10/5/12 9:31 PM 2.#Deductive#Arguments ! A.#The#Concept#of#Deduction !!!!!!!!!!!!The!first!type!of!argument!that!we!are!going!to!learn!about!is!deduction.!As!we!saw!in!the!previous chapter,!deductive#arguments!attempt!to!support!their!conclusions!with!certainty.!What!is!certainty? Certainty!is!the!highest!level!of!knowledge,!the!complete!lack!of!doubt:!If!a!deductive!argument!is successful,!there!is!no!doubt!that!its!conclusion!is!true.!Deduction!is!the!gold!standard!for!arguments:!In contrast!to!induction,!it!is!able!to!provide!the!maximum!amount!of!support!that!a!conclusion!can!receive.!If inductive!arguments!are!inherently!inferior,!why!we!bother!with!them?!Why!don’t!we!limit!ourselves!to deductive!arguments?!It!turns!out!that!in!certain!types!of!cases!deductive!arguments!are!inapplicable!or!it!is much!more!difficult!to!find!premises!for!them. !!!!!!!!!!!!How!do!successful!deductive!arguments!support!their!conclusions!with!certainty?!They!accomplish this!by!providing!an!iron!clad!connection!between!the!premises!and!the!conclusion.!The!form!or!structure!of the!argument!is!so!solid!that,!given!what!is!stated!in!the!premises,!the!conclusion!is!true*by*definition. [1] !In a!sense,!the!conclusion!is!already!found!in!the!premises:!Either!its!components!parts!are!located!in!different premises!or!the!entire!conclusion!is!part!of!one!of!the!premises.!In!the!first!case,!the!argument!combines [2] together!these!parts,!and!in!the!second!it!extracts!the!conclusion!from!the!larger!statement!it!is!part!of. !!!!!!!!!!!!There!are!special!sets!of!terms!that!we!use!to!evaluate!deductive!and!inductive!arguments.!If!a deductive!argument!possesses!a!proper!logical!form!–!the!second!condition!of!a!successful!argument!–!then we!say!that!it!is!valid.!If!it!lacks!a!proper!logical!form,!we!say!that!it!is!invalid.!When!a!deductive!argument!is valid,!it!is!impossible!for!its!premises!to!be!true!and!its!conclusion!to!be!false.!If!a!deductive!argument!is successful,!supporting!its!conclusion!with!certainty,!we!say!that!it!is!sound.!A!deductive!argument!is!sound when!all!of!its!premises!are!true!and!it!is!valid,!in!other!words,!when!it!satisfies!both!of!the!conditions!for!a successful!argument.!If!one!or!more!of!these!conditions!is!missing!in!a!deductive!argument,!i.e.,!if!it!is invalid!or!one!or!more!of!its!premises!is!doubtful,!then!it!is!unsound.!As!we’ll!see!in!the!next!chapter,!we use!a!different!set!of!terms!to!evaluate!inductive!arguments.!Students!often!mix!up!the!terms!we!use!to http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 1 of 13 10/5/12 9:31 PM evaluate!statements!–!truth!and!falsity!–!with!the!terms!we!use!to!evaluate!arguments.!Premises!and conclusions!and!other!statements!are!true!or!false,!but!are!never!valid!or!sound.!Conversely,!deductive arguments!are!valid!or!invalid,!sound!or!unsound,!but!are!never!true!or!false.!Be!careful!not!to!misapply these!terms. ! B.#Categorical#Syllogisms !!!!!!!!!!!!There!are!two!types!of!deductive!arguments,!categorical!syllogisms!and!propositional!arguments.!As the!names!indicate,!the!primary!difference!between!them!is!the!basic!unit!each!of!them!revolves!around. Categorical!syllogisms!reason!on!the!basis!of!the!relationship!between!categories.!Categorical!syllogisms have!two!premises!and!a!conclusion,!and!each!of!these!statements!contains!two!categories!–!its!subject!and its!predicate.!For!example,!in!the!categorical!statement!“All!dogs!are!mammals”,!the!subject!is!‘dogs’!and the!predicate!is!‘mammals’.!There!are!four!types!of!categorical!statements: ! ! Universal#Affirmative####################################Particular#Affirmative [3] All!S!are!P. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Some!S!are!P. Example:!All!dogs!are!mammals!!!!!!!!!!!!!!!!!!!!Example:!Some!dishes!are!cold. ! Universal#Negative########################################Particular#Negative No!S!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Some!S!are!not!P. Example:!No!snakes!are!mammals.!!!!!!!!!!!!!!!Example:!Some!dishes!are!not!cold. We’ll!only!be!working!with!the!first!two!types,!universal!affirmative!and!particular!affirmative statements. [4] !The!two!best!known!categorical!syllogisms!are!called!Barbara!and!Darii: ! Barbara###############################################Example: 1.!All!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!mammals!are!living!beings. 2.!All!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!All!dogs!are!mammals. 3.!Therefore,!all!S!are!P.!