Name _________________________________________ Period ____ 11/2 – 11/13 GEOMETRY UNIT 6 – CONGRUENT TRIANGLES Vocabulary Terms: Congruent Corresponding Parts Congruency statement Included angle Included side 11/5 HL Non-included side Hypotenuse Leg 11/6 SSS and SAS 11/12 ASA, AAS, HL 11/7-8 Congruent Triangles and Logic SSS SAS ASA AAS 11/2 Congruent Polygons 11/9 CPCTC 11/13 Review Test Friday, 11/2 Chapter 4 Section 3: Congruent Triangles I can match the corresponding parts of congruent figures given a picture or a congruency statement. I can prove polygons congruent using the definition of congruent polygons. ASSIGNMENT: Pg. 234 (#2-11, 13-16, 19, 21-22, 28-31) Completed: Monday, 11/5 Chapter 4 Section 4: Triangle Congruence: SSS and SAS I can determine if 2 triangles are congruent using SSS or SAS. ASSIGNMENT: Triangle Congruence WST - #2, 4, 8, 9, 13, 15, 16, 19 Completed: Tuesday, 11/6 Chapter 4 Section 5: Triangle Congruence: ASA, AAS, and HL I can determine if 2 triangles are congruent using ASA, AAS, or HL. ASSIGNMENT: Triangle Congruence WST - Finish Completed: Wednesday or Thursday, 11/7-8 Chapter 4 Section 4 and 5: Triangle Congruence: SSS and SAS AND ASA, AAS, and HL I can determine if 2 triangles are congruent using SSS, SAS, ASA, AAS, or HL. I can determine the missing piece of information needed to prove triangles congruent I can complete a fill-in-the-blank proof. I can use triangle congruence and logic to solve problems. ASSIGNMENT: Triangle Congruence and Logic Worksheet Completed: Friday, 11/9 Chapter 4 Section 6: CPCTC I can use CPCTC to solve different types of problems. I can use CPCTC in geometric proofs ASSIGNMENT: CPCTC Worksheet Completed: Monday, 11/12 Review Day Completed: ASSIGNMENT: Review for Test Tuesday, 11/13 Test Day Unit 6 Test: Congruent Triangles Grade: If you miss the review day, you are still expected to take the test on the test day. For more help BEFORE the test: 1. Use the indicated chapters in your book 2. Use the book online (it has videos and a homework help section) 3. Use Google to find more resources 4. Come to tutoring (with assignment) CONGRUENT Polygons Examples I. Name the congruent triangles. 1. LIN ≅_______ I 2. FOX ≅______ A O L N R X E B II. Name the congruent triangle and the congruent parts.. 3. E ≅ _____ FE ≅ _____ EFI ≅ _____ FI ≅ _____ FIE ≅ _____ IE ≅ _____ X FGH ≅ ______ EFI ≅ _____ FG ≅ _____ G ≅ _____ GH ≅ _____ H ≅ _____ FH ≅ _____ Use the congruency statement to fill in the corresponding congruent parts. 