Supporting Information © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009 Understanding Chemical Reactivity: The Case for Atom, Proton and Methyl Transfers Luis G. Arnaut* and Sebastião J. Formosinho*[a] [a] Chemistry Department, University of Coimbra, P-3049 Coimbra Codex, Portugal E-mail: [email protected] Most of the systems presented below were already addressed in earlier applications of ISM.[1-6] However, the availability of more accurate ab initio calculation for older systems and the publication of reliable calculations with new systems, widens the benchmark for such earlier applications. Additionally, the availability of an Internet application for ISM calculations,[7] justifies the re-calculation of all the systems with the same computer program. [1] L. G. Arnaut, A. A. C. C. Pais, S. J. Formosinho and M. Barroso, J. Am. Chem. Soc. 2003, 125, 5236. [2] M. Barroso, L. G. Arnaut and S. J. Formosinho, ChemPhysChem 2005, 6, 363. [3] L. G. Arnaut, S. J. Formosinho and M. Barroso, J. Mol. Struct. 2006, 786, 207. [4] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Chem. A 2007, 111, 591. [5] L. G. Arnaut and S. J. Formosinho, Chem. Eur. J. 2007, 13, 8018. [6] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Org. Chem. 2008, in press. [7] L. G. Arnaut, M. Barroso and D. Oliveira in ISM_APT, Vol. University of Coimbra, Coimbra, 2006. http://www.ism.qui.uc.pt:8180/ism/ INPUT DATA Table A1. Bond lengths, bond dissociation energies, vibrational frequencies of the molecules and ionization potentials and electron affinities of the radicals employed in the calculation of the energy barriers of atom transfer reactions. leq a) D0298 a) ωe b) IP b) EA b) (Å) (kcal mol-1) (cm-1) (eV) (eV) H2 0.74144 104.2 4161 c) 13.598 0.75419 CH4 1.0870 104.9 2917 9.843 0.08 CH3CH3 1.0940 101.1 2954 8.117 -0.26 CH3CH2CH3 1.107 97. 8 2887 7.37 -0.321 (CH3)3CH 1.122 96.6 2890 e) 6.70 -0.156 CH3COCH3 1.103 98.3 2939 9.703 i) 1.76 k) CH3OCH3 1.121 96.1 2817 6.90 -0.017 CH3OH 1.0936 96.0 2844 7.562 CH3CHO 1.128 89.3 2822 7.00 0.423 CH2O 1.116 88.1 2783 8.14 0.313 CH3C6H5 1.111 89.8 2934 d) 7.242 0.912 CH2=CH2 1.087 111.2 3026 8.25 0.667 CH2=CHCH2CH=CH2 1.110 76.6 l) 2982 7.25 C6H6 1.101 113.1 3062 8.32 1.096 HCN 1.0655 126.1 3311 14.170 3.862 CΗ≡CΗ 1.060 132.9 3374 11.610 2.969 CH3NH2 1.099 93.3 2820 6.29 CH3NO2 1.088 60.8 3048 11.08 i) 0.50 i) (CH3)3SiH 1.485 e) 90.3 2107 e) 7.03 0.971 SiH4 1.4798 91.8 2187 8.135 1.405 (CH3)3SnH 1.700 e) 77.0 e) 1815 e) 7.10 1.70 GeH4 1.5251 83.4 2106 7.948 1.61 NH3 1.012 108.2 3337 10.780 0.771 CH3NH2 1.010 100.0 3361 PH3 1.4200 83.9 2323 9.824 1.25 AsH3 1.511 76.3 2116 9.85 f) 1.27 H2O 0.9575 119.0 3657 13.017 1.8277 OH 0.96966 102.2 3737.76 13.618 1.4611 HOOH 0.95 88.2 3608 11.35 1.078 CH3OH 0.9451 104.2 3681 10.720 1.57 C6H5OH 0.956 86.5 3650 8.56 2.253 CH3COOH 0.97 105.8 3583 10.65 i) 3.29 k) H2S 1.3356 91.2 2615 10.422 2.317 H2Se 1.47 g) 80.0 2345 9.845 2.2125 CH3SH 1.340 e) 87.3 2610 e) 9.262 1.867 C6H5SH 1.36 e) 83.3 2597 e) 8.6 2.26 HF 0.9169 136.2 3962 c) 17.423 3.448 HCl 1.27455 103.2 2886 c) 12.968 3.6144 HBr 1.41444 87.6 2559 c) 11.814 3.3636 HI 1.60916 71.3 2230 c) 10.451 3.059 1.098 107.4 3036 8.76 1.869 F2 1.41193 38.0 892 c) 17.423 3.448 Cl2 1.988 58.0 557 c) 12.968 3.6144 Br2 2.281 46.1 317 c) 11.814 3.3636 36.1 c) 10.451 3.0590 CF3H I2 2.666 213 C4H4NH 0.996 93.9 h) 3500 8.207 i) C6H5NH2 0.998 88.0 3400 7.720 i) CH3CH2–CH3 1.532 88.5 m) 1054 n) 8.117 -0.26 CH3NH–CH3 1.455 82.2 b) 1079 n) 6.7 0.504 CH3O–CH3 1.416 82.9 o) 1102 10.720 1.57 HO–CH3 1.4246 92.1 p) 1033 n) 13.017 1.8277 F–CH3 1.382 115.0 p) 1049 n) 17.423 3.448 CH3S–CH3 1.807 73.6 743 n) 9.262 1.867 Cl–CH3 1.785 83.7 p) 732 n) 12.968 3.6144 Br–CH3 1.933 72.1 p) 611 n) 11.814 3.3636 I–CH3 2.132 57.6 p) 533 q) 10.451 3.0590 a) Bond lengths and bond dissociation energies reported in Ref [1] 2.145 j) , except where noted; boldface letters indicate where the radical is centered after the bond to the hydrogen atom is broken. b) webbook.nist.gov. c) Observed frequency, Ref [2]. d) Ref [3]. e) Ref [4]. f) Estimated from the