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!all!dogs!are!living!beings. ! Darii!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Example: 1.!All!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!pine!trees!are!evergreens. 2.!Some!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!Some!trees!are!pine!trees. 3.!Therefore,!some!S!are!P.!!!!!!!!!!!!!!!!3.!Therefore,!some!trees!are!evergreen. ! http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 2 of 13 10/5/12 9:31 PM As!you!can!see,!there!are!three!different!categories!in!every!categorical!syllogism,!a!subject!–!the!first!term in!the!conclusion!which!is!also!found!in!the!second!premise!–!a!predicate!–!the!second!term!in!the conclusion!which!is!also!found!in!the!first!premise!–!and!a!middle*term!–!the!term!found!in!both!of!the premises.!It!turns!out!that!there!are!256!possible!varieties!of!categorical!syllogisms.!However,!only!15!of them!are!valid,!including!Barbara!and!Darii.!Fortunately!for!students,!the!other!13!varieties!are!merely variations!of!Barbara!and!Darii,!so!there’s!no!need!for!you!to!memorize!them. [5] !!!!!!!!!!!!You!might!wonder!why!Barbara!and!Darii!are!valid!arguments,!i.e.,!why!the!conclusion!is!true!by definition!given!what!is!stated!in!the!premises!–!the!strongest!possible!connection!between!the!premises and!the!conclusion.!There!are!a!variety!of!methods!for!demonstrating!validity!which!you!can!learn!about!in a!dedicated!logic!class.!But!there!is!an!easier!way!to!explain!this.!Aristotle!(384]322!BCE),!the!famous!Greek philosopher!who!invented!logic,!defined!deduction!as!an!inference!from!general!to!particular,!and!induction as!an!inference!from!particular!to!general.!These!definitions!are!outdated!because!we!have!since!discovered forms!of!deduction!and!induction,!like!propositional!arguments,!that!don’t!follow!this!pattern.!But!it!does help!clarify!the!nature!of!categorical!syllogisms.!A!valid!categorical!syllogism!establishes!a!connection between!the!subject!of!the!conclusion!and!the!predicate!of!the!conclusion!by!means!of!a!middle!term.!In Barbara,!the!predicate!is!the!largest!category,!the!subject!is!the!smallest!category,!and!the!middle!term!is medium!sized.!Barbara!infers!that!the!subject!is!part!of!the!predicate!from!the!fact!that!the!middle!term!is part!of!the!predicate!and!the!subject!is!part!of!the!middle!term.!In!the!example!above,!‘dogs’!are!part!of!the larger!category!‘mammals’,!which!are!part!of!the!even!larger!category!‘living!beings’.!The!middle!term connects!together!the!subject!and!the!predicate!so!solidly!that!we!know!with!certainty!that!the!subject!is part!of!the!predicate. [6] !!!!!!!!!!!!The!invention!of!categorical!syllogisms!allowed!the!ancient!Greeks!to!find!order!in!the!world!by clarifying!the!categorical!subdivisions!that!different!things!fall!into.!It’s!no!accident!that!Aristotle!was!the founder!of!biology!and!many!other!sciences!–!he!invented!the!notion!of!biological!classification!into!species, genus,!family,!order,!etc.!Another!example!of!this!system!of!organization!is!found!in!libraries,!where!books are!grouped!according!to!discipline,!subdiscipline,!etc.!If!books!were!randomly!thrown!together,!it!would!be http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 3 of 13 10/5/12 9:31 PM very!difficult!to!find!anything!and!the!array!of!topics!would!seem!mind]boggling.!However,!when!we organize!books!according!to!their!similarities!and!differences,!we!are!able!to!identify!patterns!and understand!the!relations!between!the!different!topics!that!are!covered,!and!it!is!much!easier!to!locate!a particular!book. We!use!the!Barbara!argument!with!great!frequency,!to!apply!general!rules!or!concepts!to!particular cases.!This!argument!is!used!often!in!virtually!all!academic!disciplines!and!everyday!activities,!e.g.,!in!the sciences,!mathematics,!to!classify!artists!or!artworks,!and!to!formulate!moral!arguments.!However,!it!is important!to!make!sure!that!you’re!using!the!right!form!since!there!are!arguments!that!look!very!similar!to Barbara!and!Darii!that!are!invalid: ! Barbara###################################Invalid#Arguments 1.!All!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!M!are!P. 2.!All!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!!2.!All!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!2.!All!M#are!S. 3.!Therefore,!all!S!are!P.!!!!!!!!!3.!Therefore,!all!S!are!P.!!!!!!!!!3.!Therefore,!all!S!are!P. ! 1.!All!P!are!M. 2.!All!M!are!S. 3.!Therefore,!all!S!are!P. ! Darii########################################Invalid#Arguments 1.!All!M#are!P.!