanST,BurnsJC,FalaceDa,NewburgerJW, PallaschTJ,TakahashiM,TaubertKa,CommitteeonRheumatic Fever,EndocarditisandKD,CouncilonCardiovascularDiseaseinthe Young,CouncilsonClinicalCardiology,StrokeandCSandA, AmericanHeartAssociation,InfectiousDiseasesSocietyofAmerica. 2005.Infectiveendocarditis:diagnosis,antimicrobialtherapy,and managementofcomplications:astatementforhealthcareprofessionals fromtheCommitteeonRheumaticFever,Endocarditis,andKawasaki Disease,CouncilonCardiovascularDiseaseintheYoung,.Circulation 111:e394-434. 72. ChowJW.2000.Aminoglycosideresistanceinenterococci.ClinInfectDis 31:586–9. 73. MoelleringRC.2006.Vancomycin:a50-yearreassessment.ClinInfectDis 42Suppl1:S3-4. 57 74. MoelleringRC,KrogstadDJ,GreenblattDJ.1981.Vancomycintherapyin patientswithimpairedrenalfunction:anomogramfordosage.AnnIntern Med94:343–6. 75. KoryM.1981.ReassessmentsofVancomycin-PotentiallyUseful Antibiotic :BasedonSymposiaHeldinAtlanta,Georgia,November1-2, 1978SanFrancisco,California,November16-17,1978andChicago, Illinois,.UniversityofChicagoPress,Chicago. 76. BardoneMR,PaternosterM,CoronelliC.1978.Teichomycins,new antibioticsfromActinoplanesteichomyceticusnov.sp.II.Extractionand chemicalcharacterization.JAntibiot(Tokyo)31:170–7. 77. ParentiF,BerettaG,BertiM,ArioliV.1978.Teichomycins,new antibioticsfromActinoplanesteichomyceticusNov.Sp.I.Descriptionof theproducerstrain,fermentationstudiesandbiologicalproperties.J Antibiot(Tokyo)31:276–83. 78. DomenechO,FranciusG,TulkensPM,VanBambekeF,DufrêneY, Mingeot-LeclercqMP.2009.Interactionsoforitavancin,anew lipoglycopeptidederivedfromvancomycin,withphospholipidbilayers: Effectonmembranepermeabilityandnanoscalelipidmembrane organization.BiochimBiophysActa-Biomembr1788:1832–1840. 79. HigginsDL,ChangR,DebabovDV,LeungJ,WuT,KrauseKM,Sandvik E,HubbardJM,KanigaK,SchmidtDE,GaoQ,CassRT,KarrDE,Benton BM,HumphreyPP.2005.Telavancin,amultifunctionallipoglycopeptide, disruptsbothcellwallsynthesisandcellmembraneintegrityin methicillin-resistantStaphylococcusaureus.AntimicrobAgents Chemother49:1127–34. 80. ChenAY,ZervosMJ,VazquezJA.2007.Dalbavancin:Anovel antimicrobial.IntJClinPract61:853–863. 81. FarverDK,HedgeDD,LeeSC.2005.Ramoplanin:A lipoglycodepsipeptideantibiotic.AnnPharmacother39:863–868. 82. ReynoldsPE.1989.Structure,biochemistryandmechanismofactionof glycopeptideantibiotics.EurJClinMicrobiolInfectDis8:943–50. 83. YarlagaddaV,ManjunathGB,SarkarP,AkkapeddiP, ParamanandhamK,ShomeBR,RavikumarR,HaldarJ.2016. 58 GlycopeptideAntibioticToOvercometheIntrinsicResistanceofGramNegativeBacteria.ACSInfectDis2:132–139. 84. UttleyAH,CollinsCH,NaidooJ,GeorgeRC.1988.Vancomycin-resistant enterococci.Lancet1:57–8. 85. LeclercqR,DerlotE,DuvalJ,CourvalinP.1988.Plasmid-mediated resistancetovancomycinandteicoplanininEnterococcusfaecium.NEngl JMed319:157–61. 86. BagerF,MadsenM,ChristensenJ,AarestrupFM.1997.Avoparcinused asagrowthpromoterisassociatedwiththeoccurrenceofvancomycinresistantEnterococcusfaeciumonDanishpoultryandpigfarms.PrevVet Med31:95–112. 87. WillemsRJ,TopJ,vandenBraakN,vanBelkumA,MeviusDJ, HendriksG,vanSanten-VerheuvelM,vanEmbdenJD.1999.Molecular diversityandevolutionaryrelationshipsofTn1546-likeelementsin enterococcifromhumansandanimals.AntimicrobAgentsChemother 43:483–91. 88. KruseH,JohansenBK,RørvikLM,SchallerG.1999.Theuseof avoparcinasagrowthpromoterandtheoccurrenceofvancomycinresistantEnterococcusspeciesinNorwegianpoultryandswine production.MicrobDrugResist5:135–9. 89. CourvalinP.2006.Vancomycinresistanceingram-positivecocci.Clin InfectDis42Suppl1:S25-34. 90. BoydDA,WilleyBM,FawcettD,GillaniN,MulveyMR.2008.Molecular characterizationofEnterococcusfaecalisN06-0364withlow-level vancomycinresistanceharboringanovelD-Ala-D-Sergenecluster,vanL. AntimicrobAgentsChemother52:2667–72. 91. LebretonF,DepardieuF,BourdonN,Fines-GuyonM,BergerP, CamiadeS,LeclercqR,CourvalinP,CattoirV.2011.D-Ala-d-SerVanNtypetransferablevancomycinresistanceinEnterococcusfaecium. AntimicrobAgentsChemother55:4606–12. 92. XuX,LinD,YanG,YeX,WuS,GuoY,ZhuD,HuF,ZhangY,WangF, JacobyGA,WangM.2010.vanM,aNewGlycopeptideResistanceGene ClusterFoundinEnterococcusfaecium.AntimicrobAgentsChemother 59 54:4643–4647. 93. WernerG,StrommengerB,WitteW.2008.Acquiredvancomycin resistanceinclinicallyrelevantpathogens.FutureMicrobiol3:547–62. 94. DepardieuF,PodglajenI,LeclercqR,CollatzE,CourvalinP.2007. Modesandmodulationsofantibioticresistancegeneexpression.Clin MicrobiolRev20:79–114. 95. D’CostaVM,KingCE,KalanL,MorarM,SungWWL,SchwarzC,Froese D,ZazulaG,CalmelsF,DebruyneR,GoldingGB,PoinarHN,WrightGD. 2011.Antibioticresistanceisancient.Nature477:457–61. 