4. EFI ≅ HGI F O Example 3: Proving Triangles Congruent Given: ∠YWX and ∠YWZ are right angles. YW bisects ∠XYZ. W is the midpoint of XZ. XY ≅ YZ. Prove: ∆XYW ≅ ∆ZYW Check It Out! Example 3 Given: AD bisects BE. BE bisects AD. AB ≅ DE, ∠A ≅ ∠D Prove: ∆ABC ≅ ∆DEC Check It Out! Example 4 Use the diagram to prove the following. Given: MK bisects JL. JL bisects MK. JK ≅ ML. JK || ML. Prove: ∆JKN ≅ ∆LMN Name ________________________________________________ Period ______________ Triangle Congruence 1. List the five ways to prove that triangles are congruent. ______________ ______________ ______________ ______________ ______________ For each pair of triangles, tell which of the above postulates make the triangles congruent. 2. ∆ABC ≅ ∆EFD ______________ 3. ∆AEC ≅ ∆BED C ______________ C B F E A B D A E 4. ∆ABC ≅ ∆EFD ______________ D 5. ∆ADC ≅ ∆BDC C F C B A D A E 6. ∆ACE ≅ ∆DBE ______________ B D 7. ∆ADC ≅ ∆BDC B C ______________ C ______________ E D A A 8. ∆ABC ≅ ∆CDA ______________ C 9. ∆ABE ≅ ∆CDE B B D ______________ D C E D A A 10. ∆CAE ≅ ∆DBE ______________ B C B 11. ∆MAD ≅ ∆MBC ______________ D C D E A A M B 12. ∆DCA ≅ ∆DCB ______________ 13. ∆ACB ≅ ∆ADB C ______________ C B A A D D B 14. ∆RTQ ≅ ∆STP ______________ 15. ∆DBA ≅ ∆BDC ______________ D R C Q T P S 16. ∆AEB ≅ ∆DEC A ______________ B 17. ∆CDE ≅ ∆ABF ______________ A D C F E C E B A B D 18. ∆DEA ≅ ∆BEC A ______________ 19. ∆HIJ ≅ ∆QOP ______________ J B E H I Q P O D C 20. ∆RTS ≅ ∆CAB T ______________ 21. ∆ABC ≅ ∆ADC ______________ B S C A R A C B D 7. ∆BAP ≅ ∆BCP ______________ 8. ∆SAT ≅ ∆SAR ______________ R A S A B D P T C Name ______________________________________________ Period _______________ Triangle Congruence and Logic Worksheet I. For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent. 1. D 2. C A 3. B B A C E E D D A C B a. ______________ a. ______________ a. ______________ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ c. ______________ c. ______________ c. ______________ 5. 6. 4. M L I O I S W E S H E L V a. ______________ a. ______________ a. ______________ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ c. ______________ c. ______________ c. ______________ 8. 9. 7. L A E U H P A T W R G E T M a. ______________ a. ______________ a. ______________ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ b. ∆_____ ≅ ∆ _____ c. ______________ c. ______________ c. ______________ II. Using the given postulate, tell which parts of the pair of triangles should be shown congruent. 10. SAS 11. ASA 12. SSS C A E D B F F B A B A E D C C D _______ ≅ ________ 13. AAS ________ ≅ ________ _______ ≅ _______ 14. HL 15. ASA P P D S C T R A Q _______ ≅ ________ R B Q S ________ ≅ ________ _______ ≅ _______ III. Multiple Choice 16. Which set of coordinates represents the vertices of a triangle congruent to ∆RST? (Hint: Find the lengths of the sides of ∆RST) S T A. (3, 4) (3, 0) (0, 0) B. (3, 3) (0, 4) (0, 0) C. (3, 1) (3, 3) (4, 6) D. (3, 0) (4, 4) (0, 6) y 6 4 R 2 x 2 4 6 17. Given ∆ABC and ∆DEF. Which of the following pairs of corresponding parts would correctly prove the triangles congruent by ASA? A. ∠B ≅ ∠E , ∠A ≅ ∠D, AB ≅ DE B. ∠C ≅ ∠F , ∠A ≅ ∠D, AB ≅ DE C. ∠B ≅ ∠E , ∠C ≅ ∠F , AB ≅ DE D. ∠B ≅ ∠E , ∠A ≅ ∠D, AC ≅ DF For 18 – 19: Fill in the blank with the correct statement or reason to complete the proofs. 