Supporting Information

Supporting Information
© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009
Understanding Chemical Reactivity: The Case for Atom, Proton and Methyl Transfers
Luis G. Arnaut* and Sebastião J. Formosinho*[a]
[a] Chemistry Department, University of Coimbra, P-3049 Coimbra Codex, Portugal
E-mail: [email protected]
Most of the systems presented below were already addressed in earlier applications of ISM.[1-6] However, the
availability of more accurate ab initio calculation for older systems and the publication of reliable
calculations with new systems, widens the benchmark for such earlier applications. Additionally, the
availability of an Internet application for ISM calculations,[7] justifies the re-calculation of all the systems
with the same computer program.
[1] L. G. Arnaut, A. A. C. C. Pais, S. J. Formosinho and M. Barroso, J. Am. Chem. Soc. 2003, 125, 5236.
[2] M. Barroso, L. G. Arnaut and S. J. Formosinho, ChemPhysChem 2005, 6, 363.
[3] L. G. Arnaut, S. J. Formosinho and M. Barroso, J. Mol. Struct. 2006, 786, 207.
[4] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Chem. A 2007, 111, 591.
[5] L. G. Arnaut and S. J. Formosinho, Chem. Eur. J. 2007, 13, 8018.
[6] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Org. Chem. 2008, in press.
[7] L. G. Arnaut, M. Barroso and D. Oliveira in ISM_APT, Vol. University of Coimbra, Coimbra, 2006.
http://www.ism.qui.uc.pt:8180/ism/
INPUT DATA
Table A1. Bond lengths, bond dissociation energies, vibrational frequencies of the molecules and ionization
potentials and electron affinities of the radicals employed in the calculation of the energy barriers of atom
transfer reactions.
leq a)
D0298 a)
ωe b)
IP b)
EA b)
(Å)
(kcal mol-1)
(cm-1)
(eV)
(eV)
H2
0.74144
104.2
4161 c)
13.598
0.75419
CH4
1.0870
104.9
2917
9.843
0.08
CH3CH3
1.0940
101.1
2954
8.117
-0.26
CH3CH2CH3
1.107
97. 8
2887
7.37
-0.321
(CH3)3CH
1.122
96.6
2890 e)
6.70
-0.156
CH3COCH3
1.103
98.3
2939
9.703 i)
1.76 k)
CH3OCH3
1.121
96.1
2817
6.90
-0.017
CH3OH
1.0936
96.0
2844
7.562
CH3CHO
1.128
89.3
2822
7.00
0.423
CH2O
1.116
88.1
2783
8.14
0.313
CH3C6H5
1.111
89.8
2934 d)
7.242
0.912
CH2=CH2
1.087
111.2
3026
8.25
0.667
CH2=CHCH2CH=CH2
1.110
76.6
l)
2982
7.25
C6H6
1.101
113.1
3062
8.32
1.096
HCN
1.0655
126.1
3311
14.170
3.862
CΗ≡CΗ
1.060
132.9
3374
11.610
2.969
CH3NH2
1.099
93.3
2820
6.29
CH3NO2
1.088
60.8
3048
11.08 i)
0.50 i)
(CH3)3SiH
1.485 e)
90.3
2107 e)
7.03
0.971
SiH4
1.4798
91.8
2187
8.135
1.405
(CH3)3SnH
1.700 e)
77.0 e)
1815 e)
7.10
1.70
GeH4
1.5251
83.4
2106
7.948
1.61
NH3
1.012
108.2
3337
10.780
0.771
CH3NH2
1.010
100.0
3361
PH3
1.4200
83.9
2323
9.824
1.25
AsH3
1.511
76.3
2116
9.85 f)
1.27
H2O
0.9575
119.0
3657
13.017
1.8277
OH
0.96966
102.2
3737.76
13.618
1.4611
HOOH
0.95
88.2
3608
11.35
1.078
CH3OH
0.9451
104.2
3681
10.720
1.57
C6H5OH
0.956
86.5
3650
8.56
2.253
CH3COOH
0.97
105.8
3583
10.65 i)
3.29 k)
H2S
1.3356
91.2
2615
10.422
2.317
H2Se
1.47 g)
80.0
2345
9.845
2.2125
CH3SH
1.340 e)
87.3
2610 e)
9.262
1.867
C6H5SH
1.36 e)
83.3
2597 e)
8.6
2.26
HF
0.9169
136.2
3962 c)
17.423
3.448
HCl
1.27455
103.2
2886 c)
12.968
3.6144
HBr
1.41444
87.6
2559 c)
11.814
3.3636
HI
1.60916
71.3
2230 c)
10.451
3.059
1.098
107.4
3036
8.76
1.869
F2
1.41193
38.0
892 c)
17.423
3.448
Cl2
1.988
58.0
557 c)
12.968
3.6144
Br2
2.281
46.1
317 c)
11.814
3.3636
36.1
c)
10.451
3.0590
CF3H
I2
2.666
213
C4H4NH
0.996
93.9 h)
3500
8.207 i)
C6H5NH2
0.998
88.0
3400
7.720 i)
CH3CH2–CH3
1.532
88.5 m)
1054 n)
8.117
-0.26
CH3NH–CH3
1.455
82.2 b)
1079 n)
6.7
0.504
CH3O–CH3
1.416
82.9 o)
1102
10.720
1.57
HO–CH3
1.4246
92.1 p)
1033 n)
13.017
1.8277
F–CH3
1.382
115.0 p)
1049 n)
17.423
3.448
CH3S–CH3
1.807
73.6
743 n)
9.262
1.867
Cl–CH3
1.785
83.7 p)
732 n)
12.968
3.6144
Br–CH3
1.933
72.1 p)
611 n)
11.814
3.3636
I–CH3
2.132
57.6 p)
533 q)
10.451
3.0590
a) Bond lengths and bond dissociation energies reported in Ref
[1]
2.145 j)
, except where noted; boldface letters
indicate where the radical is centered after the bond to the hydrogen atom is broken. b) webbook.nist.gov. c)
Observed frequency, Ref [2]. d) Ref [3]. e) Ref [4]. f) Estimated from the values of As and AsH3. g) Bond length
of SeH. h) Ref.
[5]
. i) For the molecule. j) Ref. [6]. k) Ref. [7]. l) Ref. [8] m) Ref.
[9]
. n) From the experimental
frequency in http://srdata.nist.gov/cccbdb/. o) From enthalpies of formation in Ref.
[12]
[10]
. p) Ref.
[11]
. q) Ref.
.
[1] Handbook of Chemistry and Physics, CRC Press Inc., 2001.
[2] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, J. Wiley, New York, 1963.