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!P!are!M. 2.!Some!S!are!M.!!!!!!!!!!!!!!!!!!!!2.!Some!S!are!M.!!!!!!!!!!!!!!!!!!!!2.!All!M!are!S. 3.!Therefore,!some!S!are!P.!!!!3.!Therefore,!some!S!are!P.!!!!3.!Therefore,!some!S!are!P. ! [7] Make!sure!that!you!can!tell!the!difference!–!it’s!easy!to!mix!them!up.!Other!common!mistakes!that!are made!are!equivocation!–!using!different!categories!when!the!same!categories!should!be!used!–!and!leaving out!the!copula!–!‘is’,!‘are’!or!other!cognates!of!the!verb!‘to!be’.!Equivocation!is!sometimes!due!to!ambiguity –!using!different!senses!of!the!same!term!of!phrase.!For!example: ! 1.!All!forms!of!light!are!entities!that!make!other!things!visible. 2.!All!feathers!are!light. 3.!Therefore,!all!feathers!are!entities!that!make!other!things!visible. ! The!word!‘light’!can!refer!to!something!that!makes!things!visible!or!the!property!of!having!little!weight.!The http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 4 of 13 10/5/12 9:31 PM middle!term!of!the!argument!uses!different!senses!of!the!word!‘light’,!so!the!argument!fails!to!connect!the subject!and!predicate!and!is!therefore!invalid.!Another!type!of!equivocation!occurs!when!a!category!is somewhat!different!in!one!instance!than!the!other. ! 1.!All!undeserved!harm!is!bad. 2.!All!acts!of!violence!against!innocent!people!are!harmful!and!undeserved. 3.!Therefore,!all!acts!of!violence!are!bad. ! In!this!argument,!the!subject!category!is!broader!in!the!conclusion!(‘acts!of!violence’)!and!narrower!in!the second!premise!(‘acts!of!violence!against!innocent!people’).!Hence,!the!argument!is!invalid.!The!version!in the!conclusion!includes!acts!of!violence!against!guilty!people,!which!would!throw!the!truth!of!the!second premise!into!doubt.!Finally,!students!often!leave!out!the!copula,!which!makes!it!hard!to!tell!exactly!what!the categories!mean. ! 1.!All!acts!that!decrease!energy!consumption!are!helpful!for!the!environment. 2.!All!use!of!public!transportation!can!decrease!energy!consumption. 3.!Therefore,!all!use!of!public!transportation!is!helpful!for!the!environment. ! The!second!premise!uses!the!word!‘can’!instead!of!‘is’,!which!changes!the!meaning!of!the!second!category from!‘acts!that!decreases!energy!consumption’!to!‘acts!that!might!decrease!energy!consumption’!–!an equivocation.!If!a!premise!or!conclusion!leaves!out!the!copula,!that!doesn’t!necessarily!mean!that!there!is!a hidden!equivocation!in!the!argument.!But!it!is!much!easier!to!detect!equivocations!when!you!include!the copula,!which!is!why!you!should!always!use!copulas!when!constructing!categorical!syllogisms. ! C.#Propositional#Arguments !!!!!!!!!!!!The!second!type!of!deductive!reasoning!–!known!as!propositional!logic!–!was!discovered!in!the!19th century. [8] !As!the!name!indicates,!the!basic!unit!of!this!type!of!argument!is!the!proposition,!not!the category.!‘Proposition’!is!a!synonym!for!statement!or!claim.!The!sentence!“All!dogs!are!mammals”!contains two!categories!(‘dogs’!and!‘mammals’),!but!is!merely!one!statement.!However,!some!sentences!contain more!than!one!statement,!for!example!“All!dogs!are!mammals,!and!all!cats!are!mammals!too”. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 5 of 13 10/5/12 9:31 PM Propositional!logic!studies!the!way!that!we!modify!or!combine!simple*statements!in!order!to!make!complex statements,!and!how!to!determine!the!truth!and!falsity!of!complex!statements.!Complex!statements!are constructed!using!logical*operators,!and!we!will!learn!about!four!of!them:!negation,!conjunction, disjunction,!and!the!conditional.!The!first!is!expressed!using!words!like!‘no’,!‘not’,!and!‘neither’,!for example,!in!the!complex!statement!‘I’m!not!going!to!the!beach’.!Negation!reverses!the!truth!value!of!the statement!it!negates:!The!preceding!example!is!equivalent!to!saying!that!the!statement!‘I’m!going!to!the [9] beach’!is!false.!If!a!statement!is!true,!its!negation!is!false;!and!if!a!statement!is!false,!its!negation!is!true. Like!mathematical!negation,!a!double!negation!in!logic!cancels!itself!out:!‘It’s!not!the!case!that!I’m!not!going to!the!beach’!is!equivalent!to!‘I’m!going!to!the!beach’.!In!contrast!to!negation,!the!other!logical!operators are!connectives!–!they!join!together!two!statements.!Conjunction!is!expressed!using!words!such!as!‘and’, ‘but’,!or!‘however’,!for!example,!‘I’m!going!to!the!beach!and!I’ll!return!home!later!tonight’.!This!complex statement!asserts!that!both!conjuncts!–!the!two!statements!joined!together!