values of As and AsH3. g) Bond length of SeH. h) Ref. [5] . i) For the molecule. j) Ref. [6]. k) Ref. [7]. l) Ref. [8] m) Ref. [9] . n) From the experimental frequency in http://srdata.nist.gov/cccbdb/. o) From enthalpies of formation in Ref. [12] [10] . p) Ref. [11] . q) Ref. . [1] Handbook of Chemistry and Physics, CRC Press Inc., 2001. [2] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, J. Wiley, New York, 1963. [3] A. A. Zavitsas, J. Am. Chem. Soc. 1972, 2779-2789. [4] A. A. Zavitsas and C. Chatgilialoglu, J. Am. Chem. Soc. 1995, 117, 10645. [5] B. Cronin, M. G. D. Nix, R. H. Qadiri and M. N. R. Ashfold, PCCP 2004, 6, 5031-5041. [6] A. J. Gianola, T. Ichino, R. L. Hoenigman, S. Kato, V. M. Bierbaum and W. C. Lineberger, J. Phys. Chem. A 2004, 108, 10326-10335. [7] R. G. Pearson, J. Am. Chem. Soc. 1986, 108, 6109-6114. [8] K. B. Clark, P. N. Culshaw, D. Griller, F. P. Lossing, J. A. M. Simoes and J. C. Walton, J. Org. Chem. 1991, 56. [9] Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, New York, 2003. [10] G. da Silva, C.-H. Kim and J. W. Bozzelli, J. Phys. Chem. A 2006, 110, 7925-7934. [11] S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263. [12] K. Kyllönen, S. Alanko, J. Lohilahti and V.-M. Horneman, Mol. Phys. 2004, 102, 1597-1604. THEORETICAL BARRIERS Table A2. Transition-state structures and classical (electronic) energies of H-atom transfer reactions. System Ab initio ∆Vcl0 d ∆Vcl‡ kcal/mol Å kcal/mol I d(m=1) S Μ m Å ∆Vcl‡ kcal/mol H+Η2→H2+H 0 0.376 9.9 a) 0.374 1 10.1 CH3+CH4→CH4+CH3 0 0.514 17.5 b) 0.549 1 16.8 C2H5+C2H6→C2H6+C2H5 0 0.514 16.7 b) 0.552 1 17.2 CH3+C2H6→CH4+C2H5 -3.7 0.499 15.4 b) 0.553 1 15.2 H+CH4→H2+CH3 -1.3 0.468 14.8 c) 0.464 1 12.9 NH2+CH4→NH3+CH3 -3.9 0.442 14.8 d) 0.537 1.170 12.5 O+CH4→OH+CH3 1.4 0.44 13.5 e) 0.557 1.349 13.0 Cl+CH4→HCl+CH3 1.7 0.488 6.8 f) 0.628 2.161 6.5 OH+CH4→H2O+CH3 -15.2 0.517 5.1 g) 0.561 1.456 6.4 F+CH4→HF+CH3 -32.9 0.644 1.8 h) 0.617 2.078 1.8 2.7 0.397 13.2 i) 0.429 1.241 11.9 NH2+H2→NH3+H -2.7 0.445 9.5 j) 0.448 1.154 10.2 Cl+H2→HCl+H -3.0 0.395 8.5 k) 0.513 1.773 8.1 OH+H2→H2O+H -14.0 0.455 6.2 l) 0.486 1.327 5.7 H+SH2→H2+SH -15.4 0.512 3.6 m) 0.588 1.572 3.7 H+SiH4→H2+SiH3 -15.5 0.524 6.0 n) 0.638 1.418 5.1 H+HBr→H2+Br -19.1 0.603 1.6 o) 0.623 1.796 2.5 H+PH3→H2+PH2 -23.1 0.585 3.6 p) 0.664 1.292 4.5 H+GeH4→H2+GeH3 -24.0 0.551 3.5 q) 0.696 1.508 3.3 H+AsH3→H2+AsH2 -31.0 0.701 3.3 r) 0.736 1.296 3.5 F+H2→HF+H −31.6 0.658 1.8 s) 0.557 1.679 2.1 O+H2→OH+H a) Ref [1]. b) Ref [2]. c) Ref [3]. d) Ref [4]. e) Ref [5]. f) Ref [6]. g) Ref [7]. h) Ref [8]. i) Ref [9]. j) Ref [10]. k) Ref [11] . l) Ref [12]. m) Ref [13]. n) Ref [14]. o) Ref [15]. p) Ref [16]. q) Ref [17]. r) Ref [18]. s) Ref [19]. Table A3. Vibrationally-adiabatic reaction energies, classical or vibrationally-adiabatic barriers of H-atom and proton transfers in hydrogen-bonded systems. The barriers are measured relative to the isolated reactants for neutral species and relative to the bottom of the precursor complex for ionic species, and the italics refer to classical barriers. System I S M Ab initio ∆Vad0 kcal/mol D0AC a) ∆Vad‡ kcal/mol kcal/mol m ∆Vad‡ kcal/mol NH2+NH3→NH3+NH2 0 3.0 11.9 b) 1.154 13.6 OH+H2O →H2O+OH 0 3.5 9.9 b) 1.327 10.4 OH+NH3→H2O+NH2 −10.4 3.0 4.2 b) 1.408 4.8 F+H2O →HF+OH −16.7 2.0 5 c) 1.721 2.5 F+HF →HF+F 0 3.0 17.5 d) 1.493 13.0 Cl+HCl→HCl+Cl 0 1.0 8.5 e) 1.773 7.6 Br+HBr→HBr+Br 0 ≈0 8.0 f) 1.796 8.3 F+HCl→HF+Cl −33.0 ≈0 3.4 g) 1.773 2.4 H–+H2→H2+H– 0 0.3 10.6 h) 1 10.1 CH3–+CH4→CH4+CH3– 0 0.9 13.3 h) 1 16.7 NH2–+NH3→NH3+NH2– 0 12.0 6.3 h) 1.154 6.6 OH–+H2O →H2O+OH– 0 27.0 0.4 h) 1.327 3.5 PH2–+PH3→PH3+PH2– 0 3.3 4.1 h) 1.289 8.2 HS–+SH2 →SH2+SH– 0 13.2 1.5 h) 1.572 3.7 F–+HF →HF+F– 0 48.5 0 h) 1.493 0 Cl–+HCl →HCl+Cl– 0 24 0 h) 1.773 0 a) H-bond binding energies, zero-point energy corrected. b) separated reactants, ref [22] . e) Ref [23] . f) Ref [24] . g) [25] [20] . c) [21] . d) Classical barrier relative to the . h) These are internal barriers, measured from the bottom of the reactive complex well, and are classical barriers for the first