[3] A. A. Zavitsas, J. Am. Chem. Soc. 1972, 2779-2789.
[4] A. A. Zavitsas and C. Chatgilialoglu, J. Am. Chem. Soc. 1995, 117, 10645.
[5] B. Cronin, M. G. D. Nix, R. H. Qadiri and M. N. R. Ashfold, PCCP 2004, 6, 5031-5041.
[6] A. J. Gianola, T. Ichino, R. L. Hoenigman, S. Kato, V. M. Bierbaum and W. C. Lineberger, J. Phys.
Chem. A 2004, 108, 10326-10335.
[7] R. G. Pearson, J. Am. Chem. Soc. 1986, 108, 6109-6114.
[8] K. B. Clark, P. N. Culshaw, D. Griller, F. P. Lossing, J. A. M. Simoes and J. C. Walton, J. Org. Chem.
1991, 56.
[9] Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, New York,
2003.
[10] G. da Silva, C.-H. Kim and J. W. Bozzelli, J. Phys. Chem. A 2006, 110, 7925-7934.
[11] S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
[12] K. Kyllönen, S. Alanko, J. Lohilahti and V.-M. Horneman, Mol. Phys. 2004, 102, 1597-1604.
THEORETICAL BARRIERS
Table A2. Transition-state structures and classical (electronic) energies of H-atom transfer reactions.
System
Ab initio
∆Vcl0
d
∆Vcl‡
kcal/mol
Å
kcal/mol
I
d(m=1)
S
Μ
m
Å
∆Vcl‡
kcal/mol
H+Η2→H2+H
0
0.376
9.9 a)
0.374
1
10.1
CH3+CH4→CH4+CH3
0
0.514
17.5 b)
0.549
1
16.8
C2H5+C2H6→C2H6+C2H5
0
0.514
16.7 b)
0.552
1
17.2
CH3+C2H6→CH4+C2H5
-3.7
0.499
15.4 b)
0.553
1
15.2
H+CH4→H2+CH3
-1.3
0.468
14.8 c)
0.464
1
12.9
NH2+CH4→NH3+CH3
-3.9
0.442
14.8 d)
0.537
1.170
12.5
O+CH4→OH+CH3
1.4
0.44
13.5 e)
0.557
1.349
13.0
Cl+CH4→HCl+CH3
1.7
0.488
6.8 f)
0.628
2.161
6.5
OH+CH4→H2O+CH3
-15.2
0.517
5.1 g)
0.561
1.456
6.4
F+CH4→HF+CH3
-32.9
0.644
1.8 h)
0.617
2.078
1.8
2.7
0.397
13.2 i)
0.429
1.241
11.9
NH2+H2→NH3+H
-2.7
0.445
9.5 j)
0.448
1.154
10.2
Cl+H2→HCl+H
-3.0
0.395
8.5 k)
0.513
1.773
8.1
OH+H2→H2O+H
-14.0
0.455
6.2 l)
0.486
1.327
5.7
H+SH2→H2+SH
-15.4
0.512
3.6 m)
0.588
1.572
3.7
H+SiH4→H2+SiH3
-15.5
0.524
6.0 n)
0.638
1.418
5.1
H+HBr→H2+Br
-19.1
0.603
1.6 o)
0.623
1.796
2.5
H+PH3→H2+PH2
-23.1
0.585
3.6 p)
0.664
1.292
4.5
H+GeH4→H2+GeH3
-24.0
0.551
3.5 q)
0.696
1.508
3.3
H+AsH3→H2+AsH2
-31.0
0.701
3.3 r)
0.736
1.296
3.5
F+H2→HF+H
−31.6
0.658
1.8 s)
0.557
1.679
2.1
O+H2→OH+H
a) Ref [1]. b) Ref [2]. c) Ref [3]. d) Ref [4]. e) Ref [5]. f) Ref [6]. g) Ref [7]. h) Ref [8]. i) Ref [9]. j) Ref [10]. k) Ref
[11]
. l) Ref [12]. m) Ref [13]. n) Ref [14]. o) Ref [15]. p) Ref [16]. q) Ref [17]. r) Ref [18]. s) Ref [19].
Table A3. Vibrationally-adiabatic reaction energies, classical or vibrationally-adiabatic barriers of H-atom
and proton transfers in hydrogen-bonded systems. The barriers are measured relative to the isolated reactants
for neutral species and relative to the bottom of the precursor complex for ionic species, and the italics refer
to classical barriers.
System
I S M
Ab initio
∆Vad0
kcal/mol
D0AC a)
∆Vad‡
kcal/mol
kcal/mol
m
∆Vad‡
kcal/mol
NH2+NH3→NH3+NH2
0
3.0
11.9 b)
1.154
13.6
OH+H2O →H2O+OH
0
3.5
9.9 b)
1.327
10.4
OH+NH3→H2O+NH2
−10.4
3.0
4.2 b)
1.408
4.8
F+H2O →HF+OH
−16.7
2.0
5 c)
1.721
2.5
F+HF →HF+F
0
3.0
17.5 d)
1.493
13.0
Cl+HCl→HCl+Cl
0
1.0
8.5 e)
1.773
7.6
Br+HBr→HBr+Br
0
≈0
8.0 f)
1.796
8.3
F+HCl→HF+Cl
−33.0
≈0
3.4 g)
1.773
2.4
H–+H2→H2+H–
0
0.3
10.6 h)
1
10.1
CH3–+CH4→CH4+CH3–
0
0.9
13.3 h)
1
16.7
NH2–+NH3→NH3+NH2–
0
12.0
6.3 h)
1.154
6.6
OH–+H2O →H2O+OH–
0
27.0
0.4 h)
1.327
3.5
PH2–+PH3→PH3+PH2–
0
3.3
4.1 h)
1.289
8.2
HS–+SH2 →SH2+SH–
0
13.2
1.5 h)
1.572
3.7
F–+HF →HF+F–
0
48.5
0 h)
1.493
0
Cl–+HCl →HCl+Cl–
0
24
0 h)
1.773
0
a) H-bond binding energies, zero-point energy corrected. b)
separated reactants, ref
[22]
. e) Ref
[23]
. f) Ref
[24]
. g)
[25]
[20]
. c)
[21]
. d) Classical barrier relative to the
. h) These are internal barriers, measured from the
bottom of the reactive complex well, and are classical barriers for the first two systems and vibrationallyadiabatic barriers for the others, with data from ref. [26].