–!are!true.!In!other!words,!a conjunction!is!only!true!when!both!of!its!conjuncts!are!true.!If!either!‘I’m!going!to!the!beach’!or!‘I’ll!return home!later!tonight’!are!false,!or!both!of!them!are!false,!then!the!entire!conjunction!is!false. !!!!!!!!!!!!The!next!logical!operator!is!called!disjunction,!and!it!is!expressed!using!the!word!‘or’,!for!example, ‘I’m!going!to!the!beach!or!I’ll!be!doing!my!homework’.!This!complex!statement!asserts!that!at*least*one!of the!disjuncts!–!the!two!statements!joined!together!–!is!true.!In!other!words,!a!disjunction!is!only!false!when both!disjuncts!are!false.!If!either!‘I’m!going!to!the!beach’!or!‘I’ll!be!doing!my!homework’!are!true,!or!both!of [10] them!are!true,!then!the!disjunction!as!a!whole!is!true. !The!final!logical!operator!we’ll!be!studying!is!the conditional.!It!is!expressed!using!‘if!…!then’!statements,!e.g.,!‘If!you!flip!the!light!switch,!then!the!lights!will go!out’.!Conditional!statements!are!more!complicated!than!conjunctions!and!disjunctions:!The!two statements!it!joins!together!have!different!functions,!and!hence!different!names.!The!first!one!–!the!one that!comes!between!‘if’!and!‘then’!–!is!known!as!the!antecedent!–!in!the!example!above,!‘You!flip!the!light switch’.!The!second!is!known!as!the!consequent,!and!follows!the!word!‘then’!–!‘the!lights!will!go!out’!in!the example.!It!is!important!not!to!mix!them!up:!Reversing!the!order!of!the!conjuncts!in!a!conjunction!or!the disjuncts!in!a!disjunction!doesn’t!make!any!difference,!but!switching!the!antecedent!and!consequent http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 6 of 13 10/5/12 9:31 PM changes!the!meaning!of!a!conditional!statement.!A!conditional!statement!asserts!that!if!the!antecedent!is true,!the!consequent!will!be!true!as!well.!In!other!words,!a!conditional!statement!is!only!false!if!the [11] antecedent!is!true!and!the!consequent!is!false.!Otherwise!it!is!true. ! !!!!!!!!!!! Name##############Synonyms#######Parts#######################################Rule Negation!!!!!!!!‘no’,!‘not’!!!!!!!!!Not!applicable!!!!!!!!!!!!!!!!!!!!!!!!!Reverses!the!truth!value!of!the!original statement. Conjunction!!!‘and,!‘but’!!!!!!!!Conjuncts!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Only!true!if!both!conjuncts!are!true. Disjunction!!!!!‘or’!!!!!!!!!!!!!!!!!!!Disjuncts!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Only!false!if!both!disjuncts!are!false. Conditional!!!!‘if!…!then!…’!!!!Antecedent,!consequent!!!!!!!!!Only!false!if!the!antecedent!is!true!and!the consequent!is!false. !!!!!!!!!!!!We!use!conditional!statements!to!express!the!relationship!between!causes!and!effects!(e.g.,!‘If!you flip!the!light!switch,!then!the!lights!will!go!out’),!the!relationship!between!categories!(e.g.,!‘If!it!is!a!dog,!then it!is!a!mammal’),!and!to!express!practical!rules!(e.g.,!‘If!you!graduated!from!SCSU!then!you!must!have satisfied!your!math!requirement’).!Propositional!logic!has!a!multitude!of!applications:!For!example,!it!plays an!essential!role!in!computers!and!other!electronic!devices.!The!logical!operators!–!negation,!conjunction, disjunction,!and!conditional,!are!the!basis!for!all!computer!languages!and!electronics.!If!propositional!logic hadn’t!been!discovered!by!philosophers!and!mathematicians!in!the!19th!century,!the!cell!phones, computers,!and!other!electronic!devices!that!we!take!for!granted!today!wouldn’t!exist.!Let’s!illustrate!this with!the!electronics!in!your!car:!There!is!a!buzzing!signal!when!the!driver’s!seat!belt!isn’t!buckled!(negation); the!windshield!wipers!only!work!then!the!key!is!in!the!ignition!and!a!switch!is!turned!(conjunction);!pushing either!of!two!pads!on!the!steering!wheel!makes!the!horn!honk!(disjunction);!and!pushing!on!the!brake!pedal turns!on!the!break!lights!(conditional). !!!!!!!!!!!!There!are!many!valid!propositional!arguments,!but!we!will!only!be!learning!four!of!them: ! Modus#Ponens#######################Example 1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!you!flip!the!light!switch,!then!the!lights!will!go!out. 2.!A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!You!flipped!the!light!switch. 3.!Therefore,!B.!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!the!lights!must!have!gone!out. ! Modus#Tollens!!!!!!!!!!!!!!!!!!!!!!!Example 1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!you!flip!the!light!switch,!then!the!lights!will!go!out. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 7 of 13 10/5/12 9:31 PM ! 2.!Not!