1. Section 13.5 Expanding Binomials Example 1.1. Expand each binomial... (1) (a + b)2 = (2) (a + b)3 = (3) (a + b)4 = 2. Pascal’s Triangle n=0 n=1 n=2 n=3 n=4 n=5 1 1 1 1 1 1 2 1 3 4 1 Example 2.1. Find (2x − 3)3 . 1 Section 13.5 Expanding Binomials 2 3. n Choose j n Definition 3.1. The Binary Coefficient or “n choose j” = =n Cj = C(n, j) = j 12 Example 3.1. Evaluate 10 12 Example 3.2. Evaluate 2 Example 3.3. Evaluate (1) (2) (3) (4) n 0 n n n 1 n n−1 Section 13.5 Expanding Binomials 4. The Binomial Theorem Theorem 4.1. (a + b)n n n 0 n n−1 1 n n−2 2 n n 0 n 1 n−1 = a b + a b + a b + ··· + ab + ab 0 1 2 n−1 n = n X n j=0 j an−j bj Theorem 4.2. The form of each term in the expansion of (a + b)n is Example 4.1. Find (2x − 3)5 . 3 Section 13.5 Expanding Binomials 4 Example 4.2. Find the coefficient of x5 in the expansion of (4 − x)12 Example 4.3. Find the coefficient of x6 in the expansion of (4x2 + y)12 Example 4.4. Find the term that does not contain any y (or contains y 0 ) in the expansion of (xy + y −2 )12 Example 4.5. Find the fifth term in the expansion of (3a2 − decreasing order of powers of the first term. √ b)9 if arranged in
© Copyright 2025 Paperzz