96. HowdenBP,HoltKE,LamMMC,SeemannT,BallardS,CoombsGW, TongSYC,GraysonML,JohnsonPDR,StinearTP.2013.Genomic InsightstoControltheEmergenceofVancomycin-ResistantEnterococci. MBio2013/08/15.4:e00412-13-e00412-13. 97. UmedaA,GarnierF,CourvalinP,GalimandM.2002.Association betweenthevanB2glycopeptideresistanceoperonandTn1549in enterococcifromFrance.JAntimicrobChemother50:253–6. 98. MillerWR,MurrayBE,RiceLB,AriasCA.2016.Vancomycin-Resistant Enterococci:TherapeuticChallengesinthe21stCentury.InfectDisClin NorthAm30:415–39. 99. CrankC,O’DriscollT.2015.Vancomycin-resistantenterococcal infections:epidemiology,clinicalmanifestations,andoptimal management.InfectDrugResist217. 100. EgliA,SchmidH,KuenzliE,WidmerA,BattegayM,PlaggeH,FreiR, AchermannR,WeisserM.2016.Associationofdaptomycinusewith resistancedevelopmentinEnterococcusfaeciumbacteremia-A7-year individualandpopulationbasedanalysis.ClinMicrobiolInfect. 101. Silva-DelToroSL,Greenwood-QuaintanceKE,PatelR.2016.Invitro activityoftedizolidagainstlinezolid-resistantstaphylococciand enterococci.DiagnMicrobiolInfectDis85:102–4. 102. LockeJB,ZurenkoGE,ShawKJ,BartizalK.2014.Tedizolidforthe managementofhumaninfections:invitrocharacteristics.ClinInfectDis 58Suppl1:S35-42. 103. WangY,LvY,CaiJ,SchwarzS,CuiL,HuZ,ZhangR,LiJ,ZhaoQ,HeT, 60 WangD,WangZ,ShenY,LiY,FeßlerAT,WuC,YuH,DengX,XiaX, ShenJ.2015.Anovelgene,optrA,thatconferstransferableresistanceto oxazolidinonesandphenicolsanditspresenceinEnterococcusfaecalis andEnterococcusfaeciumofhumanandanimalorigin.JAntimicrob Chemother70:2182–90. 104. ChangH-H,CohenT,GradYH,HanageWP,O’BrienTF,LipsitchM. 2015.Originandproliferationofmultiple-drugresistanceinbacterial pathogens.MicrobiolMolBiolRev79:101–16. 105. WernerG,HildebrandtB,WitteW.2003.Linkageoferm(B)andaadEsat4-aphA-3inmultiple-resistantEnterococcusfaeciumisolatesof differentecologicalorigins.MicrobDrugResist9Suppl1:S9-16. 106. DavisIJ,RobertsAP,ReadyD,RichardsH,WilsonM,MullanyP.2005. Linkageofanovelmercuryresistanceoperonwithstreptomycin resistanceonaconjugativeplasmidinEnterococcusfaecium.Plasmid 54:26–38. 107. WernerG,HildebrandtB,KlareI,WitteW.2000.Linkageof determinantsforstreptograminA,macrolide-lincosamide-streptogramin B,andchloramphenicolresistanceonaconjugativeplasmidin Enterococcusfaeciumanddisseminationofthisclusteramong streptogramin-resistantenterococci.IntJMedMicrobiol290:543–8. 108. StarikovaI,Al-HaroniM,WernerG,RobertsAP,SorumV,NielsenKM, JohnsenPJ.2013.Fitnesscostsofvariousmobilegeneticelementsin EnterococcusfaeciumandEnterococcusfaecalis.JAntimicrobChemother 68:2755–2765. 109. JohnsenPJ,SimonsenGS,OlsvikØ,MidtvedtT,SundsfjordA.2002. Stability,Persistence,andEvolutionofPlasmid-EncodedVanA GlycopeptideResistanceinEnterococciintheAbsenceofAntibiotic SelectionInVitroandinGnotobioticMice.MicrobDrugResist8:161–170. 110. SoucySM,HuangJ,GogartenJP.2015.Horizontalgenetransfer:building theweboflife.NatRevGenet16:472–82. 111. DawkinsR.1976.TheSelfishGene.30thAnnivEdanewIntrodbyAuthor 384. 112. BaqueroF.2004.Frompiecestopatterns:evolutionaryengineeringin 61 bacterialpathogens.NatRevMicrobiol2:510–8. 113. TreangenTJ,RochaEPC.2011.HorizontalTransfer,NotDuplication, DrivestheExpansionofProteinFamiliesinProkaryotes.PLoSGenet 7:e1001284. 114. SmillieCS,SmithMB,FriedmanJ,CorderoOX,DavidLA,AlmEJ.2011. Ecologydrivesaglobalnetworkofgeneexchangeconnectingthehuman microbiome.Nature480:241–244. 115. ParkC,ZhangJ.2012.Highexpressionhampershorizontalgenetransfer. GenomeBiolEvol4:523–32. 116. DormanCJ.2014.H-NS-likenucleoid-associatedproteins,mobilegenetic elementsandhorizontalgenetransferinbacteria.Plasmid75:1–11. 117. PolzMF,AlmEJ,HanageWP.2013.Horizontalgenetransferandthe evolutionofbacterialandarchaealpopulationstructure.TrendsGenet 29:170–175. 118. PopaO,Hazkani-CovoE,LandanG,MartinW,DaganT.2011.Directed networksrevealgenomicbarriersandDNArepairbypassestolateralgene transferamongprokaryotes.GenomeRes21:599–609. 119. DubeyGP,Ben-YehudaS.2011.Intercellularnanotubesmediate bacterialcommunication.Cell144:590–600. 120. FulsundarS,HarmsK,FlatenGE,JohnsenPJ,ChopadeBA,NielsenKM. 2014.GenetransferpotentialofoutermembranevesiclesofAcinetobacter baylyiandeffectsofstressonvesiculation.ApplEnvironMicrobiol 80:3469–83. 121. LangAS,ZhaxybayevaO,BeattyJT.2012.Genetransferagents:phagelikeelementsofgeneticexchange.NatRevMicrobiol10:472–82. 122. ClewellDB,WeaverKE,DunnyGM,CoqueTM,FranciaMV,HayesF. 2014.ExtrachromosomalandMobileElementsinEnterococci: Transmission,Maintenance,andEpidemiology,p.1–84.InGilmore,MS, Clewell,DB,Ike,Y,Shankar,N(eds.),Enterococci:FromCommensalsto LeadingCausesofDrugResistantInfection.BookSection,Massachusetts EyeandEarInfirmary,Boston. 123. ChristiePJ.2016.TheMosaicTypeIVSecretionSystems.EcoSalPlus7. 