5.2-5.6 Review WS 5.2) Factor the expression. If the expression cannot be factored, say so. Name: _______________________ 1) 2x2 – 4x – 30 5) x2 + 9x + 14 2) 4x2 + 14x + 6 6) x2 + 16x + 64 3) 12x2 – 3 7) 4x2 + 4x + 1 4) 3x2 + 7x + 2 10) 8x2 + 5x – 4 = 2x2 – 8x + 1 5.2) Solve the equation. 8) x2 + x – 30 = 0 9) 25x2 = 16 5.3) Simplify the expression. 11) 147 12) 8 18 5 4 13) 7 14 3 3 16) x2 – 81 = 0 17) 2 2 x – 8 = 16 3 5.3) Solve the equation. 14) 3(x – 2)2 + 4 = 52 15) x2 + 1 = 3x2 – 13 5.2-5.6 Review WS 5.4) Solve the equation. 18) x2 + 5 = 14 20) 11x2 + 1 = 2x2 19) x2 + 3 = -24 21) 3(x + 5) 2 + 147 = 0 5.4) Write the expression as a complex number in standard form. 22) (3 + 2i) + (-5 + 8i) 23) (4 + 2i) – (-1 + 5i) 24) 25) 6 2 3i 26) (1 – 5i)(2 + i) – i(3 – 4i) (5 – 4i)(3 + 6i) 5.4) Find the absolute value of the complex number. 27) 29) -4 + 3i 5 2+3𝑖 28) 30) 2 i 3−𝑖 4−3𝑖 5.5) Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial. 31) x2 + 24x + c 32) x2 – 9x + c 5.2-5.6 Review WS 5.5) Solve the equation by completing the square. 33) 35) x2 + 6x – 7 = 0 3𝑥 2 − 12𝑥 + 4 = 0 34) x2 + 9x + 6 = 0 36) 2𝑥 2 + 5𝑥 − 7 = 0 5.6) Find the discriminant of the quadratic equation and determine the number of solutions it has. 37) 𝑥 2 + 3𝑥 − 1 = 0 38) 𝑥 2 − 3𝑥 + 10 = 0 5.6) Use the quadratic formula to find the solutions to the following quadratic equations. 39) 𝑥 2 + 12𝑥 + 9 = 0 40) 3𝑥 2 + 2𝑥 = 𝑥 2 + 5𝑥 − 1
© Copyright 2026 Paperzz