Quaestiones Mathematicæ 30 (2007), 159–165 SECANT AND COSECANT SUMS AND BERNOULLI-NÖRLUND POLYNOMIALS PETER J. GRABNER† AND HELMUT PRODINGER* Abstract. We give explicit formulæ for sums of even powers of secant and cosecant values in terms of Bernoulli numbers and central factorial numbers. 1. Introduction We derive explicit formulæ for the secant sum ⌊ N−1 ⌋ 2 S2m (N) := X k=1 and the cosecant sum ⌋ ⌊ N−1 2 C2m (N) := X k=1 1 cos2m kπ N 1 sin2m kπ N . This research is inspired by the paper [2], where such formulæ were given for m ≤ 6. Our approach, which uses contour integrals and residues, produces such formulæ quite effortlessly for any m. The main contribution of the present paper is the identification of the occurring coefficients as “classical” combinatorial quantities such as central factorial numbers and Bernoulli numbers. 2. Contour integrals and residues We consider the secant sum first and start with the contour integral I 1 1 πN cot(πNz) dz, 2πi RT cos2m πz (1) 1 1 ± iT , 1 − 2N ± iT . By periodicity of the where RT is the rectangle with corners − 2N integrand, the integrals along the vertical lines cancel. Furthermore, the integrals along the horizontal lines tend to 0 when T → ∞, since cot remains bounded and cos tends to infinity exponentially. † This author is supported by the Austrian Science Foundation FWF, project S9605, part of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”. * This author is supported by the grant NRF 2053748 of the South African National Research Foundation. 1 2 P. J. GRABNER AND H. PRODINGER Thus we have I 1 1 0= πN cot(πNz) dz 2m 2πi RT cos πz ⌊ N−1 ⌋ 2 =2 X 1 cos2m kπ N k=1 + 1 + Res1 z= 2 1 cos2m πz πN cot(πNz) by the residue theorem. From this we derive ⌋ ⌊ N−1 2 S2m (N) = X k=1 1 cos2m kπ N 1 1 1 πN cot(πNz). = − − Res1 2m 2 2 z= 2 cos πz (2) In [4] the Bernoulli-Nörlund polynomials are introduced by the relation ∞ X tn ω1 · · · ωk tk ext = B (k) (x; ω1 , . . . , ωk ). (eω1 t − 1) · · · (eωk t − 1) n=0 n! n (3) We specialise ω1 = · · · = ωk = 2i, x = ki, and t = πz to obtain ∞ πz k X (πz)n (k) Bn (ki; 2i, . . . , 2i). = sin πz n! n=0 (k) (k) (k) Writing Pn = in Bn (ki; 2i, . . . , 2i) and observing that P2n+1 = 0 we have ∞ X (πz)2n−k 1 (k) (−1)n P2n . = k (2n)! sin πz n=0 We have Res1 z= 2 1 cos2m πz πN cot(πNz) = Res z=0 1 sin 2m πz πN cot(πNz + (4) N π). 2 Notice that N cot(πNz + π) = 2 ( cot(πNz) if N is even, − tan(πNz) if N is odd. Thus it is natural to distinguish two cases according to the parity of N. From [3] we have π cot πz = ∞ X π 2n z 2n−1 n=0 π tan πz = (2n)! ∞ X π 2n z 2n−1 n=1 (2n)! (−1)n 4n B2n , (−1)n−1 4n (4n − 1)B2n . (5) 3 Then for even N we have Res1 z= 2 1 cos2m πz πN cot(πNz) −1 = [z ] ∞ X (πz)2ℓ−2m ℓ=0 (2ℓ)! (−1) ℓ (2m) P2ℓ πN n=0 z= 2 1 cos2m πz = −[z (2n)! (−1)n 4n B2n m (−1)m X 2m (2m) P2(m−n) B2n (2N)2n = (2m)! n=0 2n and for odd N Res1 ∞ X (Nπz)2n−1 πN cot(πNz) −1 ] ∞ X (πz)2ℓ−2m ℓ=0 (2ℓ)! (−1) ℓ Summing up, we