124. Goessweiner-MohrN,ArendsK,KellerW,GrohmannE.2014. 62 ConjugationinGram-PositiveBacteria.MicrobiolSpectr2:PLAS-00042013. 125. ChandranDarbariV,WaksmanG.2015.StructuralBiologyofBacterial TypeIVSecretionSystems.AnnuRevBiochem84:603–629. 126. Goessweiner-MohrN,ArendsK,KellerW,GrohmannE.2013. ConjugativetypeIVsecretionsystemsinGram-positivebacteria.Plasmid 70:289–302. 127. SmillieC,Garcillán-BarciaMP,FranciaMV,RochaEPC,delaCruzF. 2010.Mobilityofplasmids.MicrobiolMolBiolRev74:434–52. 128. CascalesE,ChristiePJ.2004.DefinitionofabacterialtypeIVsecretion pathwayforaDNAsubstrate.Science304:1170–3. 129. ShintaniM,SanchezZK,KimbaraK.2015.Genomicsofmicrobial plasmids:classificationandidentificationbasedonreplicationand transfersystemsandhosttaxonomy.FrontMicrobiol6:242. 130. KhanSA.2005.Plasmidrolling-circlereplication:highlightsoftwo decadesofresearch.Plasmid53:126–136. 131. LillyJ,CampsM.2015.MechanismsofThetaPlasmidReplication. MicrobiolSpectr3:PLAS-0029-2014. 132. FreitasAR,NovaisC,TedimAP,FranciaMV,BaqueroF,PeixeL,Coque TM.2013.Microevolutionaryeventsinvolvingnarrowhostplasmids influenceslocalfixationofvancomycin-resistanceinEnterococcus populations.PLoSOne2013/04/05.8:e60589. 133. FreitasAR,TedimAP,FranciaMV.,JensenLB,NovaisC,PeixeL, Sánchez-ValenzuelaA,SundsfjordA,HegstadK,WernerG,SadowyE, HammerumAM,Garcia-MiguraL,WillemsRJ,BaqueroF,CoqueTM. 2016.MultilevelpopulationgeneticanalysisofvanAandvanB Enterococcusfaeciumcausingnosocomialoutbreaksin27countries (1986-2012).JAntimicrobChemother71:3351–3366. 134. SivertsenA,BillströmH,MeleforsÖ,LiljequistBO,WisellKT,Ullberg M,ÖzenciV,SundsfjordA,HegstadK.2014.AMulticentreHospital OutbreakinSwedenCausedbyIntroductionofavanB2Transposonintoa StablyMaintainedpRUM-PlasmidinanEnterococcusfaeciumST192 Clone.PLoSOne2014/08/26.9:e103274. 63 135. SletvoldH,JohnsenPJ,SimonsenGS,AasnaesB,SundsfjordA,Nielsen KM.2007.ComparativeDNAAnalysisofTwovanAPlasmidsfrom EnterococcusfaeciumStrainsIsolatedfromPoultryandaPoultryFarmer inNorway.AntimicrobAgentsChemother51:736–739. 136. McClintockB.1953.InductionofInstabilityatSelectedLociinMaize. Genetics38:579–99. 137. DarmonE,LeachDRF.2014.Bacterialgenomeinstability.MicrobiolMol BiolRev78:1–39. 138. SiguierP,GourbeyreE,VaraniA,Ton-HoangB,ChandlerM.2015. Everyman’sGuidetoBacterialInsertionSequences.MicrobiolSpectr 3:MDNA3-0030-2014. 139. HickmanAB,DydaF.2015.MechanismsofDNATransposition.Microbiol Spectr3:MDNA3-0034-2014. 140. RicePA.2015.SerineResolvases.MicrobiolSpectr3:MDNA3-0045-2014. 141. BellangerX,PayotS,Leblond-BourgetN,GuédonG.2014.Conjugative andmobilizablegenomicislandsinbacteria:evolutionanddiversity.FEMS MicrobiolRev38:720–760. 142. GuglielminiJ,QuintaisL,Garcillán-BarciaMP,delaCruzF,RochaEPC. 2011.TherepertoireofICEinprokaryotesunderscorestheunity, diversity,andubiquityofconjugation.PLoSGenet7:e1002222. 143. FineranPC,BlowerTR,FouldsIJ,HumphreysDP,LilleyKS,Salmond GPC.2009.Thephageabortiveinfectionsystem,ToxIN,functionsasa protein-RNAtoxin-antitoxinpair.ProcNatlAcadSciUSA106:894–9. 144. Fernández-GarcíaL,BlascoL,LopezM,BouG,García-ContrerasR, WoodT,TomasM.2016.Toxin-AntitoxinSystemsinClinicalPathogens. Toxins(Basel)8:227. 145. GradyR,HayesF.2003.Axe-Txe,abroad-spectrumproteictoxinantitoxinsystemspecifiedbyamultidrug-resistant,clinicalisolateof Enterococcusfaecium.MolMicrobiol47:1419–1432. 146. MeinhartA,AlonsoJC,SträterN,SaengerW.2003.Crystalstructureof theplasmidmaintenancesystemepsilon/zeta:functionalmechanismof toxinzetaandinactivationbyepsilon2zeta2complexformation.Proc NatlAcadSciUSA100:1661–6. 64 147. HalvorsenEM,WilliamsJJ,BhimaniAJ,BillingsEA,HergenrotherPJ. 2011.Txe,anendoribonucleaseoftheenterococcalAxe-Txetoxinantitoxinsystem,cleavesmRNAandinhibitsproteinsynthesis. Microbiology2010/10/30.157:387–97. 148. RosvollTCS,PedersenT,SletvoldH,JohnsenPJ,SollidJE,Simonsen GS,JensenLB,NielsenKM,SundsfjordA.2010.PCR-basedplasmid typinginEnterococcusfaeciumstrainsrevealswidelydistributedpRE25-, pRUM-,pIP501-andpHTβ-relatedrepliconsassociatedwithglycopeptide resistanceandstabilizingtoxin-antitoxinsystems.FEMSImmunolMed Microbiol58:254–268. 149. SoheiliS,GhafourianS,SekawiZ,NeelaVK,SadeghifardN, TaherikalaniM,KhosraviA,RamliR,HamatRA.2015.ThemazEF toxin-antitoxinsystemasanattractivetargetinclinicalisolatesof EnterococcusfaeciumandEnterococcusfaecalis.DrugDesDevelTher 9:2553–61. 150. OliveiraPH,TouchonM,RochaEPC.2014.Theinterplayofrestrictionmodificationsystemswithmobilegeneticelementsandtheirprokaryotic hosts.NucleicAcidsRes42:10618–10631. 151. BlowMJ,ClarkTA,DaumCG,DeutschbauerAM,FomenkovA,FriesR, FroulaJ,KangDD,MalmstromRR,MorganRD,PosfaiJ,SinghK,Visel A,WetmoreK,ZhaoZ,RubinEM,KorlachJ,PennacchioLA,RobertsRJ. 