Lab 2 - Quia

Date
Name
Class
Due Date:
Quantitative Observations of a Chemical Reaction
Lab 2
Pre-Lab Discussion
Most experiments require the investigator to make some quantitative observations, or measurements. The
numerical values of these measurements are called data. The most frequently measured quantities in the
chemistry laboratory are mass, volume, and temperature.
When conducting an experiment of a quantitative nature, the first step in the procedure is to make and
record measurements of the materials that are being investigated. If the materials take part in a chemical
reaction (undergo chemical change), many, if not all, of the initial measured values probably will change.
The nature and extent of these changes often help the investigator to understand what is taking place. Some
of these changes, such as temperature change, can be measured and recorded as the reaction is taking place.
When the reaction is ended, measurements again are made and recorded. The collected data from all of these
measurements provide an overall record of what quantitative changes took place during the reaction.
When making measurements, you should keep in mind that the numerical values can be only as accurate
as the instruments used to make the measurements. These values also are affected by the care and skill of the
person using the instruments. As you gain more experience in the laboratory, you will become more familiar
with the limitations and accuracy of the various instruments you use. You also will become more skillful in
the use of these instruments and in carrying out various
activities that are essential to a successful investigation.
Scientists must be imaginative. In many cases, they must devise their own experiments and decide what
measurements will provide useful information. In this investigation, you will make measurements to
determine the effects of a chemical reaction (combustion). You then will be asked to decide how these
measurements can be used to extend your understanding of the reaction.
Purpose
Make a quantitative investigation of a chemical reaction.
Equipment
laboratory balance
ring stand
iron ring
wire gauze
thermometer
beaker, 250-mL
graduated cylinder, l00-mL
watch or clock with second hand
safety goggles
lab apron
hot hands or beaker tongs
Materials
candle
glass square
matches, 2 or 3
Safety
In this experiment, you will be working with an open flame. Tie back long hair and secure loose
clothing. Also, wear safety goggles and a lab apron or coat at all times when working in the lab. Be
sure matches are completely extinguished before they are discarded.
Source unknown
Page 1
Procedure
1. Put the candle on a glass square by gently heating the bottom of the
candle with the match so that it adheres to the glass slide.
2. Find the mass of the candle and glass slide.
3. Measure exactly 100 mL of tap water in a graduated cylinder. Pour the water into a 250-mL beaker and
place the beaker on a wire gauze as shown in Figure 2-1. Measure the temperature of the water
Note: This picture is incorrect.
Make sure you draw in the
thermometer with the
thermometer clamp.
The thermometer should
NOT touch the beaker.
4. Adjust the height of the ring so that the flame is 2 cm below the base of the beaker. Then light the
candle.
Note: When cleaning up:
5. Using the candle, heat the water for exactly 10 minutes.
Make sure you wash the wire gauze
6. Extinguish the flame and measure the temperature of the water and
the mass
ofcarbon
the candle.
to remove
any
deposits.
7. For trial 2, obtain the data from another group.
Observations and Data
Trial 1
Record your info here.
Trial 2
Record info from another
group here.
Original mass of candle
Mass of candle after burning
Time candle burned
Original temperature of water
Final temperature of water
Time water heated
"'.,
Source unknown
Page 2
Calculations
For each trial, find:
1. The change in the mass of the candle
Change in the mass of the candle = Original mass - Mass after burning
Trial 2
Trial 1
_______
______
Trial 1 =
Trial 2 =
2. The change in the mass of the candle per minute
change in mass (g)
.
.
Change m mass of candle per minute =
Time burned (min)
_______
______
.'
Trial 2 =
Trial 1 =
3. The change in the temperature of the water
Change in temperature of water = Final temperature - Original temperature
Trial 1 =
Trial 2 =
4. The change in the temperature of the water per minute
.
.
Change in temperature per minute =
change in temperature (0C)
Time heated (min)
Trial 1 =
Trial 2 =
Conclusions and Questions- questions 1-3 can be answered on this sheet, 4 & 5 must be typed and attached.
1. Compare your trial results and calculations with those of other lab teams.
Are your results exactly the same? How do you account for any differences in data?
If one set of data differs from another in an experiment, does this mean that one or both sets are wrong? Explain your
answer.
Source unknown
Page 3
2. What does the term rate mean?
a. What was the rate of burning of the candle?
b. What was the rate of heating of the water?
3. Explain how the heat from the combustion reaction is related to the temperature change of the water.
4. Experimental Design- This part must be typed and attached to the lab report.
Design a laboratory procedure that would determine which produces more heat-a gram of
candle wax or a gram of alcohol. Be sure to include a purpose, hypothesis, materials,
procedure, and include the types of data you would collect and analyze.
How could this type of experiment be used to decide which substance would make the better
fuel?
What other factors might enter into choosing a fuel?
5. Be sure to type and attach a conclusion.
Note: EVERY LAB NEEDS A CONCLUSION WHETHER STATED OR NOT.
Source unknown
Page 4