Ideal Gas P v = RT P v̄ = R̄T R = cp − cv Cycle I Boundary Work–reversible process Z W = P dV 1 2 k = cp /cv I δQ = ηth = δW, reversible Q̇H TH = TL Q̇L Work–polytropic process (P V n = constant) P V −P V 2 2 1 1 , for n 6= 1 1−n W = 1 2 P1 V1 ln(V2 /V1 ), for n = 1 Ẇnet Q̇L Q̇H , β= , β0 = Q̇H Ẇin Ẇin Increase in Entropy Principle Closed System–Control Mass ∆Scm = S2 − S1 m(V22 − V12 ) Q = m(u − u ) + + mg(Z2 − Z1 ) + 1 W2 1 2 2 1 2 Z 2 m(s2 − s1 ) ≥ 1 δQ = T 2 Z 1 ∆Ssurr = − δQ + 1 S2gen T 1 Q2 T0 ∆Snet = ∆Scm + ∆Ssurr ≥ 0 Open System–Control Volume X ṁi − X ṁe = e i Q̇cv − Ẇcv + X i dmcv dt ṁ = V̇ /v = VA/v X V2 dEcv V2 ṁi hi + i + gzi − ṁe he + e + gze = 2 2 dt e X X X Q̇cv X X X Q̇cv dScv ≥ ṁi si − ṁe se + = ṁi si − ṁe se + + Ṡ gen dt T T e e i i Gibbs Relations T ds = du + P dv = dh − v dP Internal Energy, Enthalpy, and Entropy Change–Ideal Gas Z 2 Z 2 u2 − u1 = cv dT, h2 − h1 = cp dT, 1 Z s2 − s1 = 1 2 1 cp P2 dT − R ln = T P1 Z 2 1 cv v2 P2 dT + R ln = s0T2 − s0T1 − R ln T v1 P1 Isentropic Process–Ideal Gas with constant specific heats T2 = T1 P2 P1 k − 1 k = v1 v2 k − 1 Shaft Work–reversible, neglect KE & PE Z e w=− v dP i ME 200 Shaft Work–reversible, polytropic w=− n (Pe ve − Pi vi ) n−1 DWM
© Copyright 2026 Paperzz