2016.TheEpigenomicLandscapeofProkaryotes.PLoSGenet 12:e1005854. 152. ArberW,LinnS.1969.DNAModificationandRestriction.AnnuRev Biochem38:467–500. 153. DupuisM-È,VillionM,MagadánAH,MoineauS.2013.CRISPR-Casand restriction–modificationsystemsarecompatibleandincreasephage resistance.NatCommun4:278–284. 154. PriceVJ,HuoW,SharifiA,PalmerKL.2016.CRISPR-CasandRestrictionModificationActAdditivelyagainstConjugativeAntibioticResistance PlasmidTransferinEnterococcusfaecalis.mSphere1:e00064-16. 155. KoronaR,KoronaB,LevinBR.1993.Sensitivityofnaturallyoccurring coliphagestotypeIandtypeIIrestrictionandmodification.JGen 65 Microbiol139:1283–1290. 156. NaitoT,KusanoK,KobayashiI.1995.Selfishbehaviorofrestrictionmodificationsystems.Science267:897–9. 157. OliveiraPH,TouchonM,RochaEPC.2016.Regulationofgeneticflux betweenbacteriabyrestriction-modificationsystems.ProcNatlAcadSciU SA113:5658–63. 158. MarinusMG,CasadesusJ.2009.RolesofDNAadeninemethylationin host-pathogeninteractions:mismatchrepair,transcriptionalregulation, andmore.FEMSMicrobiolRev33:488–503. 159. HilleF,CharpentierE.2016.CRISPR-Cas:biology,mechanismsand relevance.PhilosTransRSocLondBBiolSci371. 160. LevyA,GorenMG,YosefI,AusterO,ManorM,AmitaiG,EdgarR, QimronU,SorekR.2015.CRISPRadaptationbiasesexplainpreference foracquisitionofforeignDNA.Nature520:505–510. 161. Ivančić-BaćeI,CassSD,WearneSJ,BoltEL.2015.Differentgenome stabilityproteinsunderpinprimedandnaïveadaptationinE.coliCRISPRCasimmunity.NucleicAcidsRes43:10821–30. 162. SampsonTR,SarojSD,LlewellynAC,TzengY-L,WeissDS.2013.A CRISPR/Cassystemmediatesbacterialinnateimmuneevasionand virulence.Nature497:254–257. 163. VercoeRB,ChangJT,DyRL,TaylorC,GristwoodT,ClulowJS,Richter C,PrzybilskiR,PitmanAR,FineranPC.2013.Cytotoxicchromosomal targetingbyCRISPR/Cassystemscanreshapebacterialgenomesandexpel orremodelpathogenicityislands.PLoSGenet9:e1003454. 164. SternA,KerenL,WurtzelO,AmitaiG,SorekR.2010.Self-targetingby CRISPR:generegulationorautoimmunity?TrendsGenet26:335–340. 165. PalmerKL,GilmoreMS.2010.Multidrug-resistantenterococcilack CRISPR-cas.MBio1:1–10. 166. GophnaU,KristensenDM,WolfYI,PopaO,DrevetC,KooninEV.2015. NoevidenceofinhibitionofhorizontalgenetransferbyCRISPR–Cason evolutionarytimescales.ISMEJ9:2021–2027. 167. WestraER,vanHouteS,Oyesiku-BlakemoreS,MakinB,Broniewski JM,BestA,Bondy-DenomyJ,DavidsonA,BootsM,BucklingA.2015. 66 ParasiteExposureDrivesSelectiveEvolutionofConstitutiveversus InducibleDefense.CurrBiol25:1043–9. 168. WeinbergerAD,WolfYI,LobkovskyAE,GilmoreMS,KooninEV.2012. Viraldiversitythresholdforadaptiveimmunityinprokaryotes.MBio 3:e00456-12. 169. SabatAJ,BudimirA,NashevD,Sá-LeãoR,vanDijlJm,LaurentF, GrundmannH,FriedrichAW,ESCMIDStudyGroupofEpidemiological Markers(ESGEM).2013.Overviewofmoleculartypingmethodsfor outbreakdetectionandepidemiologicalsurveillance.EurCommunDisBull 18:20380. 170. TenoverFC,ArbeitRD,GoeringRV,MickelsenPa,MurrayBE,Persing DH,SwaminathanB.1995.InterpretingchromosomalDNArestriction patternsproducedbypulsed-fieldgelelectrophoresis:criteriaforbacterial straintyping.JClinMicrobiol33:2233–9. 171. SchwartzDC,CantorCR.1984.Separationofyeastchromosome-sized DNAsbypulsedfieldgradientgelelectrophoresis.Cell37:67–75. 172. VosP,HogersR,BleekerM,ReijansM,LeeTvande,HornesM,Friters A,PotJ,PalemanJ,KuiperM,ZabeauM.1995.AFLP:anewtechnique forDNAfingerprinting.NucleicAcidsRes23:4407–4414. 173. SaikiRK,ScharfS,FaloonaF,MullisKB,HornGT,ErlichHA,Arnheim N.1985.Enzymaticamplificationofbeta-globingenomicsequencesand restrictionsiteanalysisfordiagnosisofsicklecellanemia.Science 230:1350–4. 174. GrimontF,GrimontPA.1986.Ribosomalribonucleicacidgene restrictionpatternsaspotentialtaxonomictools.AnnInstPasteur Microbiol137B:165–75. 175. StullTL,LiPumaJJ,EdlindTD.1988.Abroad-spectrumprobefor molecularepidemiologyofbacteria:ribosomalRNA.JInfectDis157:280– 6. 176. MaidenMC,BygravesJA,FeilE,MorelliG,RussellJE,UrwinR,ZhangQ, ZhouJ,ZurthK,CaugantDA,FeaversIM,AchtmanM,SprattBG.1998. Multilocussequencetyping:aportableapproachtotheidentificationof cloneswithinpopulationsofpathogenicmicroorganisms.ProcNatlAcad 67 SciUSA95:3140–5. 177. JolleyKA,MaidenMCJ.2014.Usingmultilocussequencetypingtostudy bacterialvariation:prospectsinthegenomicera.FutureMicrobiol9:623– 30. 178. CollinsC,DidelotX.2017.ReconstructingtheAncestralRelationships BetweenBacterialPathogenGenomes.MethodsMolBiol1535:109–137. 179. ChewapreechaC,MarttinenP,CroucherNJ,SalterSJ,HarrisSR, MatherAE,HanageWP,GoldblattD,NostenFH,TurnerC,TurnerP, BentleySD,ParkhillJ.2014.Comprehensiveidentificationofsingle nucleotidepolymorphismsassociatedwithbeta-lactamresistancewithin pneumococcalmosaicgenes.PLoSGenet10:e1004547. 