two systems and vibrationallyadiabatic barriers for the others, with data from ref. [26]. Table A4. Central barriers of methyl transfers in the gas phase.a) ∆V‡Cl (ISM) ∆V‡ad (ab initio) kcal/mol kcal/mol CH3CH2– + CH3CH2CH3 49.6 44.7 [27] CH3NH– + CH3NHCH3 33.1 29.3 [27] CH3O– + CH3OCH3 25.9 19.5 [27] F– + CH3F 19.2 13.3 [28] CH3S– + CH3SCH3 19.3 21.9 [27] Cl– + CH3Cl 13.4 13.6 [28] Br– + CH3Br 12.6 10.8 [28] I– + CH3I 11.7 9.6 [28] F– + CH3Cl 5.88 2.89 [28] F– + CH3Br 4.95 0.64 [28] F– + CH3I 4.1 0.20 [29] Cl– + CH3Br 10.3 8.6 [28] Cl– + CH3I 7.5 7.6 [29] Br– + CH3I 8.9 9.2 [29] System References a) One kcal/mol was added to the zero-point energy corrected G2(+) or W1 ab initio calculations to compare with the classical ISM barrier in Figure 4, because the zero-point energy correction amount to a ca. 1 kcal/mol reduction of the barrier. [27, 28, 30] [1] B. G. Johnson, C. A. Gonzales, P. M. W. Gill and J. A. Pople, Chem. Phys. Lett. 1994, 221, 100. [2] A. Dybala-Defratyka, P. Paneth, J. Pu and D. G. Truhlar, J. Phys. Chem. A 2004, 108, 2475. [3] X. Zhang, B. J. Braams and J. M. Bowman, J. Chem. Phys. 2006, 124, 021104. [4] Y.-X. Yu, S.-M. Li, Z.-F. Xu, S.-M. Li and C.-C. Sun, Chem. Phys. Lett. 1998, 296, 131. [5] O. Roberto-Neto, F. B. C. Machado and D. G. Truhlar, J. Chem. Phys. 1999, 111, 10046. [6] D. Troya and P. J. E. Weiss, J. Chem. Phys. 2006, 124, 0743313. [7] L. Masgrau, A. González-Lafont and J. M. Lluch, J. Chem. Phys. 2001, 115, 4515. [8] O. Roberto-Neto, F. B. C. Machado and F. R. Ornellas, Chem. Phys. 2005, 2005, 27. [9] S. Rodgers, D. Wang, A. Kuppermann and S. Walch, J. Phys. Chem. 2000, 104, 2308. [10] E. Kraka, J. Gauss and D. Cremer, J. Chem. Phys. 1993, 99, 5306. [11] W. Bian and H.-J. Werner, J. Chem. Phys. 2000, 112, 220. [12] G.-S. Wu, G. C. Schatz, G. Lendvay, D.-C. Fang and L. B. Harding, J. Chem. Phys. 2000, 113, 3150. [13] Y. Kurosaki and T. Takayanagi, J. Chem. Phys. 1999, 111, 10529. [14] M. Wang, X. Sun, W. Bian and Z. Cai, J. Chem. Phys. 2006, 124, 234311. [15] Y. Kurozaki and T. Takayanagi, J. Chem. Phys. 2003, 119, 7838. [16] X. Yu, S.-M. Li, J.-Y. Liu, Z.-F. Xu, Z. S. Li and C.-C. Sun, J. Phys. Chem. A 1999, 103, 6402. [17] Q. Zhang, Y. Gu and S. Wang, J. Phys. Chem. A 2003, 107, 3884. [18] X. Yu, S.-M. Li, J.-Y. Liu, Z.-F. Xu, Z.-S. Li and C.-C. Sun, Chem. Phys. Lett. 2000, 320, 123. [19] K. Stark and H.-J. Werner, J. Chem. Phys. 1996, 104, 6515. [20] H. Basch and S. Hoz, J. Phys. Chem. A 1997, 101, 4416. [21] M. P. Deskevich, D. J. Nesbitt and H.-J. Wernar, J. Chem. Phys. 2004, 120, 7281. [22] G. L. Fox and H. B. Schlegel, J. Am. Chem. Soc. 1993, 115, 6870. [23] G. C. Schatz, M. Hankel, W. J. Whiteley and J. N. L. Connor, J. Phys. Chem. A 2003, 107, 7278. [24] P. C. Hiberty, C. Megret, L. Song, W. Wu and S. Shaik, J. Am. Chem. Soc. 2006, 128, 2836. [25] M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, J. Chem. Phys. 2006, 124, 224303. [26] M. Barroso, L. G. Arnaut and S. J. Formosinho, ChemPhysChem 2005, 6, 363. [27] S. Hoz, H. Basch, J. L. Wolk, T. Hoz and E. Rozental, J. Am. Chem. Soc. 1999, 121, 7724. [28] S. Parthiban, G. De Oliveira and J. M. L. Martin, J. Phys. Chem. A 2001, 105, 895. [29] M. N. Glukhovtsev, A. Pross and L. Radom, J. Am. Chem. Soc. 1996, 118, 6273. [30] I. Lee, C. K. Kim, C. K. Sohn, H. G. Li and H. W. Li, J. Phys. Chem. A 2002, 106, 1081. RATE CONSTANTS Table A5. Rate constants at room temperature, or at the temperature experimentally available which is closest to room temperature, for H-atom transfer reactions. Intramolecular and enzymatic H-atom transfer rates are underlined and expressed in s-1. System T ∆Va0 D0AC K kcal mol-1 kcal mol-1 m kISM kexp mol-1 dm3 mol-1 dm3 s-1 s-1 Ref. H+H2 300 0 0 1 9.7x104 1.3x105 [1] H+OH 300 -3.1 0 1.241 1.2x105 6.3x104 [2] H+HCl 300 -5.0 0 1.773 1.6x107 1.7x107 [3] H+HBr 300 -21.5 0 1.796 1.7x109 3.8x109 [4] F+H2 300 -31.3 0 1.679 2.5x1010 1.5x1010 [5] H+HI 297 -30.9 0 1.828 8.1x109 1.1x1010 [6] H+CH4 300 -2.9 0 1 2.3x102 5.1x102 [7] H+CH3CH3 300 -6.7 0 1 3.5x103 3.0x104 [7] H+CH2(CH3)2 300 -10.3 0 1 1.9x104 