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!The!lights!didn’t!go!out. 3.!Therefore,!not!A.!!!!!!!!!!!!!!!!3.!Therefore,!you!must!not!have!flipped!the!light!switch. ! Hypothetical#Syllogism#########Example 1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!you!graduated!from!SCSU,!then!you!must!have!taken!math. 2.!If!B!then!C.!!!!!!!!!!!!!!!!!!!!!!!!!!2.!If!you’ve!taken!math,!you!must!have!learned!about!binomials. 3.!Therefore,!if!A!then!C.!!!!!!!!3.!Therefore,!if!you!graduated!from!SCSU,!you!must!have!learned!about binomials. ! Disjunctive#Syllogism####################################Example 1.!A!or!B!!!!!!!!!!Or:!!!!!!!1.!A!or!B!!!!!!!!!!!!!!!!!!!!!!1.!She’s!going!to!the!beach!or!she’s!doing!her!homework. 2.!Not!A.!!!!!!!!!!!!!!!!!!!!!!2.!Not!B.!!!!!!!!!!!!!!!!!!!!!!2.!She!didn’t!go!to!the!beach. 3.!Therefore,!B.!!!!!!!!!!!3.!Therefore,!A.!!!!!!!!!!!3.!Therefore,!She!must!have!been!doing!her!homework. As!you!can!see,!the!letters!in!propositional!arguments!stand!for!statements!not!categories,!as!is!the!case!in categorical!syllogisms.!Also,!Modus!Ponens!and!Hypothetical!Syllogism!arguments!use!conditional statements,!Modus!Tollens!arguments!use!conditional!statements!and!negations,!and!Disjunctive!Syllogism arguments!use!disjunctions!and!negations. [12] !You!might!wonder!why!these!are!valid!arguments,!why!they establish!the!strongest!possible!connection!between!the!premises!and!the!conclusion.!Just!like!categorical syllogisms,!there!are!a!variety!of!methods!for!demonstrating!the!validity!of!propositional!arguments,!and you!can!learn!about!them!in!a!dedicated!logic!class.!But!there!is!a!relatively!straightforward!way!to!explain why!the!conclusion!is!true!by!definition!given!the!meaning!of!the!statements!in!the!premises:!As!we!saw above,!the!rule!for!conditional!statements!is!that!they!are!only!false!if!the!antecedent!is!true!and!the consequent!is!false.!Assuming!that!a!conditional!statement!is!true,!this!implies!two!things:!(1)!If!the antecedent!is!true,!the!consequent!must!be!true!as!well.!And!(2)!If!the!consequent!is!false,!the!antecedent must!be!false!as!well.!The!first!implication!is!the!basis!for!Modus!Ponens!and!the!second!is!the!basis!for Modus!Tollens.!As!with!categorical!syllogisms,!there!are!invalid!argument!forms!that!look!very!similar!– make!sure!that!you!can!tell!the!difference!between!them: ! Modus#Ponens###########Affirming#the#Consequent#(Invalid)#############Example 1.!If!A!then!B.!!!!!!!!!!!!!!1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!you!flip!the!light!switch,!the!light will!go!out. 2.!A.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!The!light!went!out. 3.!Therefore,!B.!!!!!!!!!!!3.!Therefore,!A.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!you!must!have!flipped the!light!switch. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 8 of 13 10/5/12 9:31 PM ! ! Modus#Tollens###########Denying#the#Antecedent#(Invalid)###############Example 1.!If!A!then!B.!!!!!!!!!!!!!!1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!you!flip!the!light!switch,!the!light will!go!out. 2.!Not!B.!!!!!!!!!!!!!!!!!!!!!!2.!Not!A.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!You!didn’t!flip!the!light!switch. 3.!Therefore,!not!A.!!!!3.!Therefore,!not!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!the!lights!must!not have!gone!out. The!reason!why!these!arguments!are!invalid!is!because!conditional!statements!don’t!have!any!implications when!the!consequent!is!true!(i.e.,!the!antecedent!could!be!either!true!or!false)!or!when!the!antecedent!is false!(i.e.,!the!consequent!could!be!either!true!or!false).!Consequently,!the!conclusions!of!these!arguments don’t!follow!with!certainty!from!the!premises.!We!can!illustrate!this!with!the!examples!above:!The!lights going!out!doesn’t!guarantee!that!the!light!switch!was!flipped,!because!the!conditional!statement!doesn’t rule!out!other!possible!causes!(e.g.,!the!bulbs!burning!out,!a!power!outage,!or!rats!chewing!through!the wires).!For!the!same!reason,!the!fact!that!you!didn’t!flip!the!light!switch!doesn’t!guarantee!that!the!lights didn’t!go!out. !!!!!!!!!!!!Hypothetical!Syllogism!is!valid!because!it!establishes!a!sequence!of!conditions,!connecting!the [13] antecedent!in!the!first!premise!to!the!consequent!in!the!second. !Think!of!a!chain!of!causes!