180. CroucherNJ,HarrisSR,FraserC,QuailMA,BurtonJ,vanderLindenM, McGeeL,vonGottbergA,SongJH,KoKS,PichonB,BakerS,ParryCM, LambertsenLM,ShahinasD,PillaiDR,MitchellTJ,DouganG,Tomasz A,KlugmanKP,ParkhillJ,HanageWP,BentleySD.2011.Rapid pneumococcalevolutioninresponsetoclinicalinterventions.Science 331:430–4. 181. TreangenTJ,OndovBD,KorenS,PhillippyAM.2014.TheHarvestsuite forrapidcore-genomealignmentandvisualizationofthousandsof intraspecificmicrobialgenomes.GenomeBiol15:524. 182. McKennaA,HannaM,BanksE,SivachenkoA,CibulskisK,Kernytsky A,GarimellaK,AltshulerD,GabrielS,DalyM,DePristoMA.2010.The GenomeAnalysisToolkit:aMapReduceframeworkforanalyzingnextgenerationDNAsequencingdata.GenomeRes20:1297–303. 183. CroucherNJ,Pagea.J,ConnorTR,Delaneya.J,KeaneJa.,BentleySD, ParkhillJ,HarrisSR.2015.Rapidphylogeneticanalysisoflargesamples ofrecombinantbacterialwholegenomesequencesusingGubbins.Nucleic AcidsRes43:e15–e15. 184. MarttinenP,HanageWP,CroucherNJ,ConnorTR,HarrisSR,Bentley SD,CoranderJ.2012.Detectionofrecombinationeventsinbacterial genomesfromlargepopulationsamples.NucleicAcidsRes40:e6. 185. DidelotX,WilsonDJ.2015.ClonalFrameML:efficientinferenceof recombinationinwholebacterialgenomes.PLoSComputBiol 68 11:e1004041. 186. TettelinH,MasignaniV,CieslewiczMJ,DonatiC,MediniD,WardNL, AngiuoliSV,CrabtreeJ,JonesAL,DurkinAS,DeboyRT,DavidsenTM, MoraM,ScarselliM,MargarityRosI,PetersonJD,HauserCR, SundaramJP,NelsonWC,MadupuR,BrinkacLM,DodsonRJ,Rosovitz MJ,SullivanSA,DaughertySC,HaftDH,SelengutJ,GwinnML,ZhouL, ZafarN,KhouriH,RaduneD,DimitrovG,WatkinsK,O’ConnorKJB, SmithS,UtterbackTR,WhiteO,RubensCE,GrandiG,MadoffLC, KasperDL,TelfordJL,WesselsMR,RappuoliR,FraserCM.2005. GenomeanalysisofmultiplepathogenicisolatesofStreptococcus agalactiae:implicationsforthemicrobial“pan-genome”.ProcNatlAcadSci USA102:13950–5. 187. DonatiC,HillerNL,TettelinH,MuzziA,CroucherNJ,AngiuoliSV, OggioniM,DunningHotoppJC,HuFZ,RileyDR,CovacciA,MitchellTJ, BentleySD,KilianM,EhrlichGD,RappuoliR,MoxonER,MasignaniV. 2010.Structureanddynamicsofthepan-genomeofStreptococcus pneumoniaeandcloselyrelatedspecies.GenomeBiol11:R107. 188. Contreras-MoreiraB,VinuesaP.2013.GET_HOMOLOGUES,aVersatile SoftwarePackageforScalableandRobustMicrobialPangenomeAnalysis. ApplEnvironMicrobiol79:7696–7701. 189. ChaudhariNM,GuptaVK,DuttaC.2016.BPGA-anultra-fastpan-genome analysispipeline.SciRep6:24373. 190. PageAJ,CumminsCA,HuntM,WongVK,ReuterS,HoldenMTG, FookesM,FalushD,KeaneJA,ParkhillJ.2015.Roary:rapidlarge-scale prokaryotepangenomeanalysis.Bioinformatics31:3691–3. 191. SahlJW,CaporasoJG,RaskoDA,KeimP.2014.Thelarge-scaleblast scoreratio(LS-BSR)pipeline:amethodtorapidlycomparegenetic contentbetweenbacterialgenomes.PeerJ2:e332. 192. HallBG.2014.SNP-AssociationsandPhenotypePredictionsfrom HundredsofMicrobialGenomeswithoutGenomeAlignments.PLoSOne 9:e90490. 193. LeesJA,VehkalaM,VälimäkiN,HarrisSR,ChewapreechaC,Croucher NJ,MarttinenP,DaviesMR,SteerAC,TongSYC,HonkelaA,ParkhillJ, 69 BentleySD,CoranderJ.2016.Sequenceelementenrichmentanalysisto determinethegeneticbasisofbacterialphenotypes.NatCommun 7:12797. 194. EarleSG,WuC-H,CharlesworthJ,StoesserN,GordonNC,WalkerTM, SpencerCCA,IqbalZ,CliftonDA,HopkinsKL,WoodfordN,SmithEG, IsmailN,LlewelynMJ,PetoTE,CrookDW,McVeanG,WalkerAS, WilsonDJ.2016.Identifyinglineageeffectswhencontrollingfor populationstructureimprovespowerinbacterialassociationstudies.Nat Microbiol1:16041. 195. CoqueTM,WillemsRJL,FortúnJ,TopJ,DizS,LozaE,CantónR, BaqueroF.2005.PopulationstructureofEnterococcusfaeciumcausing bacteremiainaSpanishuniversityhospital:settingthesceneforafuture increaseinvancomycinresistance?AntimicrobAgentsChemother 49:2693–700. 196. WillemsRJ,TopJ,vanDenBraakN,vanBelkumA,EndtzH,MeviusD, StobberinghE,vanDenBogaardA,vanEmbdenJD.2000.Host specificityofvancomycin-resistantEnterococcusfaecium.JInfectDis 182:816–23. 197. JureenR,TopJ,MohnSC,HarthugS,LangelandN,WillemsRJL.2003. Molecularcharacterizationofampicillin-resistantEnterococcusfaecium isolatesfromhospitalizedpatientsinNorway.JClinMicrobiol41:2330–6. 198. BorgenK,WastesonY,KruseH,WillemsRJL.2002.VancomycinresistantEnterococcusfaecium(VREF)fromNorwegianpoultrycluster withVREFfrompoultryfromtheUnitedKingdomandTheNetherlandsin anamplifiedfragmentlengthpolymorphismgenogroup.ApplEnviron Microbiol68:3133–7. 199. VancanneytM,LombardiA,AndrighettoC,KnijffE,TorrianiS, BjörkrothKJ,FranzCMAP,FoulquiéMorenoMR,RevetsH,DeVuystL, SwingsJ,KerstersK,DellaglioF,HolzapfelWH.2002.Intraspecies genomicgroupsinEnterococcusfaeciumandtheircorrelationwithorigin andpathogenicity.ApplEnvironMicrobiol68:1381–91. 200. HomanWL,TribeD,PoznanskiS,LiM,HoggG,SpalburgE,Van EmbdenJDA,WillemsRJL.2002.Multilocussequencetypingschemefor 70 Enterococcusfaecium.JClinMicrobiol2002/05/31.40:1963–71. 