6.3x105 [8] H+CH(CH3)3 300 -11.5 0 1 1.6x104 6.3x105 [9] H+CH3OH 300 -12.2 0 1 1.2x105 7.6x105 [10] H+CH3CHO 300 -18.9 0 1 7.8x105 3.4x107 [11] H+CH2O 298 -20.1 0 1 3.6x106 2.4x107 [12] H+NH3 500 1.7 0 1.154 4.7x105 7.1x104 [13] H+SH2 300 -17.7 0 1.572 5.6x108 5.8x108 [14] H+SiH4 300 -18.4 0 1.418 9.6x107 1.2x108 [15] H+(CH3)3SiH 300 -20.1 0 1.321 1.1x107 1.8x108 [16] H+CH3SH 296 -21.7 0 1.505 3.9x108 2.5x108 [17] H+PH3 300 -25.8 0 1.292 2.0x108 2.0x109 [18] H+GeH4 300 -27.2 0 1.508 1.2x109 2.5x109 [19] H+SeH2 298 -29.6 0 1.580 2.5x109 7.1x109 [20] H+AsH3 294 -34.2 0 1.296 5.8x108 1.3x1010 [15] F+CH4 300 -34.4 0 2.078 4.9x1010 4.8x1010 [21] Cl+CH4 300 2.0 0 2.161 4.5x107 6.3x107 [22] OH+H2 300 -13.4 0 1.327 2.6x107 4.2x106 [21] OH+CH4 300 -16.3 0 1.456 4.6x106 3.9x106 [21] OH+CH3CH3 300 -20.1 0 1.581 8.0x107 1.5x108 [21] OH+CH2(CH3)2 300 -23.7 0 1.660 1.0x108 5.6x108 [23] OH+CH(CH3)3 300 -24.6 0 1.750 1.2x108 9.5x108 [24] OH+CH3OCH3 300 -25.3 0 1.721 6.4x108 1.8x109 [21] OH+CH3OH 300 -25.3 0 1.637 2.1x108 5.3x108 [10] OH+CH3C6H5 298 -31.3 0 1.674 8.0x108 4.2x109 [25] OH+CH3CHO 300 -32.3 0 1.707 3.3x108 9.5x109 [21] OH+CH2O 300 -33.5 0 1.576 3.5x108 5.5x109 [21] CH3+CH4 350 0 0 1 1.2 0.55 [26] CH3+CH3CH3 300 -3.8 0 1 0.91 4.3 [7] CH3+CH2(CH3)2 300 -7.2 0 1 4.0 5.7x101 [8] CH3+CH(CH3)3 300 -8.4 0 1 3.4 1.5x102 [24] CH3+CH3COCH3 370 -6.5 0 1 2.7x102 2.7x102 [27] CH3+CH3OCH3 373 -9.1 0 1 1.4x103 5.4x102 [28] CH3+CH3OH 300 -9.1 0 1 3.0x101 1.6x101 [29] CH3+CH3NH2 383 -12.0 0 1 5.5x103 1.1x103 [30] CH3+CH3C6H5 373 -15.3 0 1 1.1x104 1.1x103 [31] CH3+CH3CHO 300 -16.0 0 1 3.5x102 3.0x103 [7] CH3+CH2O 300 -17.2 0 1 1.7x103 3.7x103 [32] CH3+H2O 300 16.3 0 1.456 5.5x10-5 1.1x10-4 [2] CH3+NH3 350 4.5 0 1.170 4.3 4.9x101 [26] CH3+NH2CH3 383 -3.6 0 1.144 2.7x103 2.0x103 [30] CH3+H2S 332 -14.8 0 1.616 1.1x107 5.0x106 [33] CH3+(CH3)3SiH 345 -17.2 0 1.321 1.7x105 3.4x103 [26] (HO...HOH) 300 0 3.6 a) 1.327 1.2x104 b) 1.3x105 [34] (HO...HOCH3) 300 -14.5 3.0 1.406 4.6x107 b) 8.4x107 [35] (HO...HNH2) 300 -10.4 2.8 1.408 5.4x107 b) 9.6x107 [35] (HO...HSH) 300 -27.5 2.0 1.572 2.1x108 b) 2.8x109 [35] (HO...HCl) 300 -15.4 2.2 1.773 5.7x107 b) 4.9x108 [35] (F...HOH) 300 -16.8 3.0 1.721 3.5x109 b) 8.4x109 [35] (F...HBr) 298 -48.1 1.5 1.824 9.9x1010 b) 2.8x1010 [36] (Cl...HBr) 300 -15.4 1.0 1.813 3.5x109 b) 3.6x109 [37] (Cl...HCl) 312 0 1.1 c) 1.773 3.2x105 b) 9.0x105 [38] (Br...HSH) 319 3.5 0.8 1.953 1.4x106 b) 1.5x106 [39] porphine 300 5.5 1.5 1.708 1.8x105 2.4x104 [40] 2-(2’-hydroxyphenyl) 200 0 d) 2.3 1.714 2.5x107 2.7x107 [41] 298 -5.5 1.87 1 5.4x102 e) 3.3x102 [42] benzoxazole soybean lipoxygenase-1 (linoleic acid) a) The experimental value of (H2O...HOH) is 3.66 kcal mol–1, Ref. [43]. b) The rate is not obtained directly from the ISM Internet application, because gas-phase H-bonded systems do not thermalize and the rate constant is bimolecular with a barrier given by the difference between ∆Vad‡ and D0AC. (HCl...HCl) is 1.2 kcal mol–1, Ref. [44] d) . In the triplet state, Ref. [45] e) , c) The experimental value of Nonadiabatic proton-coupled electron transfer calculated with a frequency factor of 3x1011 s-1, Ref. [46]. Table A6. Rate constants of AH+B-→A-+HB proton transfers.a AH, pKa HB, pKa Reactant Product Morse model Morse model mb D0(A kISM kexp HB) hydronium ion, –1.74 azuleneH+, -1.76 C6H6 H2O 1.238 —;— 0.77 0.77 c 5CN1N*, -2.8 hydronium ion, –1.74 C6H6OH H2O 2.613 2; 4 1.8x1011 1.3x1011 d acetic a., 4.76 propionic a., 4.88 CH3COOH CH3COOH 1.894 4; 4 2.1x109 e 3.9x108 e phenol, 9.86 HCN, 9.0 C6H6OH HCN 1.714 4; 4 8.2x108 e 4.8x108 f HCN, 9.0 HCN, 9.0 HCN HCN 1.749 4; 4 5.2x107 e 7x106 g nitromethane, 10.22 water, 15.74 CH3NO2 H2O 1.095 —;— 8.6 9.2 h acetylacetone, 9.0 water, 15.74 CH3COCH3 H2O 1.443 —;— 1.5x104 2x104 i acetic a., 4.76 acetone, 19.2 CH3COOH CH3COCH3 1.443 —;— 3.6x107 6.3x107 j acetone, 19.0 pivalic a., 5.05 CH3COCH3 CH3COOH 1.443 —;— 4.4x10-8 6.8x10-8 k propionic a., 4.87 acetylacetone, 8.87 CH3COOH CH3COCH3 1.443 —;— 3.4x105 7.3x104 l acetylacetone, 8.87 pivalic a., 5.05 CH3COCH3 CH3COOH 1.443 —;— 1.6 1.8 k acetic a., 4.76 azuleneH+, -1.76 CH3COOH C6H6 1.238 —;— 2.3x10-4 3.6x10-3 c toluene, 41.2 Li c-hexylamide, 41.6 C6H6CH3 CH3NH2 1 —;— 1.2x10-2 1.2x10-2 m N+(CH3)PhCH2—H …-OC(C6H5)2 n CH3NH2 C6H6OH 1.573 —;— 4.8x109 4.1x109 n 2-naphthol*, 2.7 hydronium ion, –1.74 C6H6OH H2O 2.817 2; 4 1.3x108 1.1x108 o Ph-nitroethane, 7.39 water, 15.74 CH3NO2 H2O 1.095 —;— 9.9x101 7.8 p (NO2)3PhCH2—H H—N+R2 C6H6CH3 CH3NH2 1.095 0; 4 9.7 1.4x101 q mandelic a., 22 hydronium ion, –1.74 CH3COCH3 H2O 1.443 —;— 1.7x10-5 4x10-6 r 4-methyl-N- ∆Va0=-0.53 kcal/mol s C6H6OH C6H5NH2 2.206 2.3;6. 