PHYS 4110 – Dynamics of Space Vehicles Chapter 7: Orbital Maneuvers Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736 2100 ext. 33854 Email: [email protected] Homepage: http://www.yorku.ca/jjshan Impulsive Maneuvers n n n Impulsive maneuvers are those in which brief firings of onboard rocket motors change the magnitude and direction of the velocity vector instantaneously. The position of the spacecraft is considered to be fixed during the maneuvers. This is true for highthrust rockets with burn times short compared with the coasting of the spacecraft. Prof. Jinjun Shan Orbital Maneuvers - 2 Hohmann Transfer - Definition n n The Hohmann transfer is an elliptical orbit tangent to both circles at its apse line. The periapse and apoapse of the transfer ellipse are the radii of the inner and outer circles. The Hohmann transfer is the most energy efficient twoimpulse maneuver for transferring between two coplanar circular orbits sharing a common focus. [Conditional] Prof. Jinjun Shan Orbital Maneuvers - 3 Hohmann Transfer - 1 Example 2 in “Two-Body Problem”: Orbits 1 and 2 are two circular orbits with altitudes of 300 km and 35,786 km, respectively. An elliptical orbit is tangent to both circles at its apse line. Determine the velocities of spacecraft at point A and B on both elliptical and circular orbits. Prof. Jinjun Shan Orbital Maneuvers - 4 Hohmann Transfer - 2 v1 = µ rp vp = µ 2ra rp (ra + rp ) va = µ 2rp ra (ra + rp ) v2 = µ ra Δv = Δv A + Δv B = (v p − v1 ) + (v2 − va ) µ ε1 = − 2rp µ ε2 = − 2ra µ µ ε3 = − = − 2a ra + rp ra > rp ε1 < ε 3 < ε 2 Prof. Jinjun Shan = µ 2ra µ µ µ 2rp − + − rp (ra + rp ) rp ra ra (ra + rp ) ⎞ 2rp ⎞ µ ⎛⎜ 2ra µ ⎛⎜ ⎟ ⎟ = −1 + 1− rp ⎜⎝ (ra + rp ) ⎟⎠ ra ⎜⎝ (ra + rp ) ⎟⎠ µ ⎡ 2ra / rp ⎛ rp ⎞ rp ⎤ ⎜⎜1 − ⎟⎟ + = − 1⎥ ⎢ rp ⎢⎣ (1 + ra / rp ) ⎝ ra ⎠ ra ⎥⎦ Orbital Maneuvers - 5 Hohmann Transfer - 3 . rp µ + 2ra /rp % rp ( Δv = ⋅−10 '1 − * + rp -, (1+ ra /rp ) & ra ) ra 0/ 2ra /rp % rp ( rp Δv Δv =˙ = −1 '1 − * + v1 (1+ ra /rp ) & ra ) ra ra r= rp 2r % 1 ( 1 Δv = −1 '1 − * + (1+ r ) & r ) r 3 dΔv = 3 2r + 2 − (1+ r ) 2 dr € Prof. Jinjun Shan Orbital Maneuvers - 6 Hohmann Transfer - Bi-Elliptical 1 n n The bi-elliptic transfer consists of two half elliptic orbits. From the initial orbit, a delta-v is applied boosting the spacecraft into the first transfer orbit with an apoapsis at some point B away from the central body. At this point, a second delta-v is applied sending the spacecraft into the second elliptical orbit with periapsis at the radius of the final desired orbit where a third delta-v is performed injecting the spacecraft into the desired orbit. Bi-elliptic transfer may, in certain situations, require less delta-v than a standard Hohmann transfer. Prof. Jinjun Shan Orbital Maneuvers - 7 Hohmann Transfer - Bi-Elliptical 2 rC α= rA rB β= rA Δv Hohmann µ & 1 2(1 − α ) ) = ⋅( − −1+ rA ' α α (1+ α ) * Δv bi-elliptical * µ ' 2(α + β) 1+ α 2 = ⋅) − − ⋅ (1 − β) , rA ( αβ β(1+ β) α + Δv Hohmann − Δv bi-elliptical = δv Prof. Jinjun Shan #> 0 % ⇒ $= 0 % &< 0 Orbital Maneuvers - 8 Hohmann Transfer - Bi-Elliptical 3 Prof. Jinjun Shan Orbital Maneuvers - 9 Hohmann Transfer - Example 1 n Example 6.3 in textbook: Find the total delta-v requirement for a bielliptical Hohmann transfer from a geocentric circular orbit of 7000 km radius to one of 105 000 km radius. Let the apogee of the first ellipse be 210,000 km. Compare the delta-v schedule and the total flight time with that for an ordinary single Hohmann transfer ellipse. Prof. Jinjun Shan Orbital Maneuvers - 10 Hohmann Transfer - Coaxial Elliptical Orbits 1 n Transfer between coaxial elliptical orbits Δv)3 = Δv A + Δv B ⎛ µ 2rB µ 2rAʹ′ ⎞ ⎟ + = ⎜⎜ − rA rA + rAʹ′ ⎟⎠ ⎝ rA rA + rB ⎛ µ 2rBʹ′ µ 2rA ⎞⎟ ⎜ ⎜ r r + r − r r + r ⎟ B A B ⎠ ⎝ B B Bʹ′ Δv)3ʹ′ = Δv Aʹ′ + Δv Bʹ′ ⎛ µ 2rBʹ′ = ⎜⎜ − ⎝ rAʹ′ rAʹ′ + rBʹ′ ⎛ µ 2rB ⎜ ⎜ r r + r − ⎝ Bʹ′ B Bʹ′ Prof. Jinjun Shan µ 2rA ⎞⎟ + ⎟ rAʹ′ rA + rAʹ′ ⎠ µ 2rAʹ′ ⎞⎟ rB rAʹ′ + rBʹ′ ⎟⎠ Orbital Maneuvers - 11 Hohmann Transfer - Coaxial Elliptical Orbits 2 Prof. Jinjun Shan Orbital Maneuvers - 12 Hohmann Transfer - Example 2 n Example 6.1 in textbook: A spacecraft is in a 480 km by 800 km earth orbit (orbit 1). Determine the most efficient transfer from orbit 1 to a circular orbit of altitude 16 000 km (orbit 3), and the required delta-v. Prof. Jinjun Shan Orbital Maneuvers - 13 Phasing Maneuvers n n A phasing maneuver is a two-impulse Hohmann transfer from and back to the same orbit. Phasing maneuvers are used to change the position of a S/C in its orbit. Prof. Jinjun Shan Orbital Maneuvers - 14 Phasing Maneuvers - Example 3 n Example 6.4 in textbook: S/C at A and B are in the same orbit 1. At the instant shown, the chaser vehicle at A executes a phasing maneuver so as to catch the target S/C back at B after just one revolution of the chaser’s phasing orbit 2. What is the required total delta-v. Prof. Jinjun Shan Orbital Maneuvers - 15 Phasing Maneuvers - Example 4 n It is desired to shift the longitude of a GEO satellite from 99.1°W to 111.1°W in three revolutions of its phasing orbit. Calculate the delta-v requirement. Prof. Jinjun Shan Orbital Maneuvers - 16 Non-Hohmann Transfers with A Common Apse Line - 1 n n Transfer between two coaxial elliptical orbits in which the transfer trajectory shares the apse line but is not necessarily tangent to either the initial or target orbit. The problem is to determine if there exists such a trajectory joining points A and B. h32 1 rA = µ 1+ e3 cosθ A h32 1 rB = µ 1+ e3 cosθ B rB − rA e3 = rA cosθ A − rB cosθ B h3 = µrA rB Prof. Jinjun Shan cos θ A − cos θ B rA cos θ A − rB cos θ B Orbital Maneuvers - 17 Non-Hohmann Transfers with A Common Apse Line - 2 rA = rB = e3 = h32 1 µ 1 + e3 cosθ A h32 1 µ 1 + e3 cosθ B rB − rA rA cosθ A − rB cosθ B h3 = µrArB cosθ A − cosθ B rA cosθ A − rB cosθ B Δv = v12 + v22 − 2v1 v2 cos Δγ tan φ = Δvr Δv ⊥ Δε ≈ v1Δv cos Δγ Prof. Jinjun Shan Orbital Maneuvers - 18 Apse Line Rotation n n n Transfers between two intersecting orbits which have a common focus, but their apse line are not collinear. A Hohmann transfer is impossible. The opportunity for transfer from one orbit