201. WillemsRJL,TopJ,vanSantenM,RobinsonDA,CoqueTM,BaqueroF, GrundmannH,BontenMJM.2005.GlobalspreadofvancomycinresistantEnterococcusfaeciumfromdistinctnosocomialgeneticcomplex. EmergInfectDis11:821–8. 202. LeavisHL,WillemsRJL,TopJ,BontenMJM.2006.High-level ciprofloxacinresistancefrompointmutationsingyrAandparCconfinedto globalhospital-adaptedclonallineageCC17ofEnterococcusfaecium.JClin Microbiol44:1059–64. 203. HeikensE,vanSchaikW,LeavisHL,BontenMJM,WillemsRJL.2008. Identificationofanovelgenomicislandspecifictohospital-acquiredclonal complex17Enterococcusfaeciumisolates.ApplEnvironMicrobiol 74:7094–7. 204. FeilEJ,LiBC,AanensenDM,HanageWP,SprattBG.2004.eBURST: inferringpatternsofevolutionarydescentamongclustersofrelated bacterialgenotypesfrommultilocussequencetypingdata.JBacteriol 186:1518–30. 205. SprattBG,HanageWP,LiB,AanensenDM,FeilEJ.2004.Displayingthe relatednessamongisolatesofbacterialspecies--theeBURSTapproach. FEMSMicrobiolLett241:129–34. 206. TurnerKME,HanageWP,FraserC,ConnorTR,SprattBG.2007. AssessingthereliabilityofeBURSTusingsimulatedpopulationswith knownancestry.BMCMicrobiol7:30. 207. WillemsRJ,TopJ,vanSchaikW,LeavisH,BontenM,SirenJ,Hanage WP,CoranderJ.2012.Restrictedgeneflowamonghospital subpopulationsofEnterococcusfaecium.MBio2012/07/19.3:e00151-12. 208. Galloway-PeñaJ,RohJH,LatorreM,QinX,MurrayBE.2012.Genomic andSNPanalysesdemonstrateadistantseparationofthehospitaland community-associatedcladesofEnterococcusfaecium.PLoS One2012/02/01.7:e30187. 209. PalmerKL,GodfreyP,GriggsA,KosVN,ZuckerJ,DesjardinsC, CerqueiraG,GeversD,WalkerS,WortmanJ,FeldgardenM,HaasB, BirrenB,GilmoreMS.2012.Comparativegenomicsofenterococci: 71 variationinEnterococcusfaecalis,cladestructureinE.faecium,and definingcharacteristicsofE.gallinarumandE.casseliflavus.MBio 3:e00318-11. 210. vanSchaikW,TopJ,RileyDR,BoekhorstJ,VrijenhoekJE, SchapendonkCM,HendrickxAP,NijmanIJ,BontenMJ,TettelinH, WillemsRJ.2010.Pyrosequencing-basedcomparativegenomeanalysisof thenosocomialpathogenEnterococcusfaeciumandidentificationofa largetransferablepathogenicityisland.BMCGenomics2010/04/20. 11:239. 211. KimEB,MarcoML.2014.NonclinicalandclinicalEnterococcusfaecium strains,butnotEnterococcusfaecalisstrains,havedistinctstructuraland functionalgenomicfeatures.ApplEnvironMicrobiol80:154–65. 212. deBeenM,PinholtM,TopJ,BletzS,MellmannA,vanSchaikW, BrouwerE,RogersM,KraatY,BontenM,CoranderJ,WesthH, HarmsenD,WillemsRJL.2015.CoreGenomeMultilocusSequence TypingSchemeforHigh-ResolutionTypingofEnterococcusfaecium.JClin Microbiol53:3788–97. 213. PinholtM,Larner-SvenssonH,LittauerP,MoserCE,PedersenM, LemmingLE,EjlertsenT,SøndergaardTS,HolzknechtBJ,JustesenUS, DzajicE,OlsenSS,NielsenJB,WorningP,HammerumAM,WesthH, JakobsenL.2015.MultiplehospitaloutbreaksofvanAEnterococcus faeciuminDenmark,2012-13,investigatedbyWGS,MLSTandPFGE.J AntimicrobChemother70:2474–82. 214. PinholtM,GumpertH,BaylissS,NielsenJB,VorobievaV,PedersenM, FeilE,WorningP,WesthH.2016.Genomicanalysisof495vancomycinresistantEnterococcusfaeciumrevealsbroaddisseminationofavanA plasmidinmorethan19clonesfromCopenhagen,Denmark.JAntimicrob Chemotherdkw360. 215. SoderblomT,AspevallO,ErntellM,HedinG,HeimerD,HokebergI, Kidd-LjunggrenK,MelhusA,Olsson-LiljequistB,SjogrenI, SmedjegardJ,StruweJ,SylvanS,Tegmark-WisellK,ThoreM.2010. AlarmingspreadofvancomycinresistantenterococciinSwedensince 2007.EuroSurveill15:pii=19620. 72 216. BjørkengEK,RasmussenG,SundsfjordA,SjöbergL,HegstadK, SöderquistB.2011.ClusteringofpolyclonalVanB-typevancomycinresistantEnterococcusfaeciuminalow-endemicareawasassociatedwith CC17-genogroupstrainsharbouringtransferablevanB2-Tn5382and pRUM-likerepAcontainingplasmidswithaxe-txeplasmidaddiction system.APMIS119:247–258. 217. GranlundM,CarlssonC,EdebroH,EmanuelssonK,LundholmR.2006. NosocomialoutbreakofvanB2vancomycin-resistantEnterococcus faeciuminSweden.JHospInfect62:254–6. 218. BillströmH,TopJ,EdlundC,LundB.2010.Frequentoccurrenceof multidrug-resistantCC17Enterococcusfaeciumamongclinicalisolatesin Sweden.JApplMicrobiol108:1810–1816. 219. LanderslevKG,JakobsenL,OlsenSS,PedersenMB,KristensenB, LemmingLE,WangM,KjærsgaardM,SteggerM,HasmanH, HammerumAM.2016.PolyclonalspreadofvanAEnterococcusfaecium inCentralDenmarkRegion,2009-2013,investigatedusingPFGE,MLST andWGS.IntJAntimicrobAgents. 220. Meldingssystemforsmittsommesykdommer(MSIS). http://www.msis.no. 221. Folkhälsomyndigheten. https://www.folkhalsomyndigheten.se/folkhalsorapporteringstatistik/statistikdatabaser-ochvisualisering/sjukdomsstatistik/vancomycinresistenta-enterokocker-vre/. 