Table A4. Central barriers of methyl transfers in the gas phase.a)
∆V‡Cl (ISM)
∆V‡ad (ab initio)
kcal/mol
kcal/mol
CH3CH2– + CH3CH2CH3
49.6
44.7
[27]
CH3NH– + CH3NHCH3
33.1
29.3
[27]
CH3O– + CH3OCH3
25.9
19.5
[27]
F– + CH3F
19.2
13.3
[28]
CH3S– + CH3SCH3
19.3
21.9
[27]
Cl– + CH3Cl
13.4
13.6
[28]
Br– + CH3Br
12.6
10.8
[28]
I– + CH3I
11.7
9.6
[28]
F– + CH3Cl
5.88
2.89
[28]
F– + CH3Br
4.95
0.64
[28]
F– + CH3I
4.1
0.20
[29]
Cl– + CH3Br
10.3
8.6
[28]
Cl– + CH3I
7.5
7.6
[29]
Br– + CH3I
8.9
9.2
[29]
System
References
a) One kcal/mol was added to the zero-point energy corrected G2(+) or W1 ab initio calculations to compare
with the classical ISM barrier in Figure 4, because the zero-point energy correction amount to a ca. 1
kcal/mol reduction of the barrier. [27, 28, 30]
[1] B. G. Johnson, C. A. Gonzales, P. M. W. Gill and J. A. Pople, Chem. Phys. Lett. 1994, 221, 100.
[2] A. Dybala-Defratyka, P. Paneth, J. Pu and D. G. Truhlar, J. Phys. Chem. A 2004, 108, 2475.
[3] X. Zhang, B. J. Braams and J. M. Bowman, J. Chem. Phys. 2006, 124, 021104.
[4] Y.-X. Yu, S.-M. Li, Z.-F. Xu, S.-M. Li and C.-C. Sun, Chem. Phys. Lett. 1998, 296, 131.
[5] O. Roberto-Neto, F. B. C. Machado and D. G. Truhlar, J. Chem. Phys. 1999, 111, 10046.
[6] D. Troya and P. J. E. Weiss, J. Chem. Phys. 2006, 124, 0743313.
[7] L. Masgrau, A. González-Lafont and J. M. Lluch, J. Chem. Phys. 2001, 115, 4515.
[8] O. Roberto-Neto, F. B. C. Machado and F. R. Ornellas, Chem. Phys. 2005, 2005, 27.
[9] S. Rodgers, D. Wang, A. Kuppermann and S. Walch, J. Phys. Chem. 2000, 104, 2308.
[10] E. Kraka, J. Gauss and D. Cremer, J. Chem. Phys. 1993, 99, 5306.
[11] W. Bian and H.-J. Werner, J. Chem. Phys. 2000, 112, 220.
[12] G.-S. Wu, G. C. Schatz, G. Lendvay, D.-C. Fang and L. B. Harding, J. Chem. Phys. 2000, 113, 3150.
[13] Y. Kurosaki and T. Takayanagi, J. Chem. Phys. 1999, 111, 10529.
[14] M. Wang, X. Sun, W. Bian and Z. Cai, J. Chem. Phys. 2006, 124, 234311.
[15] Y. Kurozaki and T. Takayanagi, J. Chem. Phys. 2003, 119, 7838.
[16] X. Yu, S.-M. Li, J.-Y. Liu, Z.-F. Xu, Z. S. Li and C.-C. Sun, J. Phys. Chem. A 1999, 103, 6402.
[17] Q. Zhang, Y. Gu and S. Wang, J. Phys. Chem. A 2003, 107, 3884.
[18] X. Yu, S.-M. Li, J.-Y. Liu, Z.-F. Xu, Z.-S. Li and C.-C. Sun, Chem. Phys. Lett. 2000, 320, 123.
[19] K. Stark and H.-J. Werner, J. Chem. Phys. 1996, 104, 6515.
[20] H. Basch and S. Hoz, J. Phys. Chem. A 1997, 101, 4416.
[21] M. P. Deskevich, D. J. Nesbitt and H.-J. Wernar, J. Chem. Phys. 2004, 120, 7281.
[22] G. L. Fox and H. B. Schlegel, J. Am. Chem. Soc. 1993, 115, 6870.
[23] G. C. Schatz, M. Hankel, W. J. Whiteley and J. N. L. Connor, J. Phys. Chem. A 2003, 107, 7278.
[24] P. C. Hiberty, C. Megret, L. Song, W. Wu and S. Shaik, J. Am. Chem. Soc. 2006, 128, 2836.
[25] M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, J. Chem. Phys. 2006, 124,
224303.
[26] M. Barroso, L. G. Arnaut and S. J. Formosinho, ChemPhysChem 2005, 6, 363.
[27] S. Hoz, H. Basch, J. L. Wolk, T. Hoz and E. Rozental, J. Am. Chem. Soc. 1999, 121, 7724.
[28] S. Parthiban, G. De Oliveira and J. M. L. Martin, J. Phys. Chem. A 2001, 105, 895.
[29] M. N. Glukhovtsev, A. Pross and L. Radom, J. Am. Chem. Soc. 1996, 118, 6273.
[30] I. Lee, C. K. Kim, C. K. Sohn, H. G. Li and H. W. Li, J. Phys. Chem. A 2002, 106, 1081.
RATE CONSTANTS
Table A5. Rate constants at room temperature, or at the temperature experimentally available which is closest
to room temperature, for H-atom transfer reactions. Intramolecular and enzymatic H-atom transfer rates are
underlined and expressed in s-1.
System
T
∆Va0
D0AC
K
kcal mol-1
kcal mol-1
m
kISM
kexp
mol-1 dm3
mol-1 dm3
s-1
s-1
Ref.