18. GIVEN: RZ bisects TS ; ∠3 ≅ ∠4 PROVE: ∆RZS ≅ ∆RZT 4 Z 3 2 1 R T S STATEMENTS REASONS 1. RZ bisects TS 2. 3. Definition of a segment bisector Given 4. RZ ≅ RZ 5. ∆RZS ≅ ∆RZT A. Reflexive Property B. Given D. TZ ≅ ZS E. SAS C. ∠3 ≅ ∠4 S P 19. GIVEN: ∠Q ≅ ∠S; R is the midpoint of QS . PROVE: ∆PRQ ≅ ∆TRS R T Q STATEMENTS 1. ∠Q ≅ ∠S 2. REASONS Given 3. QR ≅ RS 4. 5. ∆PRQ ≅ ∆TRS A. ∠PRQ ≅ ∠SRT D. Given 20. Vertical Angle Theorem B. Definition of midpoint C. ASA E. R is the midpoint of QS 21. Given: E is the midpoint of AB, C ≅ D Which of the following statements must be true? A A ≅ D B AE ≅ ED C CE ≅ ED D CD ≅ BA 22. In the figure below, AC ≅ DF and C ≅ F Which additional information would be enough to prove ∆ABC ≅ ∆DEF? A AB ≅ DE B AB ≅ BC C BC ≅ EF D BC ≅ DE 23. 24. 24. Draw a counterexample for the following statement. If the 3 angles in one triangle are congruent to the corresponding angles in another triangle, then the 2 triangles are congruent. CPCTC Notes I. CPCTC stands for ___________________________________________________________________________. This means that once you have proven the 2 triangles _______________________, you know that all the _________________________ parts are also ____________________. Examples: 1) Find JK 2) 3) Additional Examples from worksheet: # 3, 5, and 16 CPCTC Worksheet I. Solve for the variable. 1. CAT ≅ DOG . Find h. 2. IEF ≅ HGF . Find a. A E F G O 15 h 38° a° C I DD H T G 3. PQR ≅MNR . Find x. 4. ABC ≅ ADC. Find y. A Q (3y)° x° R 21° M P 35 D o B C N II. Set up an equation and then solve for the variable. 5. CAT ≅ DOG . Find x. 6. IEF ≅ HGF . Find a. A E F G O (8x-6) (3x+9) (5a) o (2a+3) o C I DD H T G 7. ABD ≅CDB. Find x. 8. ABD ≅CDB. Find y. A (2x+17) (4x-35) D A B 7y B o o C D 3y + 20 C III. For which value(s) of x are the triangles congruent? 9. x = _______________ 10. x = _______________ D D 5x - 8 F E A 3x + 2 5x° 92° E C A B 11. x = _______________ A B m ∠3 = 3x m ∠4 = 7x - 10 3 E 7x - 4 4x + 8 2 4 C 13. x = _______________ 14. x = _______________ C D 19 B D C 9x - 8 A B m ∠ CDB = (15x + 3)° 15. x = _______________ C W (2x + 4)° A m ∠ ABD = (10x + 18)° 16. x = _______________ D 1 B R C D A C 12. x = _______________ A 1 B 2 Z x2 + 2x x2 + 24 (4x – 6)° B R S T IV. Proofs 17. GIVEN: N is the midpoint of AB AX ≅ NY NX ≅ BY PROVE: ∠X ≅ ∠Y X Y A B N REASONS STATEMENTS 1. N is the midpoint of AB 2. 3. AX ≅ NY 4. 5. AXN ≅ NYB 6. Definition of a midpoint Given CPCTC T 18. GIVEN: RT ≅ RV TS ≅ VS PROVE: ∠RST ≅ ∠RSV R S V REASONS STATEMENTS 1. 2. 3. 4. 5. ∠RST ≅ ∠RSV Given Reflexive SSS E 19. GIVEN: VB bisects ∠EVO BV bisects ∠EBO PROVE: ∠E ≅ ∠O B 3 4 1 2 O REASONS STATEMENTS 1. VB bisects ∠EVO 2. 3. Definition of Angle Bisector Given 4. ∠1 ≅ ∠2 5. BV ≅ BV 6. 7. ∠E ≅ ∠O ASA V
© Copyright 2025 Paperzz