have for even N (2m) P2ℓ πN ∞ X (πNz)2n−1 (−1)n−1 4n (4n − 1)B2n (2n)! n=1 m (−1)m X 2m (2m) P2(m−n) B2n (4n − 1)(2N)2n . = (2m)! n=1 2n m 1 (−1)m−1 X 2m (2m) S2m (N) = − + P2(m−n) B2n (2N)2n 2 2(2m)! n=0 2n (6) m 1 (−1)m−1 X 2m (2m) P2(m−n) B2n (4n − 1)(2N)2n . S2m (N) = − + 2 2(2m)! n=0 2n (7) and for odd N Equation (2) gives us for even N: m=1: m=2: m=3: m=4: m=5: m=6: m=7: m=8: 1 2 N − 32 6 1 28 N 4 + 91 N 2 − 45 90 1 1 4 N 6 + 90 N 4 + 45 N 2 − 568 945 945 8 6 4 4 7 8 8336 1 N + 2835 N + 675 N + 105 N 2 − 14175 9450 1 1 13 82 64 N 10 + 5670 N 8 + 8505 N 6 + 8505 N 4 + 945 N 2 − 54176 93555 93555 12 10 8 6 691 2 31 278 1916 128 N + 93555 N + 141750 N + 178605 N + 212625 N 4 + 2079 N 2 − 365470016 638512875 638512875 14 12 10 8 6 4 2 691 2 311 592 944 N + N + N + N + N + N 18243225 273648375 66825 1275750 382725 111375 512 155194496 + 9009 N 2 − 273648375 3617 16 113324 1072 2473 N 16 + 54729675 N 14 + 28733079375 N 12 + 29469825 N 10 + 9568125 N8 325641566250 134432 8533792 1024 274946646272 + 88409475 N 6 + 1064188125 N 4 + 19305 N 2 − 488462349375 4 P. J. GRABNER AND H. PRODINGER Equation (2) gives us for odd N: m=1: m=2: m=3: m=4: m=5: m=6: m=7: m=8: 1 2 N − 21 2 1 4 N + 31 N 2 − 21 6 1 4 N 6 + 61 N 4 + 15 N 2 − 21 15 17 4 7 8 N 8 + 45 N 6 + 45 N 4 + 35 N 2 − 12 630 31 17 13 82 64 N 10 + 378 N 8 + 135 N 6 + 567 N 4 + 315 N 2 − 21 2835 691 62 527 278 1916 128 2 N 12 + 2835 N 10 + 9450 N 8 + 2835 N 6 + 14175 N 4 + 693 N − 21 155925 10922 691 62 5287 592 944 512 N 14 + 66825 N 12 + 2025 N 10 + 85050 N 8 + 6075 N 6 + 7425 N 4 + 3003 N2 6081075 929569 87376 113324 33232 42041 N 16 + 18243225 N 14 + 7016625 N 12 + 893025 N 10 + 637875 N8 1277025750 134432 8533792 1024 2 + 1403325 N 6 + 70945875 N 4 + 6435 N − 12 For the cosecant sum, we start with the contour integral I 1 1 πN cot(πNz)dz, 2m 2πi RT sin πz − 1 2 (8) which is again zero and, by summing residues, leads to the equation ⌋ ⌊ N−1 2 0= X k=1 1 sin2m kπ N 1 + (−1)N 1 1 + Res 2m πN cot(πNz) + . 2 z=0 sin πz 4 We observe that ⌊ N −1 ⌋ 2 X k=1 1 sin2m kπ N + 1 + (−1)N 4 equals the residue that we already calculated for S2m (N) and N even. Thus we have ⌊ C2m (N) = N −1 ⌋ 2 X k=1 1 sin2m kπ N m 1 + (−1)N (−1)m X 2m (2m) 2n P2(m−n) B2n (2N) − = . (2m)! n=0 2n 4 (9) (2m) 3. Computing P2n In this section we want to have a closer look at the Laurent series expansion of sin−2m πz. Our approach is somewhat similar to the one used in [1]. We start with the expansion (5). Differentiating yields ∞ This gives X (πz)2n−2 1 = (2n − 1)(−1)n−1 4n B2n . (2n)! sin2 πz n=0 (2) P2n = −(2n − 1)4n B2n . (10) 5 Differentiating sin−2m πz twice yields d2 1 1 1 2 2 2 = 2m(2m + 1)π − 4m π . 