3.1x1011 2.8x1011s salicylideneaniline 4 Rates at 25 °C per equivalent proton and per equivalent basic site, in M-1 s-1, except for underlined rates, a which are in s-1; D0(AHB) is in kcal/mol. b The electronic models for m are discussed in the text and the IP and EA data collected in Table 2. c Ref [47]. d Ref [48]. e At 20 °C from Ref [49], the ISM rate employed Kc=0.1 M-1. f Ref [50] g [51] h . . Ref [52] i . At 12 °C from Ref [53] j . Ref [54]. k Ref [55]. l At 28 °C from Ref [56]. m Ref [57] n . Reaction energy in 1,2-dichloroethane ∆G0=-10.2 kcal/mol,[58] treated as a intramolecular reaction. o Ref [59]. p Ref [60]. q Reaction energy in dichloromethane ∆G0≈-4 kcal/mol.[61] r At 170 °C from Ref [62]. s At 77 K, Ref [63] . Table A7. Rate constants at room temperature, or at the temperature experimentally available which is closest to room temperature, for methyl transfer reactions. Reactants Solvent ∆V0 kISM / 10–4 kexp / 10–4 (kcal mol–1) (M–1 s–1) (M–1 s–1) References F– + CH3Cl Water -1.1 [64] 0.00012 0.00014 [65] F– + CH3Br Water -2.7 [64] 0.0013 0.00302 [65] F– + CH3I Water -0.7 [65] 0.00069 0.000692 [65] Cl– + CH3Br Water -1.3 [64] 0.49 0.079 [66] Cl– + CH3I Water 1.1 [65] 0.19 0.032 [65] Br– + CH3I Water 1.2 [65] 0.55 0.40 [66] I– + CH3I Water 0 4.4 4.85 [65] OH– + CH3F Water -22.5 [67] 0.00013 0.00586 [65] OH – + CH3Cl Water -22.0 [67] 0.37 0.0667 [65] OH – + CH3Br Water -23.4 [67] 2.1 1.435 [65] OH – + CH3I Water -21.3 [67] 1.5 0.636 [65] Cl – + CH3I Acetone -4.9 [65] 240,000 49,000 [66] Br – + CH3I Acetone -1.9 [66] 65,000 100,000 [66] I– + CH3I Acetone 0 30,000 63,000 [68] [1] B. C. Garrett, D. G. Truhlar, A. J. C. Varandas and N. C. Blais, Int. J. Chem. Kin. 1986, 18, 1065. [2] W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 1986, 15, 1087. [3] G. Y. Adusei and A. Fontijin, J. Phys. Chem. 1993, 97, 1409. [4] T. J. Mitchell, A. C. Gonzalez and S. W. Benson, J. Phys. Chem. 1995, 99, 16960. [5] A. Persky and H. Kornweitz, Int. J. Chem. Kinet. 1997, 29, 67. [6] H. Umemoto, S. Nakagawa, S. Tsunashima and S. Sato, J. Chem. Phys. 1988, 124, 259. [7] D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data 1992, 21, 411. [8] W. Tsang, J. Phys. Chem. Ref. Data 1988, 17, 887. [9] R. R. Baker, R. R. Baldwin and R. W. Walker, Symp. Int. Combust. Proc. 1971, 13, 291. [10] S. C. Li and F. A. Williams, Symp. Int. Combust. Proc. 1996, 26, 1017. [11] J. Warnatz in Rate Coefficients in the C?H?O System, Vol. (Ed. W. C. Gardiner Jr.), Springer-Verlag, New York, 1984, p. 197. [12] S. Dobe, C. Oehlers, F. Temps, H. G. Wagner and H. Ziemer, Ber. Bunsenges. Phys. Chem. 1994, 98, 754. [13] T. Ko, P. Marshall and A. Fontijn, J. Phys. Chem. 1990, 94, 1401. [14] M. Yoshimura, M. Koshi, H. Matsui, K. Kamiya and H. Umeyama, Chem. Phys. Lett. 1992, 189, 199. [15] N. L. Arthur and L. A. Miles, J. Chem. Soc., Faraday Trans. 1997, 93, 4259. [16] N. L. Arthur and L. A. Miles, J. Chem. Soc., Faraday Trans. 1998, 94, 1077. [17] R. J. Balla and J. Heicklen, Can. J. Chem. 1984, 62, 162. [18] N. L. Arthur and I. A. Cooper, J. Chem. Soc., Faraday Trans. 1997, 93, 521. [19] N. L. Arthur and I. A. Cooper, J. Chem. Soc. Faraday Trans. 1995, 91, 3367. [20] D. C. Dobson, F. C. James, I. Safarik, H. E. Gunning and O. P. Strausz, J. Phys. Chem. 1975, 79, 771. [21] R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, M. J. Rossi and J. Troe, J. Phys. Chem. Ref. Data 1997, 26, 521. [22] J. S. Pilgrim, A. McIlroy and C. A. Taatjes, J. Phys. Chem. A 1997, 101, 1873. [23] R. W. Walker, Int. J. Chem. Kinet. 