222. StatensSerumInstitut.2016. http://www.ssi.dk/Smitteberedskab/Sygdomsovervaagning.aspx. 223. JohnsenPJ,ØsterhusJI,SletvoldH,SørumM,KruseH,NielsenK, SimonsenGS,SundsfjordA.2005.Persistenceofanimalandhuman glycopeptide-resistantenterococciontwoNorwegianpoultryfarms formerlyexposedtoavoparcinisassociatedwithawidespreadplasmidmediatedvanAelementwithinapolyclonalenterococcusfaecium population.ApplEnvironMicrobiol2005/01/11.71:159–68. 224. FreitasAR,CoqueTM,NovaisC,HammerumAM,LesterCH,ZervosMJ, DonabedianS,JensenLB,FranciaMV,BaqueroF,PeixeL.2011.Human 73 andswinehostssharevancomycin-resistantEnterococcusfaeciumCC17 andCC5andEnterococcusfaecalisCC2clonalclustersharboringTn1546 onindistinguishableplasmids.JClinMicrobiol49:925–31. 225. Garcia-MiguraL,Sanchez-ValenzuelaAJ,JensenLB.2011.Presenceof Glycopeptide-EncodingPlasmidsinEnterococcalIsolatesfromFoodand HumansinDenmark.FoodbornePathogDis8:1191–1197. 226. NordahlPetersenT,RasmussenS,HasmanH,CarøeC,BælumJ, CharlotteSchultzA,BergmarkL,SvendsenCa.,LundO,SicheritzPonténT,AarestrupFM.2015.Meta-genomicanalysisoftoiletwaste fromlongdistanceflights;asteptowardsglobalsurveillanceofinfectious diseasesandantimicrobialresistance.SciRep5:11444. 227. HansenTA,JoshiT,LarsenAR,AndersenPS,HarmsK,MollerupS, WillerslevE,FuurstedK,NielsenLP,HansenAJ.2016.Vancomycingene selectioninthemicrobiomeofurbanRattusnorvegicusfromhospital environment.EvolMedpublicHeal2016:219–26. 228. IversenA,KühnI,FranklinA,MöllbyR.2002.Highprevalenceof vancomycin-resistantenterococciinSwedishsewage.ApplEnviron Microbiol68:2838–42. 229. RavenKE,ReuterS,ReynoldsR,BrodrickHJ,RussellJE,TörökME, ParkhillJ,PeacockSJ.2016.AdecadeofgenomichistoryforhealthcareassociatedEnterococcusfaeciumintheUnitedKingdomandIreland. GenomeRes26:1388–1396. 230. NumminenE,GutmannM,ShubinM,MarttinenP,MéricG,vanSchaik W,CoqueTM,BaqueroF,WillemsRJL,SheppardSK,FeilEJ,Hanage WP,CoranderJ.2016.Theimpactofhostmetapopulationstructureon thepopulationgeneticsofcolonizingbacteria.JTheorBiol70:156–7. 231. CarterGP,BuultjensAH,BallardSA,BainesSL,TomitaT,StrachanJ, JohnsonPDR,FergusonJK,SeemannT,StinearTP,HowdenBP.2016. EmergenceofendemicMLSTnon-typeablevancomycin-resistant Enterococcusfaecium.JAntimicrobChemother71:3367–3371. 232. LomanNJ,PallenMJ.2015.Twentyyearsofbacterialgenomesequencing. NatRevMicrobiol13:787–794. 233. AarestrupFM,KoopmansMG.2016.SharingDataforGlobalInfectious 74 DiseaseSurveillanceandOutbreakDetection.TrendsMicrobiol24:241–5. 234. LamMMC,SeemannT,TobiasNJ,ChenH,HaringV,MooreRJ,Ballard S,GraysonLM,JohnsonPDR,HowdenBP,StinearTP.2013. Comparativeanalysisofthecompletegenomeofanepidemichospital sequencetype203cloneofvancomycin-resistantEnterococcusfaecium. BMCGenomics14:595. 235. vanHalSJ,IpCLC,AnsariMA,WilsonDJ,EspedidoBA,JensenSO, BowdenR.2016.EvolutionarydynamicsofEnterococcusfaeciumreveals complexgenomicrelationshipsbetweenisolateswithindependent emergenceofvancomycinresistance.Microbgenomics2. 236. BrodrickHJ,RavenKE,HarrisonEM,BlaneB,ReuterS,TörökME, ParkhillJ,PeacockSJ.2016.Whole-genomesequencingreveals transmissionofvancomycin-resistantEnterococcusfaeciumina healthcarenetwork.GenomeMed8:4. 237. McNallyA,OrenY,KellyD,PascoeB,DunnS,SreecharanT,VehkalaM, VälimäkiN,PrenticeMB,AshourA,AvramO,PupkoT,DobrindtU, LiterakI,GuentherS,SchauflerK,WielerLH,ZhiyongZ,SheppardSK, McInerneyJO,CoranderJ.2016.CombinedAnalysisofVariationinCore, AccessoryandRegulatoryGenomeRegionsProvidesaSuper-Resolution ViewintotheEvolutionofBacterialPopulations.PLoSGenet 12:e1006280. 238. SheppardAE,StoesserN,WilsonDJ,SebraR,KasarskisA,AnsonLW, GiessA,PankhurstLJ,VaughanA,GrimCJ,CoxHL,YehAJ, ModernisingMedicalMicrobiology(MMM)InformaticsGroup,Sifri CD,WalkerAS,PetoTE,CrookDW,MathersAJ.2016.NestedRussian Doll-LikeGeneticMobilityDrivesRapidDisseminationoftheCarbapenem ResistanceGeneblaKPC.AntimicrobAgentsChemother60:3767–78. 239. HillCM,KrauseKM,LewisSR,BlaisJ,BentonBM,MammenM, HumphreyPP,KinanaA,JancJW.2010.Specificityofinductionofthe vanAandvanBoperonsinvancomycin-resistantenterococcibytelavancin. AntimicrobAgentsChemother54:2814–8. 240. DongSD,OberthürM,LoseyHC,AndersonJW,EggertUS,PeczuhMW, WalshCT,KahneD.2002.ThestructuralbasisforinductionofVanB 75 resistance.JAmChemSoc124:9064–5. 241. KwunMJ,HongH-J.2014.Theactivityofglycopeptideantibioticsagainst resistantbacteriacorrelateswiththeirabilitytoinducetheresistance system.AntimicrobAgentsChemother58:6306–10. 242. BaptistaM,DepardieuF,ReynoldsP,CourvalinP,ArthurM.1997. Mutationsleadingtoincreasedlevelsofresistancetoglycopeptide antibioticsinVanB-typeenterococci.MolMicrobiol25:93–105. 243. AslangulE,BaptistaM,FantinB,DepardieuF,ArthurM,CourvalinP, CarbonC.1997.Selectionofglycopeptide-resistantmutantsofVanB-type EnterococcusfaecalisBM4281invitroandinexperimentalendocarditis.J InfectDis175:598–605. 