–!one!thing leads!to!another,!which!leads!to!another: ! !!!!!!!!!!!!1.!If!you!flip!the!light!switch,!then!the!lights!will!go!out. !!!!!!!!!!!!2.!If!the!lights!go!out,!someone!will!trip!and!hurt!themselves. !!!!!!!!!!!!3.!Therefore,!if!you!flip!the!light!switch,!someone!will!trip!and!hurt!themselves. ! Keep!in!mind!that!there!are!invalid!propositional!arguments!that!look!very!similar!to!Hypothetical!Syllogism since!both!premises!and!the!conclusion!are!conditional!statements,!and!are!easily!confused!with!it: ! Hypothetical#Syllogism#########Invalid#Arguments 1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!B!then!A. 2.!If!B!then!C.!!!!!!!!!!!!!!!!!!!!!!!!!!2.!If!C!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!2.!If!B!then!C. 3.!Therefore,!if!A!then!C.!!!!!!!!3.!Therefore,!if!A!then!C.!!!!!!!!3.!Therefore,!if!A!then!C. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!B!then!A.!!!!!!!!!!!!!!!!!!!!!!!!!!1.!If!A!then!B. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!If!C!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!2.!If!D!then!C. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!if!A!then!C.!!!!!!!!3.!Therefore,!if!A!then!C. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 9 of 13 10/5/12 9:31 PM ! These!arguments!are!invalid!because!they!fail!to!establish!a!connection!between!condition!A!and!condition C.!Make!sure!you!are!able!to!distinguish!them!from!Hypothetical!Syllogism. !!!!!!!!!!!!What!about!Disjunctive!Syllogisms?!Why!are!they!valid?!Disjunctive!Syllogism!is!a!simple!version!of the*process*of*elimination,!which!states!that!there!are!a!certain!number!of!possibilities,!and!eliminates!all!of them!except!for!one,!proving!that!the!remaining!one!must!be!true.!We!often!use!this!line!of!reasoning!when troubleshooting!a!problem:!For!example,!your!car!won’t!start!and!it’s!either!because!the!battery!is!dead!or the!gas!tank!is!empty.!But!when!you!turn!the!key,!the!lights!go!on!and!the!engine!turns!over.!Since!the [14] battery!isn’t!dead,!the!only!possible!cause!remaining!is!the!gas!tank!being!empty. !As!with!the!other valid!arguments,!there!are!invalid!propositional!arguments!that!look!very!similar!to!Disjunctive!Syllogism and!are!easily!confused!with!it: ! ! Disjunctive#Syllogism########################Invalid#Arguments 1.!A!or!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!A!or!B.!!!!!!!!!!!!!!!!!!!!!1.!A!or!B. 2.!Not!A.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!A 3.!Therefore,!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!B.!!!!!!!!!!!3.!Therefore,!not!B. ! 1.!A!or!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!A!or!B.!!!!!!!!!!!!!!!!!!!!!1.!A!or!B. 2.!Not!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!B!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!B 3.!Therefore,!A.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!3.!Therefore,!A.!!!!!!!!!!!3.!Therefore,!not!A. As!with!Modus!Ponens!and!Modus!Tollens,!Disjunctive!Syllogism!follows!from!the!implication!of!one!of!its premises:!Assuming!that!a!disjunction!is!true,!if!one!of!its!disjuncts!is!negated!(i.e.,!is!false),!the!other!one must!be!true.!However,!if!one!of!its!disjuncts!is!true,!this!doesn’t!tell!us!anything!about!the!other!disjunct since!it!could!be!either!true!or!false.!Make!sure!that!you!can!distinguish!Disjunctive!Syllogism!from!these invalid!propositional!arguments. !!!!!!!!!!!!Finally,!be!aware!that!there!are!other!common!mistakes!students!make!when!working!with propositional!arguments.!Just!as!with!categorical!syllogisms,!equivocation!or!not!using!the!proper!forms!of complex!statements!will!make!an!argument!invalid.!If!a!statement!changes!meaning!in!different!places!in!an argument,!then!it!isn’t!really!the!same!statement,!and!argument!isn’t!following!the!proper!form.!Here’s!an example!of!an!equivocal!Hypothetical!Syllogism: http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 10 of 13 10/5/12 9:31 PM ########### ! 1.!If!the!police!raid!a!gambling!den,!then!they!are!undertaking!a!criminal!action. 2.!If!they!are!undertaking!a!criminal!action,!then!they!are!doing!something!illegal. 3.!Therefore,!if!the!police!raid!a!gambling!den,!then!they!are!doing!something!illegal. The!ambiguous!term!is!‘criminal!action’:!In!the!first!premise!it!means!‘an!action!undertaken!to!fight!crime and!enforce!the!law’,!and!in!the!second!it!means!‘an!act!that!violates!the!law’.!Also!be!careful!to!avoid phrasing!complex!statements!in!a!confusing!manner!since!this!can!make!it!difficult!to!determine!what logical!operator!was!intended.!Let’s!consider!a!few!examples: ! ! ‘You!flip!the!light!switch,!then!the!lights!go!out’ ‘The!lights!will!go!out!if!you!flip!the!light!switch.’ ‘I’m!going!to!the!beach!or!I’m!doing!homework!and!I’m!doing!the!dishes.’ The!first!statement!looks!like!a!conditional!(though!it!is!missing!the!‘If’),!but!in!fact!it!is!closer!to!a conjunction.!In!the!second!statement,!the!order!of!the!antecedent!and!the!conclusion!are!reversed,!so!what it!actually!means!is!‘If!you!flip!the!light!switch,!then!the!lights!will!go!out’.!In!the!third!statement,!it!isn’t clear!whether!the!disjunction!or!the!conjunction!takes!precedence.!In!other!words,!is!it!saying!‘I’m!going!to the!beach,!or!I’m!doing!homework!and!I’m!doing!the!dishes’!or!is!it!saying!‘I’m!going!to!the!beach!or!I’m doing!homework,!and#I’m!doing!the!dishes’?!The!meaning!is!different!in!each!case.!Make!sure!to!avoid these!types!of!errors,!to!avoid!equivocations!and!phrasing!that!will!confuse!your!readers. ! [1] !I’m!drawing!an!analogy!here!between!successful!deductive!arguments!and!analytic!truths.!A!statement!is!true!analytically!if!its subject!is!already!contained!in!its!predicate.!Consider!the!statement!“Two!is!a!number.”!The!definition!of!two!includes!the!concept!of number.!Hence!the!statement!is!true*by*definition.!What!about!statements!in!which!the!predicate!isn’t!contained!within!the definition!of!the!subject,!such!as!“My!book!is!blue”?!A!statement!like!this!is!synthetic!because!it!adds!something!new!to!the!subject. If!this!statement!is!true,!it’s!because!it!is!consistent!with!contingent!facts!–!it!happens!to!match!the!world,!though!the!world!is capable!of!changing!and!making!the!statement!false. [2] !The!argument!form!‘addition’!is!an!exception.!Here’s!an!example!of!this!type!of!argument:!“I’m!going!to!the!store.!Therefore,!I’m going!to!the!store!or!I’m!going!to!the!gym.”!This!argument!form!exploits!the!truth!functionality!of!disjunctions!(something!we!will learn!about!in!section!C!of!this!chapter)!–!the!fact!that!they!are!never!false!when!one!of!their!disjuncts!is!true.!It!seems!like!a!trivial exception!because!the!disjunct!added!is!logically!inert!in!the!sense!that!we!can’t!using!disjunctive!syllogism!to!break!it!off!as!an independent!statement!without!contradicting!the!premise!of!the!addition!argument. [3] !The!‘all’!can!be!left!out!of!universal!affirmative!statements!–!in!other!words,!“Dogs!are!mammals”!means!the!same!thing!as!“All dogs!are!mammals”. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 11 of 13 10/5/12 9:31 PM [4] !Using!the!rule!of!obversion,!universal!affirmative!statements!can!be!translated!into!universal!negative!statements!and!vice!versa (“All!S!are!P”!=!“No!S!are!non]P”),!and!particular!affirmative!statements!can!be!translated!back!and!forth!into!particular!negative statements!(“Some!S!are!P”!=!“Some!S!are!not!non]P”).!Another!translation!rule!is!conversion,!which!enables!us!to!change!“No!S!are P”!to!“No!P!are!S”,!and!“Some!S!are!P”!to!“Some!P!are!S”.!Conversion!doesn’t!apply!to!the!other!two!types!of!categorical!statements, “All!S!are!P”!and!“Some!S!are!not!P”. [5] !Using!obversion!and!conversion,!the!rules!mentioned!in!the!previous!footnote,!Barbara!can!be!translated!into!4!variants,!and Darii!into!9: ! Variants#of#Barbara Camestres!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Calemes#################################Celarent################################Cesare 1.!All!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!1.!All!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!1.!No!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!1.!No!P!are!M. 2.!No!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!2.!No!M!are!S.!!!!!!!!!!!!!!!!!!!!!!!2.!All!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!2.!All!S!are!M. 3.!Therefore,!no!S!are!P.!!!!3.!Therefore,!no!S!are!P.!!!!3.!Therefore,!no!S!are!P.!!!!3.!Therefore,!no!S!are!P. ! Variants#of#Darii Datisi######################################################Baroco####################################################Ferio 1.!All!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!No!M!are!P. 2.!Some!M!are!S.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!Some!S!are!not!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!Some!S!are!M. 3.!Therefore,!some!S!are!P.!!!!!!!!!!!!!!!3.!Therefore,!some!S!are!not!P.!!!!!!!!3.!Therefore,!some!S!are!not!P. ! Ferison###################################################Festino###################################################Fresison 1.!No!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!No!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!No!P!are!M. 2.!Some!M!are!S.