2m 2m+2 2m dz 2 sin πz sin πz sin πz (11) We now write m 1 sin2m πz = H2m (z) + R2m (z) = (2m) m−ℓ X (2ℓ − 1)!b 1 2ℓ 4 + R2m (z), (2m − 1)! (πz)2ℓ (12) ℓ=1 where H2m is the principal part around z = 0 and R2m denotes the regular part. Since differentiation preserves principal and regular parts, (11) gives ′′ H2m (z) = π 2 2m(2m + 1)H2m+2 (z) − 4m2 π 2 H2m (z), (2m) which gives the recursion (setting b0 (2m+2) (2m) (2m) + b2ℓ−2 for 1 ≤ ℓ ≤ m + 1. (2m) This recursion shows that the numbers b2ℓ m X (2) = b2m+2 = 0 and b2 = 1) (2m) = m2 b2ℓ b2ℓ (13) (2m) b2ℓ x2ℓ are given by = ℓ=0 (14) m−1 Y (x2 + k 2 ). (15) k=0 Thus they are closely related to the central factorial numbers t(n, k) studied in [5, p. 213]: x m−1 Y 2 2 (x − k ) = 2m X t(2m, 2k + 1)x2k+1 k=0 k=1 (2m) and a similar expression for odd first argument. This gives b2ℓ = (−1)ℓ+m t(2m, 2ℓ). We notice that the polynomials in (15) appear mutatis mutandis in [2] as differential operators. These operators are used to model the recursion (13). (2m) In Table 1 we computed the values b2k for small values of m. (m) bk k=2 4 m=2 1 4 1 1 6 4 5 6 8 10 12 14 16 1 8 36 49 14 1 10 576 820 273 30 1 12 14400 21076 7645 1023 55 1 14 518400 773136 296296 44473 3003 91 1 16 25401600 38402064 15291640 2475473 191620 7462 140 1 18 1625702400 2483133696 1017067024 173721912 14739153 669188 16422 204 (m) Table 1. Table of bk 18 1 for small values of m (compare with [5, Table 6.1, p. 217]) 6 P. J. GRABNER AND H. PRODINGER We now consider the Mittag-Leffler expansion 1 sin2m πz = X H2m (z + n) = H2m (z) + ∞ X n=1 n∈Z H2m (z + n) + H2m (z − n) . (16) Expanding the last sum into a power series and using (12) yields 1 sin2m πz ∞ = H2m (z) + m X (πz)2k X 4m 1 (2m) (−1)ℓ−1 4k (−1)k b2ℓ B2ℓ+2k , (2m − 1)! k=0 (2k)! 2ℓ + 2k ℓ=1 2k−1 2k where we have used ζ(2k) = (−1)k−1 2 (2k)!π B2k . This gives P 2m 2k 4k m−1 (−1)ℓ−1 1 b(2m) B2k−2ℓ for k ≥ m, ℓ=0 2k−2ℓ 2m−2ℓ 2m (2m) P2k = (−1)k 4k b(2m) / 2m−1 for 0 ≤ k ≤ m − 1. 2m−2k 2k (17) Inserting this into (6) and (7) yields for even N m m 4m−1 X (−1)ℓ−1 (2m) 4m−1 X (−1)ℓ−1 (2m) 1 2ℓ S2m (N) = b2ℓ B2ℓ N − b2ℓ B2ℓ − (18) (2m − 1)! ℓ=1 ℓ (2m − 1)! ℓ=1 ℓ 2 and for odd N m 1 4m−1 X (−1)ℓ−1 (2m) b2ℓ B2ℓ (4ℓ − 1)N 2ℓ − S2m (N) = (2m − 1)! ℓ 2 (19) ℓ=1 Similarly, we obtain m 4m−1 X (−1)ℓ−1 (2m) b2ℓ B2ℓ N 2ℓ C2m (N) = (2m − 1)! ℓ=1 ℓ m 4m−1 X (−1)ℓ−1 (2m) 1 + (−1)N − b2ℓ B2ℓ − . (20) (2m − 1)! ℓ=1 ℓ 4 References [1] K Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), 23–41. [2] N. Gauthier and P. S. Bruckman, Sums of even integral powers of the cosecant and the secant, Fibonacci Quart. 44 (2007), 264–273. [3] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete mathematics: A foundation for computer science, second ed., Addison Wesley, Reading, MA, 1994. [4] N. E. Nörlund, Differenzenrechnung, Grundlehren der mathematischen Wissenschaften, vol. XIII, Springer Verlag, Berlin, 1924. [5] J. Riordan, Combinatorial identities, John Wiley & Sons Inc., New York, 1968. 7 (P. Grabner) Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria E-mail address: [email protected] (H. Prodinger) Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa E-mail address: [email protected]
© Copyright 2025 Paperzz