1985, 17, 573. [24] W. Tsang, J. Phys. Chem. Ref. Data 1990, 19, 1. [25] F. P. Tully, A. R. Ravishankara, R. L. Thompson, J. M. Nicovich, R. C. Shah, N. M. Kreuffer and P. H. Wine, J. Phys. Chem. 1981, 85, 2262. [26] N. L. Arthur and T. Bell, N., Rev. Chem. Intermed. 1978, 2, 37. [27] A. C. Kinsman and J. M. Roscoe, Int. J. Chem. Kinet. 1994, 26, 191. [28] L. Batt, G. Alvarado-Salinas, I. A. B. Reid, C. Robinson and D. B. Smith, Symp. Int. Combust. Proc. 1982, 19, 81.00. [29] W. Tsang, J. Phys. Chem. Ref. Data 1987, 16, 471. [30] P. Gray and J. C. J. Thynne, Symp. Int. Combust. Proc. 1965, 10, 435. [31] M. Cher, C. S. Hollingsworth and F. Sicilio, J. Phys. Chem. 1966, 70, 877. [32] D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data 1994, 23, 847. [33] H. Arican and N. L. Arthur, Aust. J. Chem. 1983, 36, 2195. [34] M. K. Dubey, R. Mohrschladt, N. M. Donahue and J. G. Anderson, J. Phys. Chem. A 1997, 101, 1494. [35] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi and J. Troe, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric ChemistryWeb Version December 2001 2001, 1 - 56. [36] R. Edrei and A. Persky, Chem. Phys. Lett. 1989, 157, 265. [37] O. Dobis and S. W. Benson, J. Phys. Chem. A 1997, 101, 6030. [38] B. C. Garrett, D. G. Truhlar, A. F. Wagner and T. H. Dunning Jr., J. Chem. Phys. 1983, 78, 4400. [39] J. M. Nicovich, K. D. Kreutter, C. A. van Dijk and P. H. Wine, J. Phys. Chem. 1992, 96, 2518. [40] J. Braun, M. Schlabach, B. Wehrle, M. Köcher, E. Vogel and H.-H. Limbach, J. Am. Chem. Soc. 1994, 116, 6593-6604. [41] W. Al-Soufi, K. H. Grellmann and B. Nickel, J. Phys. Chem. 1991, 95, 10503. [42] M. J. Knapp, K. Rickert and J. P. Klinman, J. Am. Chem. Soc. 2002, 124, 3865-3874. [43] R. S. Fellers, C. Leforestier, L. B. Braly, M. G. Brown and R. J. Saykally, Science 1999, 284, 945. [44] A. S. Pine and B. J. Howard, J. Chem. Phys. 1986, 84, 590. [45] B. Nickel, K. H. Grellmann, J. S. Stephan and P. J. Walla, Ber. Bunsenges. Phys. Chem. 1998, 102, 436447. [46] M. Barroso, L. G. Arnaut and S. J. Formosinho, J. Phys. Org. Chem. 2008, in press. [47] L. C. Gruen and F. A. Long, J. Am. Chem. Soc. 1967, 89, 1287-1291. [48] E. Pines, D. Pines, T. Barak, B.-Z. Magnes, L. M. Tolbert and J. E. Haubrich, Ber. Bunsenges. Phys. Chem. 1998, 102, 511-517. [49] M.-L. Ahrens and G. Maass, Angew. Chem. Int. Ed. 1968, 7, 818-819. [50] R. A. Bednar and W. P. Jencks, J. Am. Chem. Soc. 1985, 107, 7126-7134. [51] I. Bányai, J. Blix, J. Gçaser and I. Tóth, Acta Chem. Scand. 1992, 46, 142-146. [52] R. P. Bell and D. M. Goodall, Proc. Roy. Soc. (London) 1966, A294, 273-297. [53] M. Eigen, Angew. Chem. Int. Ed. Engl. 1964, 3, 1-19. [54] A. Argile, A. R. E. Carey, G. Fukata, M. Harcourt, R. A. More O'Ferrall and M. G. Murphy, Isr. J. Chem. 1985, 26, 303-312. [55] J. P. Guthrie, Can. J. Chem. 1979, 57, 1177-1185. [56] M.-L. Ahrens, M. Eigen, W. Kruse and G. Maass, Ber. Bunsenges. Phys. Chem. 1970, 74, 380-385. [57] A. Streitwieser Jr., P. H. Owens, G. Sonnischsen, W. K. Smith, G. R. Ziegler, H. M. Niemeyer and T. L. Kruger, J. Am. Chem. Soc. 1973, 95, 4254-4257. [58] K. S. Peters and G. Kim, J. Phys. Chem. A 2004, 108, 2598-2606. [59] J. Lee, G. W. Robinson and M.-P. Bassez, J. Am. Chem. Soc. 1986, 108, 7477-7480. [60] M. Amin and W. H. Saunders Jr., J. Phys. Org. Chem. 1993, 6, 393-398. [61] N. Sugimoto, M. Sasaki and J. Osugi, J. Phys. Chem. 1982, 86, 3418-3423. [62] S. L. Bearne and R. Wolfenden, Biochemistry 1997, 36, 1646-1656. [63] T. Sekikawa, T. Kobayashi and T. Inabe, J. Phys. Chem. A 1997, 101, 644-649. [64] D. J. McLennan, Aust. J. Chem. 1978, 31, 1897-1909. [65] E. A. Moelwyn-Hughes, The Chemical Statics and Kinetics of Solutions, Academic Press, London, 1971, p. 234. [66] A. J. Parker, Chem. Rev. 1969, 69, 1-32. [67] J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem. 1978, 16, 87-157. [68] E. R. Swart and L. J. Le Roux, J. Chem. Soc. 1957, 406-410. ACTIVATION ENERGIES Table A8. Experimental pre-exponential factors and activation energies and ISM activation energies calculated