H+H2
300
0
0
1
9.7x104
1.3x105
[1]
H+OH
300
-3.1
0
1.241
1.2x105
6.3x104
[2]
H+HCl
300
-5.0
0
1.773
1.6x107
1.7x107
[3]
H+HBr
300
-21.5
0
1.796
1.7x109
3.8x109
[4]
F+H2
300
-31.3
0
1.679
2.5x1010
1.5x1010
[5]
H+HI
297
-30.9
0
1.828
8.1x109
1.1x1010
[6]
H+CH4
300
-2.9
0
1
2.3x102
5.1x102
[7]
H+CH3CH3
300
-6.7
0
1
3.5x103
3.0x104
[7]
H+CH2(CH3)2
300
-10.3
0
1
1.9x104
6.3x105
[8]
H+CH(CH3)3
300
-11.5
0
1
1.6x104
6.3x105
[9]
H+CH3OH
300
-12.2
0
1
1.2x105
7.6x105
[10]
H+CH3CHO
300
-18.9
0
1
7.8x105
3.4x107
[11]
H+CH2O
298
-20.1
0
1
3.6x106
2.4x107
[12]
H+NH3
500
1.7
0
1.154
4.7x105
7.1x104
[13]
H+SH2
300
-17.7
0
1.572
5.6x108
5.8x108
[14]
H+SiH4
300
-18.4
0
1.418
9.6x107
1.2x108
[15]
H+(CH3)3SiH
300
-20.1
0
1.321
1.1x107
1.8x108
[16]
H+CH3SH
296
-21.7
0
1.505
3.9x108
2.5x108
[17]
H+PH3
300
-25.8
0
1.292
2.0x108
2.0x109
[18]
H+GeH4
300
-27.2
0
1.508
1.2x109
2.5x109
[19]
H+SeH2
298
-29.6
0
1.580
2.5x109
7.1x109
[20]
H+AsH3
294
-34.2
0
1.296
5.8x108
1.3x1010
[15]
F+CH4
300
-34.4
0
2.078
4.9x1010
4.8x1010
[21]
Cl+CH4
300
2.0
0
2.161
4.5x107
6.3x107
[22]
OH+H2
300
-13.4
0
1.327
2.6x107
4.2x106
[21]
OH+CH4
300
-16.3
0
1.456
4.6x106
3.9x106
[21]
OH+CH3CH3
300
-20.1
0
1.581
8.0x107
1.5x108
[21]
OH+CH2(CH3)2
300
-23.7
0
1.660
1.0x108
5.6x108
[23]
OH+CH(CH3)3
300
-24.6
0
1.750
1.2x108
9.5x108
[24]
OH+CH3OCH3
300
-25.3
0
1.721
6.4x108
1.8x109
[21]
OH+CH3OH
300
-25.3
0
1.637
2.1x108
5.3x108
[10]
OH+CH3C6H5
298
-31.3
0
1.674
8.0x108
4.2x109
[25]
OH+CH3CHO
300
-32.3
0
1.707
3.3x108
9.5x109
[21]
OH+CH2O
300
-33.5
0
1.576
3.5x108
5.5x109
[21]
CH3+CH4
350
0
0
1
1.2
0.55
[26]
CH3+CH3CH3
300
-3.8
0
1
0.91
4.3
[7]
CH3+CH2(CH3)2
300
-7.2
0
1
4.0
5.7x101
[8]
CH3+CH(CH3)3
300
-8.4
0
1
3.4
1.5x102
[24]
CH3+CH3COCH3
370
-6.5
0
1
2.7x102
2.7x102
[27]
CH3+CH3OCH3
373
-9.1
0
1
1.4x103
5.4x102
[28]
CH3+CH3OH
300
-9.1
0
1
3.0x101
1.6x101
[29]
CH3+CH3NH2
383
-12.0
0
1
5.5x103
1.1x103
[30]
CH3+CH3C6H5
373
-15.3
0
1
1.1x104
1.1x103
[31]
CH3+CH3CHO
300
-16.0
0
1
3.5x102
3.0x103
[7]
CH3+CH2O
300
-17.2
0
1
1.7x103
3.7x103
[32]
CH3+H2O
300
16.3
0
1.456
5.5x10-5
1.1x10-4
[2]
CH3+NH3
350
4.5
0
1.170
4.3
4.9x101
[26]
CH3+NH2CH3
383
-3.6
0
1.144
2.7x103
2.0x103
[30]
CH3+H2S
332
-14.8
0
1.616
1.1x107
5.0x106
[33]
CH3+(CH3)3SiH
345
-17.2
0
1.321
1.7x105
3.4x103
[26]
(HO...HOH)
300
0
3.6 a)
1.327
1.2x104 b)
1.3x105
[34]
(HO...HOCH3)
300
-14.5
3.0
1.406
4.6x107 b)
8.4x107
[35]
(HO...HNH2)
300
-10.4
2.8
1.408
5.4x107 b)
9.6x107
[35]
(HO...HSH)
300
-27.5
2.0
1.572
2.1x108 b)
2.8x109
[35]
(HO...HCl)
300
-15.4
2.2
1.773
5.7x107 b)
4.9x108
[35]
(F...HOH)
300
-16.8
3.0
1.721
3.5x109 b)
8.4x109
[35]
(F...HBr)
298
-48.1
1.5
1.824
9.9x1010 b)
2.8x1010
[36]
(Cl...HBr)
300
-15.4
1.0
1.813
3.5x109 b)
3.6x109
[37]
(Cl...HCl)
312
0
1.1 c)
1.773
3.2x105 b)
9.0x105
[38]
(Br...HSH)
319
3.5
0.8
1.953
1.4x106 b)
1.5x106
[39]
porphine
300
5.5
1.5
1.708
1.8x105
2.4x104
[40]
2-(2’-hydroxyphenyl)
200
0 d)
2.3
1.714
2.5x107
2.7x107
[41]
298
-5.5
1.87
1
5.4x102 e)
3.3x102
[42]
benzoxazole
soybean
lipoxygenase-1
(linoleic acid)
a)
The experimental value of (H2O...HOH) is 3.66 kcal mol–1, Ref. [43]. b) The rate is not obtained directly from
the ISM Internet application, because gas-phase H-bonded systems do not thermalize and the rate constant is
bimolecular with a barrier given by the difference between ∆Vad‡ and D0AC.
(HCl...HCl) is 1.2 kcal mol–1, Ref.
[44] d)
.
In the triplet state, Ref.
[45] e)
,
c)
The experimental value of
Nonadiabatic proton-coupled electron
transfer calculated with a frequency factor of 3x1011 s-1, Ref. [46].