to the other by a single impulsive maneuver occurs where they intersect. Prof. Jinjun Shan Orbital Maneuvers - 19 Apse Line Rotation - Case 1 n The apse line rotation is given as well as the orbital parameters e and h of both orbits. h12 1 rI 1 = µ 1 + e1 cosθ1 h22 1 rI 2 = µ 1 + e2 cosθ 2 e1h22 cosθ1 − e2h12 cosθ 2 = h12 − h22 η = θ1 − θ 2 a = e1h22 − e2 h12 cosη b = −e2 h12 sin η c = h12 − h22 ϕ = tan −1 b a ⎛ c ⎞ θ1 = ϕ ± cos ⎜ cosϕ ⎟ ⎝ a ⎠ −1 Prof. Jinjun Shan Orbital Maneuvers - 20 Apse Line Rotation - Example 5 Prof. Jinjun Shan Orbital Maneuvers - 21 Apse Line Rotation - Case 2 n Given the true anomaly of the point of maneuver on orbit 1 and delta-V. h12 1 rI1 = µ 1 + e1 cos θ1 rI 2 h22 1 = µ 1 + e2 cos θ 2 1 ( h1 + rΔv⊥)( µe1 sin θ1 + h1Δv r ) sin θ 2 = e2 µh1 2 1 ( h1 + rΔv⊥) e1 cosθ1 + (2h1 + rΔv⊥) rΔv⊥ cosθ 2 = e2 h12 h1 + rΔv⊥)( µe1 sin θ1 + h1Δv r ) ( h1 tan θ 2 = µ ( h1 + rΔv⊥) 2 e1 cos θ1 + (2h1 + rΔv⊥) rΔv⊥ Prof. Jinjun Shan Orbital Maneuvers - 22 Apse Line Rotation - Example 6 Prof. Jinjun Shan Orbital Maneuvers - 23 Inclination and Launch Site n Relationship between inclination and latitude of launch site and launch direction cosi = cosφ sin A where i - inclination; φ - latitude of launch site; A - launch azimuth, or the flight direction at insertion, measured clockwise from north on the local meridian. Prof. Jinjun Shan Orbital Maneuvers - 24 Inclination and Launch Site - Example 7 n Determine the required launch azimuth A for sun-synchronous satellite of 98.43 ̊ inclination. If it is launched from Kennedy Space Flight Center, which has a latitude of 28.6 ̊ N. Prof. Jinjun Shan Orbital Maneuvers - 25 Plane Change Maneuvers - 1 ! ! v1 = vr1uˆ r1 + v⊥1uˆ ⊥1 v2 = vr 2uˆ r 2 + v⊥2uˆ ⊥2 ! ! ! Δv = v2 − v1 = (vr 2 − vr1 )uˆ r + v⊥2uˆ ⊥2 − v⊥1uˆ ⊥1 Prof. Jinjun Shan Orbital Maneuvers - 26 Plane Change Maneuvers - 2 ! ! ! Δv = v2 − v1 = (vr 2 − vr1 )uˆ r + v⊥2uˆ ⊥2 − v⊥1uˆ ⊥1 Δv = (vr 2 − vr1 )2 + v⊥21 + v⊥2 2 − 2v⊥1v⊥2 cos δ Δv = v12 + v 22 − 2v1v 2 [cos Δγ − cosγ 2 cos γ1 (1 − cosδ )] Δv = v12 + v22 − 2v1v2 cos Δγ € Δv = v12 + v22 − 2v1v2 cos δ 2 ΔvI = (v1 − v2 ) + 4v1v2 sin Δvδ = 2v sin Prof. Jinjun Shan 2 δ 2 δ 2 Orbital Maneuvers - 27 Plane Change Maneuvers - 4 2 ΔvI = (v1 − v2 ) + 4v1v2 sin ΔvII = 2v1 sin δ 2 + v2 − v1 ΔvIII = v2 − v1 + 2v2 sin Prof. Jinjun Shan 2 δ 2 > ΔvI δ 2 > ΔvI Orbital Maneuvers - 28 Plane Change Maneuvers - Example 8 n Example 6.11 in textbook: Find the delta-v required to transfer a circular, 300 km altitude LEO of inclination of 28 deg to a GEO. Compare that delta-v requirement with the one in which the plane change is done in the LEO. Prof. Jinjun Shan Orbital Maneuvers - 29 Plane Change Maneuvers - Example 9 n Example 6.13 in textbook: A satellite is in a 500 km by 10 000 km altitude geocentric orbit which intersects the equatorial plane at a true anomaly of 120 degrees. If the inclination to the equatorial plane is 15 degrees, what is the minimum velocity increment required to make this an equatorial orbit? Prof. Jinjun Shan Orbital Maneuvers - 30
© Copyright 2026 Paperzz