with the indicated values of the electrophilicity index, m.a) T A Ea (K) dm3 mol-1 s-1 kJ mol-1 H+H2 294-693 3.8x1010 H+CH4 500-1000 H+CH3CH3 Ea(ISM) Ref. m 31.5 b) 1 34.2 9.5x1010 50.8 1 1 44.4 500-1000 17x1010 39.5 1 1 38.4 H+CH3CH2CH3 500-1000 9.9x1010 32.5 2 1 33.1 H+(CH3)3CH 500-1000 4.6x1010 24.6 3 1 32.0 H+CH3OH 500-1000 6.1x1010 30.3 4 1 29.5 H+CH3CHO 300-2000 4.0x1010 17.6 5 1 22.1 H+CH2O 500-1000 2.7x1010 18.4 1 1 20.1 C2H3+H2 499-947 2.1x109 34.8 6 1 34.6 C6H5+H2 548-607 1.8x109 34.8 7 1 35.0 CN+H2 500-1000 52x109 23.3 1 1 21.7 C2H+H2 300-2500 15x109 13.0 5 1 17.2 CH3+CH4 350-600 6.3x108 60.7 8 1 59.6 CH3+CH3CH3 500-1000 77x108 59.6 1 1 50.5 CH3+CH3CH2CH3 500-1000 2.1x108 42.7 1 1 44.7 CH3+(CH3)3CH 500-1000 2.1x108 39.0 1 1 43.5 CH3+CH3COCH3 370-580 4.5x108 44.1 9 1 49.4 CH3+CH3OH 500-1000 10x108 48.4 10 1 40.9 CH3+CH3OCH3 373-437 2.0x108 39.7 11 1 46.1 CH3+CH3NH2 383-453 0.97x108 36.4 12 1 40.9 CH3+CH3C6H5 611-883 1.2x108 33.5 13 1 33.6 CH3+CH3CHO 500-1000 67x108 42.6 14 1 32.4 CH3+CH2O 300-1000 41x108 37.0 14 1 30.0 C6H5+CH4 600-900 60x108 51.6 15 1 47.6 56.5 16 1 60.9 System C2H5+CH3CH3 480 kJ mol-1 C2H5+CH3CH2CH3 500-1000 3.5x108 51.0 1 1 51.4 C2H5+(CH3)3CH 500-1000 1.3x108 44.7 1 1 50.1 C2H5+CH3CHO 357-676 13x108 35.6 17 1 40.9 C2H5+CH3C6H5 464-701 1.2x108 40.2 18 1 41.5 (CH3)2CH+(CH3)2CH2 500-1000 5.3x108 60.5 1 1 55.9 (CH3)2CH+(CH3)3CH 500-1000 0.94x108 49.0 1 1 54.5 (CH3)3C+(CH3)3CH 500-1000 4.9x108 67.5 1 1 57.2 CF3+H2 350-600 8.9x108 39.7 8 1 44.0 C6H5CH2+CH3C6H5 300 Liquid phase 66.1 19 1 61.9 CH3CH2+(CH3)3SiH 318-453 5.4x108 30.3 20 1.321 27.9 CH3+(CH3)3SiH 345-526 1.3x108 30.2 8 1.321 23.1 H+(CH3)3SiH 298-580 2.0x1010 11.7 21 1.321 18.7 CH3CHCH3+SiH4 298-422 6.9x108 31.9 20 1.471 26.3 CH3CH2+SiH4 318-453 5.4x108 30.3 20 1.419 25.4 CH3+SiH4 301-846 7.7x108 29.2 8 1.418 19.1 H+SiH4 290-636 8.3x1010 15.1 22 1.418 16.3 H+GeH4 210-440 12x1010 9.4 23 1.508 10.0 C6H5CH2+(CH3)3SnH 300 Liquid phase 23.4 16 1.630 17.6 CH3CH2+(CH3)3SnH 300 Liquid phase 15.5 16 1.630 10.7 CH3+(CH3)3SnH 300 Liquid phase 13.4 16 1.630 8.5 C6H5+(CH3)3SnH 300 Liquid phase 7.1 16 1.630 7.0 NH2+H2 673-1000 3.6x109 38.0 24 1.154 27.3 NH2+CH4 500-1000 2.6x109 50.5 25 1.170 40.2 NH2+CH3CH3 500-1000 2.5x109 36.8 25 1.210 32.3 NH2+CH3CH2CH3 500-1000 5.1x109 35.6 25 1.234 26.5 NH2+(CH3)3CH 500-973 2.2x109 28.3 26 1.260 24.2 H+PH3 293-472 6.6x1010 8.7 27 1.292 13.9 H+AsH3 294-424 15x1010 6.0 27 1.296 10.4 O+CH4 500-1000 9.2x1010 44.4 14 1.349 41.2 O+C2H6 500-1000 8.5x1010 32.9 14 1.439 31.0 O+CH3CH2CH3 500-1000 3.8x1010 24.3 14 1.495 24.2 O+(CH3)3CH 500-1000 2.6x1010 20.0 14 1.558 20.6 O+CH2O 500-1000 3.1x1010 14.8 14 1.438 15.8 H+HO 500-1000 7.7x109 32.3 14 1.241 26.3 OH+C6H6 500-1000 7.5x109 14.2 14 1.563 20.4 OH+H2 500-1000 18x109 23.0 14 1.327 11.3 OH+CH4 500-1000 16x109 22.2 14 1.456 15.5 OH+CH3CH3 500-1000 27x109 15.1 14 1.581 8.5 OH+CH3CH2CH3 500-1000 5.6x109 6.8 28 1.660 4.5 OH+(CH3)3CH 500-1000 2.7x109 5.1 28 1.750 2.2 OH+CH3OCH3 290-450 6.0x109 3.1 29 1.721 7.2 OH+CH3OH 500-1000 5.4x109 8.0 4 1.637 3.7 OH+CH3C6H5 500-1000 10x109 9.4 1 1.674 0 OH+CH3CHO 500-600 10x109 2.6 30 1.707 3.8 OH+CH2O 500-1000 26x109 4.9 14 1.579 1.0 CH3O+CH4 300-2500 1.7x108 37.0 31 1.380 34.9 CH3O+CH3CH3 300-2500 2.4x108 29.7 31 1.480 25.0 CH3O+CH3CH2CH3 300-2500 1.4x108 19.1 31 1.541 18.7 CH3O+(CH3)3CH 300-2500 2.3x108 12.1 3 1.612 15.4 CH3O+CH3OH 300-2500 3.0x108 17.0 10 1.524 18.3 CH3O+CH2O 300-2500 1.0x108 12.5 10 1.478 11.5 CH3+H2S 350-600 3.8x108 10.9 8 1.616 8.1 H+H2S 500-1000 9.4x1010 15.0 32 1.572 5.3 17.2 16 1.505 13.7 CH3+CH3SH 300 313-454 2.9x1010 10.9 33 1.505 9.7 C6H5CH2+C6H5SH 300 Liquid phase 15.9 16 1.885 13.1 (CH3)3C+C6H5SH 300 Liquid phase 6.3 16 2.018 6.1 (CH3)2CH+C6H5SH 300 Liquid phase 7.1 16 1.885 7.2 CH3CH2+C6H5SH 300 Liquid phase 7.1 16 1.772 7.7 F+H2 190-375 6.6x1010 3.7 34 1.679 2.4 F+CH4 250-450 18x1010 3.3 29 2.078 0.8 F+CH3CH3 210-363 43x1010 2.9 35 2.477 0 CH3+HCl 350-600 0.54x109 12.9 8 2.161 11.4 Cl+CH3CH3 500-800 7.0x1010 2.4 36 2.605 3.3 H+HCl 298-1190 1.7x1010 17.3 37 1.773 11.6 (CH3)3C+HBr 298-530 0.83x109 7.8 