Table A6. Rate constants of AH+B-→A-+HB proton transfers.a
AH, pKa
HB, pKa
Reactant
Product
Morse model
Morse model
mb
D0(A
kISM
kexp
HB)
hydronium ion, –1.74
azuleneH+, -1.76
C6H6
H2O
1.238
—;—
0.77
0.77 c
5CN1N*, -2.8
hydronium ion, –1.74
C6H6OH
H2O
2.613
2; 4
1.8x1011
1.3x1011 d
acetic a., 4.76
propionic a., 4.88
CH3COOH
CH3COOH
1.894
4; 4
2.1x109 e
3.9x108 e
phenol, 9.86
HCN, 9.0
C6H6OH
HCN
1.714
4; 4
8.2x108 e
4.8x108 f
HCN, 9.0
HCN, 9.0
HCN
HCN
1.749
4; 4
5.2x107 e
7x106 g
nitromethane, 10.22
water, 15.74
CH3NO2
H2O
1.095
—;—
8.6
9.2 h
acetylacetone, 9.0
water, 15.74
CH3COCH3
H2O
1.443
—;—
1.5x104
2x104 i
acetic a., 4.76
acetone, 19.2
CH3COOH
CH3COCH3
1.443
—;—
3.6x107
6.3x107 j
acetone, 19.0
pivalic a., 5.05
CH3COCH3
CH3COOH
1.443
—;—
4.4x10-8
6.8x10-8 k
propionic a., 4.87
acetylacetone, 8.87
CH3COOH
CH3COCH3
1.443
—;—
3.4x105
7.3x104 l
acetylacetone, 8.87
pivalic a., 5.05
CH3COCH3
CH3COOH
1.443
—;—
1.6
1.8 k
acetic a., 4.76
azuleneH+, -1.76
CH3COOH
C6H6
1.238
—;—
2.3x10-4
3.6x10-3 c
toluene, 41.2
Li c-hexylamide, 41.6
C6H6CH3
CH3NH2
1
—;—
1.2x10-2
1.2x10-2 m
N+(CH3)PhCH2—H
…-OC(C6H5)2 n
CH3NH2
C6H6OH
1.573
—;—
4.8x109
4.1x109 n
2-naphthol*, 2.7
hydronium ion, –1.74
C6H6OH
H2O
2.817
2; 4
1.3x108
1.1x108 o
Ph-nitroethane, 7.39
water, 15.74
CH3NO2
H2O
1.095
—;—
9.9x101
7.8 p
(NO2)3PhCH2—H
H—N+R2
C6H6CH3
CH3NH2
1.095
0; 4
9.7
1.4x101 q
mandelic a., 22
hydronium ion, –1.74
CH3COCH3
H2O
1.443
—;—
1.7x10-5
4x10-6 r
4-methyl-N-
∆Va0=-0.53 kcal/mol s
C6H6OH
C6H5NH2
2.206
2.3;6.
3.1x1011
2.8x1011s
salicylideneaniline
4
Rates at 25 °C per equivalent proton and per equivalent basic site, in M-1 s-1, except for underlined rates,
a
which are in s-1; D0(AHB) is in kcal/mol. b The electronic models for m are discussed in the text and the IP and
EA data collected in Table 2. c Ref [47]. d Ref [48]. e At 20 °C from Ref [49], the ISM rate employed Kc=0.1 M-1. f
Ref
[50] g [51] h
.
.
Ref
[52] i
. At 12 °C from Ref
[53] j
. Ref [54].
k
Ref [55]. l At 28 °C from Ref [56].
m
Ref
[57] n
.
Reaction energy in 1,2-dichloroethane ∆G0=-10.2 kcal/mol,[58] treated as a intramolecular reaction. o Ref [59]. p
Ref [60]. q Reaction energy in dichloromethane ∆G0≈-4 kcal/mol.[61] r At 170 °C from Ref [62]. s At 77 K, Ref
[63]
.
Table A7. Rate constants at room temperature, or at the temperature experimentally available which is closest
to room temperature, for methyl transfer reactions.
Reactants
Solvent
∆V0
kISM / 10–4
kexp / 10–4
(kcal mol–1)
(M–1 s–1)
(M–1 s–1)
References
F– + CH3Cl
Water
-1.1 [64]
0.00012
0.00014
[65]
F– + CH3Br
Water
-2.7 [64]
0.0013
0.00302
[65]
F– + CH3I
Water
-0.7 [65]
0.00069
0.000692
[65]
Cl– + CH3Br
Water
-1.3 [64]
0.49
0.079
[66]
Cl– + CH3I
Water
1.1 [65]
0.19
0.032
[65]
Br– + CH3I
Water
1.2 [65]
0.55
0.40
[66]
I– + CH3I
Water
0
4.4
4.85
[65]
OH– + CH3F
Water
-22.5 [67]
0.00013
0.00586
[65]
OH – + CH3Cl
Water
-22.0 [67]
0.37
0.0667
[65]
OH – + CH3Br
Water
-23.4 [67]
2.1
1.435
[65]
OH – + CH3I
Water
-21.3 [67]
1.5
0.636
[65]
Cl – + CH3I
Acetone
-4.9 [65]
240,000
49,000
[66]
Br – + CH3I
Acetone
-1.9 [66]
65,000
100,000
[66]
I– + CH3I
Acetone
0
30,000
63,000
[68]
[1] B. C. Garrett, D. G. Truhlar, A. J. C. Varandas and N. C. Blais, Int. J. Chem. Kin. 1986, 18, 1065.
[2] W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 1986, 15, 1087.
[3] G. Y. Adusei and A. Fontijin, J. Phys. Chem. 1993, 97, 1409.
[4] T. J. Mitchell, A. C. Gonzalez and S. W. Benson, J. Phys. Chem. 1995, 99, 16960.
[5] A. Persky and H. Kornweitz, Int. J. Chem. Kinet. 1997, 29, 67.
[6] H. Umemoto, S. Nakagawa, S. Tsunashima and S. Sato, J. Chem. Phys. 1988, 124, 259.
[7] D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W.
Walker and J. Warnatz, J. Phys. Chem. Ref. Data 1992, 21, 411.
[8] W. Tsang, J. Phys. Chem. Ref. Data 1988, 17, 887.
[9] R. R. Baker, R. R. Baldwin and R. W. Walker, Symp. Int. Combust. Proc. 1971, 13, 291.
[10] S. C. Li and F. A. Williams, Symp. Int. Combust. Proc. 1996, 26, 1017.
[11] J. Warnatz in Rate Coefficients in the C?H?O System, Vol. (Ed. W. C. Gardiner Jr.), Springer-Verlag,
New York, 1984, p. 197.
[12] S. Dobe, C. Oehlers, F. Temps, H. G. Wagner and H. Ziemer, Ber. Bunsenges. Phys. Chem. 1994, 98,
754.
[13] T. Ko, P. Marshall and A. Fontijn, J. Phys. Chem. 1990, 94, 1401.
[14] M. Yoshimura, M. Koshi, H. Matsui, K. Kamiya and H. Umeyama, Chem. Phys. Lett. 1992, 189, 199.
[15] N. L. Arthur and L. A. Miles, J. Chem. Soc., Faraday Trans. 1997, 93, 4259.
[16] N. L. Arthur and L. A. Miles, J. Chem. Soc., Faraday Trans. 1998, 94, 1077.
[17] R. J. Balla and J. Heicklen, Can. J. Chem. 1984, 62, 162.
[18] N. L. Arthur and I. A. Cooper, J. Chem. Soc., Faraday Trans. 1997, 93, 521.
[19] N. L. Arthur and I. A. Cooper, J. Chem. Soc. Faraday Trans. 1995, 91, 3367.
[20] D. C. Dobson, F. C. James, I. Safarik, H. E. Gunning and O. P. Strausz, J. Phys. Chem. 1975, 79, 771.
[21] R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, M. J. Rossi and J. Troe, J. Phys.
