Modelling Thermal Energy Storage in closed loop systems: Potential effects on Southern Ontario aquifer chemistry and implications Canadian Geoexchange Coalition 3rd Business & Policy Forum November 17 – 18, 2008 Carlos Jurado Career Bridge - Ontario Ministry of the Environment 1 Presentation Outline • Background: • Closed loop Geoexchange systems review • Case study: Cumulative temperature of ground water and migration beyond well field • Objectives of Modelling Study • Modelling study description: • Effects of temperature accrual in ground water chemistry parameters pH, pE and mineral saturation indices • Interpretation of results • Findings and potential implications 2 Background: Small closed loop vertical system Advantages: •Relatively small ground area required •Little variation in temperature and thermal properties of subsurface at working depths •Smallest pipe length and pumping energy required • May yield the most efficient system performance Potential issues: • Higher installation costs (borehole drilling) • Limited supply of qualified installers. 1999 ASHRAE Applications Handbook. Chapter 31. Geothermal Energy 3 Background: Large scale closed loop systems • Known as Borehole Thermal Energy Storage (BTES) systems • May reach depths >200 metres from surface • High number of holes: UOIT = 384 Potential issues: • Thermally imbalanced well field • Ground water heat transport beyond property boundaries • Thermal interference on neighbouring systems • Discharge of warmer out of season ground water to surface water Epstein and Sowers (2006). The Continued Warming of the Stockton Geothermal Well Field. ECOSTOCK Proceedings. Taken from UOIT - BTES website 2008 4 Background: Case Study • Richard Stockton College, New Jersey, USA Sowers et al. 2006. ECOSTOCK Proceedings • Average net yearly thermal storage of 1oC in a large scale closed loop system (i.e. temperature increases 1oC) • Temperature peaks measured beyond the well field, along the path of ground water flow What is the environmental concern with Large Scale Geoexchange systems? 5 Objectives of the Modelling Study • Investigate the potential effects of temperature increase on major physical - chemical parameters of ground water • Investigate the potential effects of temperature increase on mineral saturation indices of ground water • Identify potential issues for future field scale research on Aquifer Thermal Energy Storage systems 6 Modelling Study Description: Chemical speciation in groundwater • Phreeqc 2.0 used to model aqueous species formation • Extensive database of minerals for speciation reactions: WATEQ 4.0 • Simplicity of use to input water chemistry parameters and simulate reactions 7 Modelling Study Description: Sample selections and modelling criteria • Ground water samples from drinking water well datasets • Datasets with comprehensive water chemistry data • Temperature range for aqueous speciation includes operating temperature range for closed-loop systems • Field values and major ions concentrations selected as initial input parameters 8 Newmarket Aurora Toronto Location of Ground Water well source data: Waterloo Kitchener Yonge street Aquifer : Aurora and Newmarket Mannheim Aquifer: Kitchener and Waterloo 9 Simulated temperature increase effects on pH and pE values 9 8 pH 7 pH 1 pH and pE 6 pH 2 pH 3 5 • pH close to neutral or slightly alkaline with increased temperature XXX pE 1 4 pE 2 pE 3 3 2 • pE reducing tendency with increased temperature pE 1 0 0 5 10 15 20 25 30 35 40 45 50 o Temperature C 10 Mineral Saturation Indices variation in ground water upon temperature increase Aurora well CaSO4 [Anhydrite] CaSO Anhydrite 4 5 CaCO3 [Aragonite] CaCO Aragonite 3 CaCO3 Calcite[Calcite] 4 CaCO3 CaMg(CO3)2 Dolomite (d) [Dolomite] CaMg(CO3)2 CaMg(CO3)2 Dolomite (d) [Dolomite] CaMg(CO3)2 3 Saturation Index 2 1 Dolomite Magnesite 0 FeOOH [Goethite] Goethite FeO(OH) Fe(OH)2.7Cl.3 Akaganéite Fe(OH)2.7Cl0.3 Fe(OH)3(a) Bernalite (a) Fe(OH)3 CaSO4 : 2H2O [Gypsum] Gypsum CaSO4·2H2O Jarosite H (H3O)Fe (H3O)Fe3(SO4)2(OH)6 [Jarosite-H] 3(SO4)2(OH)6 Jarosite (ss) (K0.77Na0.03H0.2)Fe (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 [Jarosite-ss] 3(SO4)2(OH)6 -1 Jarosite K KFe3(SO4)2(OH)6 KFe3(SO4)2(OH)6 [Jarosite-K] -2 Jarosite Na NaFe NaFe3(SO4)2(OH)6 [Jarosite-Na] 3(SO4)2(OH)6 Magnesite MgCO3 [Magnesite] MgCO3 -3 Melanterite [Melanterite] FeSO4:7H2O FeSO4:7H2O -4 Nesquehonite MgCO3:3H2O MgCO3:3H2O [Nesquehonite] Siderite FeCO3 [Siderite] -5 0 5 10 15 20 25 30 35 40 45 50 FeCO3 Siderite (d) [ Siderite-d-3 FeCO3] FeCO3(d)(3) Temperature oC 11 Mineral Saturation Indices variation in ground water upon temperature increase Newmarket well Anhydrite CaSO4 [Anhyd 5 CaSO4 Aragonite CaCO3 [Aragonite] CaCO3 4 Calcite CaCO3 [Calcite] Dolomite CaMg(CO3)2 (d) 3 CaMg(CO3)2 [Dolomite] Dolomite (d) [Dolomite] CaMg(CO3)2 CaMg(CO3)2 2 Bernalite Saturation Index CaCO3 1 Dolomite (d) Goethite FeOOH [Goethite] FeO(OH) Akaganéite Fe(OH)2.7Cl.3 Fe(OH)2.7Cl0.3 Bernalite Fe(OH)3(a)(a) Fe(OH)3 Gypsum CaSO4·2H2O CaSO4 : 2H2O [Gypsum] 0 Jarosite H (H3[Jarosite-H] O)Fe3(SO4)2(OH)6 (H3O)Fe3(SO4)2(OH)6 Jarosite (ss) (K0.77Na0.03H[Jarosite-ss] (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 0.2)Fe3(SO4)2(OH)6 -1 Jarosite K KFe3(SO4)2(OH)6 KFe3(SO4)2(OH)6 [Jarosite-K] -2 Jarosite Na NaFe NaFe3(SO4)2(OH)6 [Jarosite-Na] 3(SO4)2(OH)6 Magnesite MgCO3 [Magnesite] MgCO3 -3 Melanterite FeSO4:7H2O FeSO4:7H2O [Melanterite] Nesquehonite MgCO3:3H2O MgCO3:3H2O [Nesquehonite] -4 Siderite FeCO3 [Siderite] -5 0 5 10 15 20 25 30 35 40 45 50 FeCO3 Siderite (d) [ Siderite-d-3 FeCO FeCO3(d)(3) ] 3 Temperature oC 12 Mineral Saturation Indices variation in ground water upon temperature increase Waterloo well 5 CaSO4 [Anhydrite] CaSO Anhydrite 4 4 CaCO3 [Calcite] Calcite CaCO3 [Aragonite] CaCO Aragonite 3 3 CaMg(CO3)2 Dolomite (d) [Dolomite] CaMg(CO3)2 FeOOH [Goethite] FeO(OH) Goethite 2 Saturation Index CaCO3 CaMg(CO3)2 (d) [Dolomite] Dolomite CaMg(CO3)2 Bernalite Dolomite (d) 1 Fe(OH)2.7Cl.3 Akaganéite Fe(OH)2.7Cl0.3 Fe(OH)3(a)(a) Bernalite Fe(OH)3 CaSO4 : 2H2O [Gypsum] Gypsum CaSO4·2H2O 0 (H3O)Fe3(SO4)2(OH)6 Jarosite H (H3[Jarosite-H] O)Fe3(SO4)2(OH)6 (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 [Jarosite-ss] Jarosite (ss) (K0.77Na0.03H0.2 )Fe3(SO4)2(OH)6 -1 KFe3(SO4)2(OH)6 [Jarosite-K] Jarosite K KFe3(SO4)2(OH)6 -2 NaFe3(SO4)2(OH)6 [Jarosite-Na] Jarosite Na NaFe 3(SO4)2(OH)6 MgCO3 [Magnesite] MgCO Magnesite 3 -3 FeSO4:7H2O [Melanterite] Melanterite FeSO4:7H2O -4 MgCO3:3H2O [Nesquehonite] Nesquehonite MgCO3:3H2O FeCO3 [Siderite] Siderite -5 0 5 10 15 20 25 30 35 40 45 50 FeCO3 FeCO3(d)(3) Siderite (d) [ Siderite-d-3 FeCO] 3 o Temperature C 13 Mineral Saturation Indices variation in ground water upon temperature increase Kitchener well Anhydrite si_Anhydrite Aragonite si_Aragonite 5 CaCO3 Calcite CaCO3 si_Calcite Dolomite si_Dolomite(d) CaMg(CO3)2 4 Dolomite (d) si_Dolomite Goethite si_Goethite 3 2 Saturation Index CaSO4 Bernalite 1 Dolomite (d) Dolomite 0 CaMg(CO3)2 FeO(OH) Akaganéite Fe(OH)2.7Cl0.3 si_Fe(OH)2.7Cl.3 Bernalite (a) Fe(OH)3 si_Fe(OH)3(a) Gypsum si_Gypsum Jarosite H si_JarositeH CaSO4·2H2O (H3O)Fe3(SO4)2(OH)6 Jarosite (ss) (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 si_Jarosite(ss) Jarosite K KFe3(SO4)2(OH)6 si_Jarosite-K -1 Jarosite Na NaFe3(SO4)2(OH)6 si_Jarosite-Na Magnesite si_Magnesite MgCO3 -2 Melanterite si_Melanterite FeSO4:7H2O -3 Nesquehonite si_NesquehoniteMgCO3:3H2O Siderite si_Siderite -4 FeCO3 Siderite (d) FeCO3 si_Siderite(d)(3) -5 0 5 10 15 20 25 30 35 40 45 50 Temperature oC 14 Findings from modelled predictions: • Carbonate minerals containing either Calcium, Magnesium or Iron tend to precipitate with increase in temperature • Bernalite [Fe(OH)3] shows a tendency to dissolve with increased temperature • Other minerals do not show saturation crossovers with same frequency as those above 15 Implications of modelled predictions: • Supersaturation of carbonate minerals may lead to precipitation, intensifying the scaling problem in a geoexchange system • Subsaturation of Bernalite (iron hydroxides) may lead to dissolution of iron compounds and adsorbed anions (e.g. arsenic) • Potential focus of research could be the mobility and concentrations of metalloid species, particularly in subsurface with reducing conditions; the impacts of thermal discharge of groundwater to surface water and assessing the effects of warmer subsurface on climate change. 16 Acknowledgments: • Career Bridge Organization, funded by the Ontario Ministry of Citizenship and Immigration • Ontario Ministry of the Environment • Canadian Geo-exchange Coalition 17
© Copyright 2026 Paperzz