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!Some!S!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!Some!M!are!S. 3.!Therefore,!some!S!are!not!P.!!!!!!!!3.!Therefore,!some!S!are!not!P.!!!!!!!!3.!Therefore,!some!S!are!not!P. ! Disamis##################################################Dimatis##################################################Bocardo 1.!Some!M!are!P.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!Some!P!are!M.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!Some!M!are!not!P. 2.!All!M!are!S.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!All!M!are!S.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!All!M!are!S. 3.!Therefore,!some!S!are!P.!!!!!!!!!!!!!!!3.!Therefore,!some!S!are!P.!!!!!!!!!!!!!!!3.!Therefore,!some!S!are!not!P. # For!a!challenge,!try!to!translate!Barbara!and!Darii!into!these!variations!using!the!rules!obversion!and!conversion. ! [6] !The!claim!that!categorical!syllogisms!move!from!general!to!particular!is!also!applicable!to!Darii,!though!to!a!lesser!extent:!The predicate!is!a!larger!category!than!the!middle!term.!Though!the!subject!can!be!larger!than!both!of!them!since!it!is!isn’t!completely encompassed!by!either!one.!This!is!illustrated!by!the!example!above:!‘Evergreens’!is!a!broader!category!than!‘pine!trees’,!but!‘trees’ is!broader!than!both!of!them. [7] !The!argument!that!was!left!out!(Datisi)!– 1.!All!M#are!P.!!!!!! 2.!Some!M!are!S. 3.!Therefore,!some!S!are!P. –!is!in!fact!valid.!Why?!According!to!the!rule!of!conversion,!‘Some!M!are!S’!is!equivalent!to!‘Some!S!are!M’.!In!other!words,!Datisi!is equivalent!to!Darii,!as!we!already!saw!in!footnote!5. ! [8] !‘Rediscovered’!would!be!more!accurate,!for!this!type!of!logic!was!first!discovered!by!the!ancient!Greek!stoics!in!the!3rd!century BCE. [9] !Logical!negation!is!similar!to!negations!in!mathematics,!but!there!is!no!neutral!truth!value!equivalent!to!zero:!True!and!false!are the!only!options!for!the!truth!value!of!statements. [10] !This!may!be!confusing!because!we!often!use!the!word!‘or’!in!an!exclusive!sense,!i.e.,!in!scenarios!in!which!it!is!only!possible!for one!of!the!disjuncts!to!be!true.!For!example,!‘The!coin!will!land!heads!or!it!will!land!tails’.!However,!in!logic,!we!use!disjunction!in!an inclusive!sense,!which!leaves!open!the!possibility!that!both!disjuncts!are!be!true. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 12 of 13 10/5/12 9:31 PM [11] !The!fact!that!a!conditional!is!true!whenever!the!antecedent!is!false!might!seem!strange:!Like!disjunctions,!the!way!we!use conditional!statements!in!ordinary!language!sometimes!differs!from!the!way!we!use!them!in!logic. [12] ! ! [13] !We!won’t!be!memorizing!any!arguments!with!conjunctions,!but!in!case!you!want!to!learn!some,!here!are!a!couple!of!examples: Conjunction##########################Example 1.!A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!It’s!Tuesday. 2.!B!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!It’s!noon. 3.!Therefore!A!and!B.!!!!!!!!!!3.!Therefore,!It’s!Tuesday!and!it’s!noon. ! Simplification########################################################Example 1.!A!and!B.!!!!!!!!!!!!!Or:!1.!A!or!B!!!!!!!!!!!!!!!!!!!!!!!!!!1.!It’s!Tuesday!and!it’s!noon. 2.!Therefore,!A.!!!!!!!!!!!2.!Therefore,!B.!!!!!!!!!!!!!2.!Therefore,!it’s!Tuesday. !In!fact,!statement!‘B’!in!Hypothetical!Syllogisms!is!much!like!the!middle!term!in!the!Barbara!argument!–!the!resemblance!is striking,!except!that!the!order!of!the!premises!is!reversed: ! Hypothetical#Syllogism#######################Barbara 1.!If!A!then!B.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1.!All!M!are!P. 2.!If!B!then!C.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.!All!S!are!M. 3.!Therefore,!if!A!then!C.!!!!!!!!!!!!!!!!!!!!3.!Therefore,!all!S!are!P. ! As!it!turns!out,!Barbara!and!Darii!can!both!be!translated!into!propositional!arguments,!Barbara!into!Hypothetical!Syllogism!and!Darii into!Modus!Ponens.!(The!reverse!isn’t!necessarily!the!case!because!propositional!logic!is!more!versatile!than!categorical!syllogisms: For!example,!it!can!include!additional!types!of!statements!besides!categorical!ones,!and!can!employ!operators!that!can!be!difficult!to translate!into!categorical!logic,!such!as!negation!and!conjunction.) [14] !However,!if!there!are!other!possibilities!that!aren’t!considered!in!the!argument,!it!is!a!bad!or!fallacious!argument!known!as!false dilemma.!We!will!learn!about!fallacies!in!Chapter!4. http://home.southernct.edu/~gillilandr1/Tutorial/2.htm Page 13 of 13
© Copyright 2026 Paperzz