244. WijesuriyaTM,PerryP,PryceT,BoehmJ,KayI,FlexmanJ,Coombs GW,IngramPR.2014.LowvancomycinMICsandfecaldensitiesreduce thesensitivityofscreeningmethodsforvancomycinresistancein Enterococci.JClinMicrobiol52:2829–33. 245. HegstadK,GiskeCG,HaldorsenB,MatuschekE,SchonningK, LeegaardTM,KahlmeterG,SundsfjordA.2014.Performanceofthe EUCASTDiskDiffusionMethod,theCLSIAgarScreenMethod,andthe Vitek2AutomatedAntimicrobialSusceptibilityTestingSystemfor DetectionofClinicalIsolatesofEnterococciwithLow-andMedium-Level VanB-TypeVancomycinResistanc.JClinMicrobiol2014/03/07.52:1582– 1589. 246. KlareI,FleigeC,GeringerU,WitteW,WernerG.2012.Performanceof threechromogenicVREscreeningagars,twoEtest(®)vancomycin protocols,anddifferentmicrodilutionmethodsindetectingvanBgenotype EnterococcusfaeciumwithvaryingvancomycinMICs.DiagnMicrobiol InfectDis74:171–6. 247. WernerG,KlareI,FleigeC,GeringerU,WitteW,JustH-M,ZieglerR. 2012.Vancomycin-resistantvanB-typeEnterococcusfaeciumisolates expressingvaryinglevelsofvancomycinresistanceandbeinghighly prevalentamongneonatalpatientsinasingleICU.AntimicrobResistInfect Control1:21. 248. ChaJO,YooJI,KimHK,KimHS,YooJS,LeeYS,JungYH.2013.Diversity 76 ofTn1546invanA-positiveEnterococcusfaeciumclinicalisolateswith VanA,VanB,andVanDphenotypesandsusceptibilitytovancomycin.JAppl Microbiol115:969–76. 249. SongJ-H,KoKS,SuhJY,OhWS,KangC-I,ChungDR,PeckKR,LeeNY, LeeWG.2008.Clinicalimplicationsofvancomycin-resistantEnterococcus faecium(VRE)withVanDphenotypeandvanAgenotype.JAntimicrob Chemother61:838–844. 250. GagnonS,LevesqueS,LefebvreB,BourgaultA-M,LabbeA-C,RogerM. 2011.vanA-containingEnterococcusfaeciumsusceptibletovancomycin andteicoplaninbecauseofmajornucleotidedeletionsinTn1546.J AntimicrobChemother66:2758–2762. 251. HashimotoY,TanimotoK,OzawaY,MurataT,IkeY.2000.Aminoacid substitutionsintheVanSsensoroftheVanA-typevancomycin-resistant enterococcusstrainsresultinhigh-levelvancomycinresistanceandlowlevelteicoplaninresistance.FEMSMicrobiolLett185:247–254. 252. SzakacsTA,KalanL,McConnellMJ,EshaghiA,ShahinasD,McGeerA, WrightGD,LowDE,PatelSN.2014.Outbreakofvancomycin-susceptible Enterococcusfaeciumcontainingthewild-typevanAgene.JClin Microbiol2014/02/14.52:1682–1686. 253. GuL,CaoB,LiuY,GuoP,SongS,LiR,DaiH,WangC.2009.Anew Tn1546typeofVanBphenotype-vanAgenotypevancomycin-resistant EnterococcusfaeciumisolatesinmainlandChina.DiagnMicrobiolInfect Dis63:70–5. 254. KnightDR,AndrogaGO,BallardSA,HowdenBP,RileyTV.2016.A PhenotypicallySilentvanB2OperonCarriedonaTn1549-LikeElementin Clostridiumdifficile.mSphere1. 255. EllingtonMJ,EkelundO,AarestrupFM,CantonR,DoumithM,GiskeC, GrundmanH,HasmanH,HoldenM,HopkinsKL,IredellJ,Kahlmeter G,KöserCU,MacGowanA,MeviusD,MulveyM,NaasT,PetoT,Rolain J-M,SamuelsenØ,WoodfordN.2016.TheRoleofWholeGenome Sequencing(WGS)inAntimicrobialSusceptibilityTestingofBacteria: ReportfromtheEUCASTSubcommittee.ClinMicrobiolInfect. 256. ThakerMN,KalanL,WaglechnerN,EshaghiA,PatelSN,PoutanenS, 77 WilleyB.2015.Vancomycin-VariableEnterococciCanGiveRiseto ConstitutiveResistanceduringAntibioticTherapy59:1405–1410. 257. SivertsenA,PedersenT,JaniceJ,Hegstad.2017.Vancomycinvariable resistancemayoccurthroughcreationofanovelpromoterafterdeletions bypolymeraseslippage,p.submitted.In27thEuropeanCongressof ClinicalMicrobiologyandInfectiousDiseases. 258. ZarkanA,MacklyneH-R,TrumanAW,HeskethAR,HongH-J.2016.The frontlineantibioticvancomycininducesazincstarvationresponsein bacteriabybindingtoZn(II).SciRep6:19602. 259. SanMillanA,EscuderoJA,GiffordDR,MazelD,MacLeanRC.2016. Multicopyplasmidspotentiatetheevolutionofantibioticresistancein bacteria.NatEcolEvol1:10. 260. PorseA,SchønningK,MunckC,SommerMOA.2016.Survivaland EvolutionofaLargeMultidrugResistancePlasmidinNewClinical BacterialHosts.MolBiolEvol33:2860–2873. 261. HeS,HickmanAB,VaraniAM,SiguierP,ChandlerM,DekkerJP,Dyda F.2015.InsertionSequenceIS26ReorganizesPlasmidsinClinically IsolatedMultidrug-ResistantBacteriabyReplicativeTransposition.MBio 6:e00762. 262. HeS,ChandlerM,VaraniAM,HickmanAB,DekkerJP,DydaF.2016. MechanismsofEvolutioninHigh-ConsequenceDrugResistancePlasmids. MBio7:e01987-16. 263. StojanovM,MoreillonP,SakwinskaO.2015.Excisionofstaphylococcal cassettechromosomemecinmethicillin-resistantStaphylococcusaureus assessedbyquantitativePCR.BMCResNotes8:828. 264. MisiuraA,PigliYZ,Boyle-VavraS,DaumRS,BoocockMR,RicePA. 2013.RolesoftwolargeserinerecombinasesinmobilizingthemethicillinresistancecassetteSCCmec.MolMicrobiol88:1218–29. 265. HughesD.2003.Exploitinggenomics,geneticsandchemistrytocombat antibioticresistance.NatRevGenet4:432–41. 78
© Copyright 2026 Paperzz