Chem. Ref. Data 1997, 26, 521.
[22] J. S. Pilgrim, A. McIlroy and C. A. Taatjes, J. Phys. Chem. A 1997, 101, 1873.
[23] R. W. Walker, Int. J. Chem. Kinet. 1985, 17, 573.
[24] W. Tsang, J. Phys. Chem. Ref. Data 1990, 19, 1.
[25] F. P. Tully, A. R. Ravishankara, R. L. Thompson, J. M. Nicovich, R. C. Shah, N. M. Kreuffer and P. H.
Wine, J. Phys. Chem. 1981, 85, 2262.
[26] N. L. Arthur and T. Bell, N., Rev. Chem. Intermed. 1978, 2, 37.
[27] A. C. Kinsman and J. M. Roscoe, Int. J. Chem. Kinet. 1994, 26, 191.
[28] L. Batt, G. Alvarado-Salinas, I. A. B. Reid, C. Robinson and D. B. Smith, Symp. Int. Combust. Proc.
1982, 19, 81.00.
[29] W. Tsang, J. Phys. Chem. Ref. Data 1987, 16, 471.
[30] P. Gray and J. C. J. Thynne, Symp. Int. Combust. Proc. 1965, 10, 435.
[31] M. Cher, C. S. Hollingsworth and F. Sicilio, J. Phys. Chem. 1966, 70, 877.
[32] D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J.
Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data 1994, 23, 847.
[33] H. Arican and N. L. Arthur, Aust. J. Chem. 1983, 36, 2195.
[34] M. K. Dubey, R. Mohrschladt, N. M. Donahue and J. G. Anderson, J. Phys. Chem. A 1997, 101, 1494.
[35] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi and J.
Troe, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric ChemistryWeb Version
December 2001 2001, 1 - 56.
[36] R. Edrei and A. Persky, Chem. Phys. Lett. 1989, 157, 265.
[37] O. Dobis and S. W. Benson, J. Phys. Chem. A 1997, 101, 6030.
[38] B. C. Garrett, D. G. Truhlar, A. F. Wagner and T. H. Dunning Jr., J. Chem. Phys. 1983, 78, 4400.
[39] J. M. Nicovich, K. D. Kreutter, C. A. van Dijk and P. H. Wine, J. Phys. Chem. 1992, 96, 2518.
[40] J. Braun, M. Schlabach, B. Wehrle, M. Köcher, E. Vogel and H.-H. Limbach, J. Am. Chem. Soc. 1994,
116, 6593-6604.
[41] W. Al-Soufi, K. H. Grellmann and B. Nickel, J. Phys. Chem. 1991, 95, 10503.
[42] M. J. Knapp, K. Rickert and J. P. Klinman, J. Am. Chem. Soc. 2002, 124, 3865-3874.
[43] R. S. Fellers, C. Leforestier, L. B. Braly, M. G. Brown and R. J. Saykally, Science 1999, 284, 945.
[44] A. S. Pine and B. J. Howard, J. Chem. Phys. 1986, 84, 590.
[45] B. Nickel, K. H. Grellmann, J. S. Stephan and P. J. Walla, Ber. Bunsenges. Phys. Chem. 1998, 102, 436447.
[46] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Org. Chem. 2008, in press.
[47] L. C. Gruen and F. A. Long, J. Am. Chem. Soc. 1967, 89, 1287-1291.
[48] E. Pines, D. Pines, T. Barak, B.-Z. Magnes, L. M. Tolbert and J. E. Haubrich, Ber. Bunsenges. Phys.
Chem. 1998, 102, 511-517.
[49] M.-L. Ahrens and G. Maass, Angew. Chem. Int. Ed. 1968, 7, 818-819.
[50] R. A. Bednar and W. P. Jencks, J. Am. Chem. Soc. 1985, 107, 7126-7134.
[51] I. Bányai, J. Blix, J. Gçaser and I. Tóth, Acta Chem. Scand. 1992, 46, 142-146.
[52] R. P. Bell and D. M. Goodall, Proc. Roy. Soc. (London) 1966, A294, 273-297.
[53] M. Eigen, Angew. Chem. Int. Ed. Engl. 1964, 3, 1-19.
[54] A. Argile, A. R. E. Carey, G. Fukata, M. Harcourt, R. A. More O'Ferrall and M. G. Murphy, Isr. J.
Chem. 1985, 26, 303-312.
[55] J. P. Guthrie, Can. J. Chem. 1979, 57, 1177-1185.
[56] M.-L. Ahrens, M. Eigen, W. Kruse and G. Maass, Ber. Bunsenges. Phys. Chem. 1970, 74, 380-385.
[57] A. Streitwieser Jr., P. H. Owens, G. Sonnischsen, W. K. Smith, G. R. Ziegler, H. M. Niemeyer and T. L.
Kruger, J. Am. Chem. Soc. 1973, 95, 4254-4257.
[58] K. S. Peters and G. Kim, J. Phys. Chem. A 2004, 108, 2598-2606.
[59] J. Lee, G. W. Robinson and M.-P. Bassez, J. Am. Chem. Soc. 1986, 108, 7477-7480.
[60] M. Amin and W. H. Saunders Jr., J. Phys. Org. Chem. 1993, 6, 393-398.
[61] N. Sugimoto, M. Sasaki and J. Osugi, J. Phys. Chem. 1982, 86, 3418-3423.
[62] S. L. Bearne and R. Wolfenden, Biochemistry 1997, 36, 1646-1656.
[63] T. Sekikawa, T. Kobayashi and T. Inabe, J. Phys. Chem. A 1997, 101, 644-649.
[64] D. J. McLennan, Aust. J. Chem. 1978, 31, 1897-1909.
[65] E. A. Moelwyn-Hughes, The Chemical Statics and Kinetics of Solutions, Academic Press, London, 1971,
p. 234.
[66] A. J. Parker, Chem. Rev. 1969, 69, 1-32.
[67] J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem. 1978, 16, 87-157.
[68] E. R. Swart and L. J. Le Roux, J. Chem. Soc. 1957, 406-410.