38 3.016 0 (CH3)2CH+HBr 298-530 0.95x109 6.4 38 2.679 0.3 C2H5+HBr 297-530 1.0x109 4.2 38 2.415 1.2 CH3+HBr 299-536 9.5x109 1.6 38 2.038 3.0 H+HBr 298-546 11x1010 2.6 39 1.796 3.9 (CH3)3C+HI 294-552 1.9x109 6.3 40 2.680 0 H+CH3SH (CH3)2CH+HI 295-648 2.4x109 5.1 40 2.419 0 C2H5+HI 294-648 2.7x109 3.2 40 2.210 0 CH3+HI 292-648 2.7x109 1.2 40 1.902 0 H+HI 250-373 4.5x1010 2.4 41 1.828 0.2 a) Ea(ISM)=0 means that, within the approximation employed to estimate ∆CV, at the designated temperature no activation energy is expected. b) Relative rates of H+H2 versus H+D2 measured by Quickert and Le Roy 42, with the exponential fit of Michael for H+D2 43. 1)Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, T.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1994, 23, 847. 2)Tsang, W. J. Phys. Chem. Ref. Data 1988, 17, 887. 3)Tsang, W. J. Phys. Chem. Ref. Data 1990, 19, 1. 4)Li, S. C.; Williams, F. A. Symp. Int. Combust. Proc. 1996, 26, 1017. 5)Warnatz, J. Combustion Chemistry; ; Gardiner Jr., W. C., Ed.; Springer-Verlag: New York, 1984, p. 197. 6)Knyazev, V. D.; Bencsura, A.; Stoliarov, S. I.; Slagle, I. R. J. Phys. Chem. A 1996, 100, 11346. 7)Park, J.; Dyakov, I. V.; Lin, M. C. J. Phys. Chem. A 1997, 101, 8839. 8)Arthur, N. L.; Bell, T., N. Rev. Chem. Intermed. 1978, 2, 37. 9)Kinsman, A. C.; Roscoe, J. M. Int. J. Chem. Kinet. 1994, 26, 191. 10)Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471. 11)Batt, L.; Alvarado-Salinas, G.; Reid, I. A. B.; Robinson, C.; Smith, D. B. Symp. Int. Combust. Proc. 1982, 19, 81.00. 12)Gray, P.; Thynne, J. C. J. Symp. Int. Combust. Proc. 1965, 10, 435. 13)Dunlop, A. N.; Kominar, R. J.; Price, S. J. W. Can. J. Chem. 1970, 48, 1269. 14)Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411. 15)Tokmakov, I. V.; Park, J.; Gheyas, S.; Lin, M. C. J. Phys. Chem. A 1999, 103, 3636. 16)Zavitsas, A. A.; Chatgilialoglu, C. J. Am. Chem. Soc. 1995, 117, 10645. 17)Hohlein, G.; Feeman, G. R. J. Am. Chem. Soc. 1970, 92, 6118. 18)Paputa, M. C.; Price, S. J. W. Can. J. Chem. 1979, 57, 3178. 19)Camaioni, D. M.; Autray, S. T.; Salinas, T. B.; Franz, J. A. J. Am. Chem. Soc. 1996, 118, 2013. 20)Berkley, R. E.; Safarik, I.; Strausz, O. P.; Gunning, H. E. J. Phys. Chem. 1973, 77, 1741. 21)Arthur, N. L.; Miles, L. A. J. Chem. Soc., Faraday Trans. 1998, 94, 1077. 22)Arthur, N. L.; Miles, L. A. J. Chem. Soc., Faraday Trans. 1997, 93, 4259. 23)Nava, D. F.; Payne, W. A.; Marston, G.; Stief, L. J. J. Geophys. Res. 1993, 98, 5531. 24)Hack, W.; Rouveirolles, P.; Wagner, H. G. J. Phys. Chem. 1986, 90, 2505. 25)Hennig, G.; Wagner, H. G. Ber. Bunsenges. Phys. Chem. 1995, 99, 863. 26)Hack, W.; Kurzke, H.; Rouveirolles, P.; Wagner, H. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 1210. 27)Arthur, N. L.; Cooper, I. A. J. Chem. Soc., Faraday Trans. 1997, 93, 521. 28)Walker, R. W. Int. J. Chem. Kinet. 1985, 17, 573. 29)Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson Jr., R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 521. 30)Taylor, P. H.; Rahman, M. S.; Arif, M.; Dellinger, B.; Marshall, P. Symp. Int. Combust. Proc. 1996, 26, 497. 31)Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087. 32)Yoshimura, M.; Koshi, M.; Matsui, H.; Kamiya, K.; Umeyama, H. Chem. Phys. Lett. 1992, 189, 199. 33)Amano, A.; Yamada, M.; Hashimoto, K.; Sugiura, K. Nippon Kagaku Kaishi 1983, 385. 34)Persky, A.; Kornweitz, H. Int. J. Chem. Kinet. 1997, 29, 67. 35)Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1994, 98, 2078. 36)Pilgrim, J. S.; McIlroy, A.; Taatjes, C. A. J. Phys. Chem. A 1997, 101, 1873. 37)Adusei, G. Y.; Fontijin, A. J. Phys. Chem. 1993, 97, 1409. 38)Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. J. Phys. Chem. 1992, 96, 9847. 39)Seakins, P. W.; Pilling, M. J. J. Phys. Chem. 1991, 95, 9878. 40)Seetula, J. A.; Russel, J. J.; Gutman, D. J. Am. Chem. Soc. 1990, 112, 1347. 41)Lorenz, K.; Wagner, H. G.; Zellner, R. Ber. Bunsenges. Phys. Chem. 1979, 83, 556. 42)Quickert, K. A.; Le Roy, D. J. J. Chem. Phys. 1970, 53, 1325. 43)Michael, J. V. J. Chem. Phys. 1990, 92, 3394.
© Copyright 2026 Paperzz