5.2-5.6 Review WS

5.2-5.6 Review WS
5.2) Factor the expression. If the expression cannot be factored, say so.
Name: _______________________
1)
2x2 – 4x – 30
5)
x2 + 9x + 14
2)
4x2 + 14x + 6
6)
x2 + 16x + 64
3)
12x2 – 3
7)
4x2 + 4x + 1
4)
3x2 + 7x + 2
10)
8x2 + 5x – 4 = 2x2 – 8x + 1
5.2) Solve the equation.
8)
x2 + x – 30 = 0
9)
25x2 = 16
5.3) Simplify the expression.
11)
147
12)
8  18  5 4
13)
7 14

3
3
16)
x2 – 81 = 0
17)
2 2
x – 8 = 16
3
5.3) Solve the equation.
14)
3(x – 2)2 + 4 = 52
15)
x2 + 1 = 3x2 – 13
5.2-5.6 Review WS
5.4) Solve the equation.
18)
x2 + 5 = 14
20)
11x2 + 1 = 2x2
19)
x2 + 3 = -24
21)
3(x + 5) 2 + 147 = 0
5.4) Write the expression as a complex number in standard form.
22)
(3 + 2i) + (-5 + 8i)
23)
(4 + 2i) – (-1 + 5i)
24)
25)
6
2  3i
26)
(1 – 5i)(2 + i) – i(3 – 4i)
(5 – 4i)(3 + 6i)
5.4) Find the absolute value of the complex number.
27)
29)
-4 + 3i
5
2+3𝑖
28)
30)
2 i
3−𝑖
4−3𝑖
5.5) Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the
square of a binomial.
31)
x2 + 24x + c
32)
x2 – 9x + c
5.2-5.6 Review WS
5.5) Solve the equation by completing the square.
33)
35)
x2 + 6x – 7 = 0
3𝑥 2 − 12𝑥 + 4 = 0
34)
x2 + 9x + 6 = 0
36)
2𝑥 2 + 5𝑥 − 7 = 0
5.6) Find the discriminant of the quadratic equation and determine the number of solutions it has.
37)
𝑥 2 + 3𝑥 − 1 = 0
38) 𝑥 2 − 3𝑥 + 10 = 0
5.6) Use the quadratic formula to find the solutions to the following quadratic equations.
39) 𝑥 2 + 12𝑥 + 9 = 0
40) 3𝑥 2 + 2𝑥 = 𝑥 2 + 5𝑥 − 1