ACTIVATION ENERGIES
Table A8. Experimental pre-exponential factors and activation energies and ISM activation energies
calculated with the indicated values of the electrophilicity index, m.a)
T
A
Ea
(K)
dm3 mol-1 s-1
kJ mol-1
H+H2
294-693
3.8x1010
H+CH4
500-1000
H+CH3CH3
Ea(ISM)
Ref.
m
31.5
b)
1
34.2
9.5x1010
50.8
1
1
44.4
500-1000
17x1010
39.5
1
1
38.4
H+CH3CH2CH3
500-1000
9.9x1010
32.5
2
1
33.1
H+(CH3)3CH
500-1000
4.6x1010
24.6
3
1
32.0
H+CH3OH
500-1000
6.1x1010
30.3
4
1
29.5
H+CH3CHO
300-2000
4.0x1010
17.6
5
1
22.1
H+CH2O
500-1000
2.7x1010
18.4
1
1
20.1
C2H3+H2
499-947
2.1x109
34.8
6
1
34.6
C6H5+H2
548-607
1.8x109
34.8
7
1
35.0
CN+H2
500-1000
52x109
23.3
1
1
21.7
C2H+H2
300-2500
15x109
13.0
5
1
17.2
CH3+CH4
350-600
6.3x108
60.7
8
1
59.6
CH3+CH3CH3
500-1000
77x108
59.6
1
1
50.5
CH3+CH3CH2CH3
500-1000
2.1x108
42.7
1
1
44.7
CH3+(CH3)3CH
500-1000
2.1x108
39.0
1
1
43.5
CH3+CH3COCH3
370-580
4.5x108
44.1
9
1
49.4
CH3+CH3OH
500-1000
10x108
48.4
10
1
40.9
CH3+CH3OCH3
373-437
2.0x108
39.7
11
1
46.1
CH3+CH3NH2
383-453
0.97x108
36.4
12
1
40.9
CH3+CH3C6H5
611-883
1.2x108
33.5
13
1
33.6
CH3+CH3CHO
500-1000
67x108
42.6
14
1
32.4
CH3+CH2O
300-1000
41x108
37.0
14
1
30.0
C6H5+CH4
600-900
60x108
51.6
15
1
47.6
56.5
16
1
60.9
System
C2H5+CH3CH3
480
kJ mol-1
C2H5+CH3CH2CH3
500-1000
3.5x108
51.0
1
1
51.4
C2H5+(CH3)3CH
500-1000
1.3x108
44.7
1
1
50.1
C2H5+CH3CHO
357-676
13x108
35.6
17
1
40.9
C2H5+CH3C6H5
464-701
1.2x108
40.2
18
1
41.5
(CH3)2CH+(CH3)2CH2
500-1000
5.3x108
60.5
1
1
55.9
(CH3)2CH+(CH3)3CH
500-1000
0.94x108
49.0
1
1
54.5
(CH3)3C+(CH3)3CH
500-1000
4.9x108
67.5
1
1
57.2
CF3+H2
350-600
8.9x108
39.7
8
1
44.0
C6H5CH2+CH3C6H5
300
Liquid phase
66.1
19
1
61.9
CH3CH2+(CH3)3SiH
318-453
5.4x108
30.3
20
1.321
27.9
CH3+(CH3)3SiH
345-526
1.3x108
30.2
8
1.321
23.1
H+(CH3)3SiH
298-580
2.0x1010
11.7
21
1.321
18.7
CH3CHCH3+SiH4
298-422
6.9x108
31.9
20
1.471
26.3
CH3CH2+SiH4
318-453
5.4x108
30.3
20
1.419
25.4
CH3+SiH4
301-846
7.7x108
29.2
8
1.418
19.1
H+SiH4
290-636
8.3x1010
15.1
22
1.418
16.3
H+GeH4
210-440
12x1010
9.4
23
1.508
10.0
C6H5CH2+(CH3)3SnH
300
Liquid phase
23.4
16
1.630
17.6
CH3CH2+(CH3)3SnH
300
Liquid phase
15.5
16
1.630
10.7
CH3+(CH3)3SnH
300
Liquid phase
13.4
16
1.630
8.5
C6H5+(CH3)3SnH
300
Liquid phase
7.1
16
1.630
7.0
NH2+H2
673-1000
3.6x109
38.0
24
1.154
27.3
NH2+CH4
500-1000
2.6x109
50.5
25
1.170
40.2
NH2+CH3CH3
500-1000
2.5x109
36.8
25
1.210
32.3
NH2+CH3CH2CH3
500-1000
5.1x109
35.6
25
1.234
26.5
NH2+(CH3)3CH
500-973
2.2x109
28.3
26
1.260
24.2
H+PH3
293-472
6.6x1010
8.7
27
1.292
13.9
H+AsH3
294-424
15x1010
6.0
27
1.296
10.4
O+CH4
500-1000
9.2x1010
44.4
14
1.349
41.2
O+C2H6
500-1000
8.5x1010
32.9
14
1.439
31.0
O+CH3CH2CH3
500-1000
3.8x1010
24.3
14
1.495
24.2
O+(CH3)3CH
500-1000
2.6x1010
20.0
14
1.558
20.6
O+CH2O
500-1000
3.1x1010
14.8
14
1.438
15.8
H+HO
500-1000
7.7x109
32.3
14
1.241
26.3
OH+C6H6
500-1000
7.5x109
14.2
14
1.563
20.4
OH+H2
500-1000
18x109
23.0
14
1.327
11.3
OH+CH4
500-1000
16x109
22.2
14
1.456
15.5
OH+CH3CH3
500-1000
27x109
15.1
14
1.581
8.5
OH+CH3CH2CH3
500-1000
5.6x109
6.8
28
1.660
4.5
OH+(CH3)3CH
500-1000
2.7x109
5.1
28
1.750
2.2
OH+CH3OCH3
290-450
6.0x109
3.1
29
1.721
7.2
OH+CH3OH
500-1000
5.4x109
8.0
4
1.637
3.7
OH+CH3C6H5
500-1000
10x109
9.4
1
1.674
0
OH+CH3CHO
500-600
10x109
2.6
30
1.707
3.8
OH+CH2O
500-1000
26x109
4.9
14
1.579
1.0
CH3O+CH4
300-2500
1.7x108
37.0
31
1.380
34.9
CH3O+CH3CH3
300-2500
2.4x108
29.7
31
1.480
25.0
CH3O+CH3CH2CH3
300-2500
1.4x108
19.1
31
1.541
18.7
CH3O+(CH3)3CH
300-2500
2.3x108
12.1
3
1.612
15.4
CH3O+CH3OH
300-2500
3.0x108
17.0
10
1.524
18.3
CH3O+CH2O
300-2500
1.0x108
12.5
10
1.478
11.5
CH3+H2S
350-600
3.8x108
10.9
8
1.616
8.1
H+H2S
500-1000
9.4x1010
15.0
32
1.572
5.3
17.2
16
1.505
13.7
CH3+CH3SH
300
313-454
2.9x1010
10.9
33
1.505
9.7
C6H5CH2+C6H5SH
300
Liquid phase
15.9
16
1.885
13.1
(CH3)3C+C6H5SH
300
Liquid phase
6.3
16
2.018
6.1
(CH3)2CH+C6H5SH
300
Liquid phase
7.1
16
1.885
7.2
CH3CH2+C6H5SH
300
Liquid phase
7.1
16
1.772
7.7
F+H2
190-375
6.6x1010
3.7
34
1.679
2.4
F+CH4
250-450
18x1010
3.3
29
2.078
0.8
F+CH3CH3
210-363
43x1010
2.9
35
2.477
0
CH3+HCl
350-600
0.54x109
12.9
8
2.161
11.4
Cl+CH3CH3
500-800
7.0x1010
2.4
36
2.605
3.3
H+HCl
298-1190
1.7x1010
17.3
37
1.773
11.6
(CH3)3C+HBr
298-530
0.83x109
7.8
38
3.016
0
(CH3)2CH+HBr
298-530
0.95x109
6.4
38
2.679
0.3
C2H5+HBr
297-530
1.0x109
4.2
38
2.415
1.2
CH3+HBr
299-536
9.5x109
1.6
38
2.038
3.0
H+HBr
298-546
11x1010
2.6
39
1.796
3.9
(CH3)3C+HI
294-552
1.9x109
6.3
40
2.680
0
H+CH3SH
(CH3)2CH+HI
295-648
2.4x109
5.1
40
2.419
0
C2H5+HI
294-648
2.7x109
3.2
40
2.210
0
CH3+HI
292-648
2.7x109
1.2
40
1.902
0
H+HI
250-373
4.5x1010
2.4
41
1.828
0.2
a) Ea(ISM)=0 means that, within the approximation employed to estimate ∆CV, at the designated temperature
no activation energy is expected.
b) Relative rates of H+H2 versus H+D2 measured by Quickert and Le Roy
42,
with the exponential fit of
Michael for H+D2 43.
1)Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, T.; Kerr, J. A.; Murrells, T.; Pilling,
M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1994, 23, 847.
2)Tsang, W. J. Phys. Chem. Ref. Data 1988, 17, 887.
3)Tsang, W. J. Phys. Chem. Ref. Data 1990, 19, 1.
4)Li, S. C.; Williams, F. A. Symp. Int. Combust. Proc. 1996, 26, 1017.
5)Warnatz, J. Combustion Chemistry; ; Gardiner Jr., W. C., Ed.; Springer-Verlag: New York, 1984, p. 197.
6)Knyazev, V. D.; Bencsura, A.; Stoliarov, S. I.; Slagle, I. R. J. Phys. Chem. A 1996, 100, 11346.
7)Park, J.; Dyakov, I. V.; Lin, M. C. J. Phys. Chem. A 1997, 101, 8839.
8)Arthur, N. L.; Bell, T., N. Rev. Chem. Intermed. 1978, 2, 37.
9)Kinsman, A. C.; Roscoe, J. M. Int. J. Chem. Kinet. 1994, 26, 191.
10)Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471.
11)Batt, L.; Alvarado-Salinas, G.; Reid, I. A. B.; Robinson, C.; Smith, D. B. Symp. Int. Combust. Proc. 1982,
19, 81.00.
12)Gray, P.; Thynne, J. C. J. Symp. Int. Combust. Proc. 1965, 10, 435.
13)Dunlop, A. N.; Kominar, R. J.; Price, S. J. W. Can. J. Chem. 1970, 48, 1269.
14)Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.;
Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411.
15)Tokmakov, I. V.; Park, J.; Gheyas, S.; Lin, M. C. J. Phys. Chem. A 1999, 103, 3636.
16)Zavitsas, A. A.; Chatgilialoglu, C. J. Am. Chem. Soc. 1995, 117, 10645.
17)Hohlein, G.; Feeman, G. R. J. Am. Chem. Soc. 1970, 92, 6118.
18)Paputa, M. C.; Price, S. J. W. Can. J. Chem. 1979, 57, 3178.
19)Camaioni, D. M.; Autray, S. T.; Salinas, T. B.; Franz, J. A. J. Am. Chem. Soc. 1996, 118, 2013.
20)Berkley, R. E.; Safarik, I.; Strausz, O. P.; Gunning, H. E. J. Phys. Chem. 1973, 77, 1741.
21)Arthur, N. L.; Miles, L. A. J. Chem. Soc., Faraday Trans. 1998, 94, 1077.
22)Arthur, N. L.; Miles, L. A. J. Chem. Soc., Faraday Trans. 1997, 93, 4259.
23)Nava, D. F.; Payne, W. A.; Marston, G.; Stief, L. J. J. Geophys. Res. 1993, 98, 5531.
24)Hack, W.; Rouveirolles, P.; Wagner, H. G. J. Phys. Chem. 1986, 90, 2505.
25)Hennig, G.; Wagner, H. G. Ber. Bunsenges. Phys. Chem. 1995, 99, 863.
26)Hack, W.; Kurzke, H.; Rouveirolles, P.; Wagner, H. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 1210.
27)Arthur, N. L.; Cooper, I. A. J. Chem. Soc., Faraday Trans. 1997, 93, 521.
28)Walker, R. W. Int. J. Chem. Kinet. 1985, 17, 573.
29)Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson Jr., R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys.
Chem. Ref. Data 1997, 26, 521.
30)Taylor, P. H.; Rahman, M. S.; Arif, M.; Dellinger, B.; Marshall, P. Symp. Int. Combust. Proc. 1996, 26,
497.
31)Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087.
32)Yoshimura, M.; Koshi, M.; Matsui, H.; Kamiya, K.; Umeyama, H. Chem. Phys. Lett. 1992, 189, 199.
33)Amano, A.; Yamada, M.; Hashimoto, K.; Sugiura, K. Nippon Kagaku Kaishi 1983, 385.
34)Persky, A.; Kornweitz, H. Int. J. Chem. Kinet. 1997, 29, 67.
35)Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1994, 98, 2078.
36)Pilgrim, J. S.; McIlroy, A.; Taatjes, C. A. J. Phys. Chem. A 1997, 101, 1873.
37)Adusei, G. Y.; Fontijin, A. J. Phys. Chem. 1993, 97, 1409.
38)Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. J. Phys. Chem. 1992, 96,
9847.
39)Seakins, P. W.; Pilling, M. J. J. Phys. Chem. 1991, 95, 9878.
40)Seetula, J. A.; Russel, J. J.; Gutman, D. J. Am. Chem. Soc. 1990, 112, 1347.
41)Lorenz, K.; Wagner, H. G.; Zellner, R. Ber. Bunsenges. Phys. Chem. 1979, 83, 556.
42)Quickert, K. A.; Le Roy, D. J. J. Chem. Phys. 1970, 53, 1325.
43)Michael, J. V. J. Chem. Phys. 1990, 92, 3394.