Math 1025: Elementary Calculus Ch. 4 Techniques of Differentiation with Applications Derivatives of Trigonometric Functions I. II. Derivatives of Trigonometric Function 1. d (sin x ) = cos x dx 4. d (csc x ) = − csc x cot x dx 2. d (cos x ) = −sin x dx 5. d (sec x ) = sec x tan x dx 3. d (tan x ) = sec 2 x dx 6. Examples 1. Show that 2. d ( tan(x)) = sec 2 (x) dx y = 3cos(x 2 ) + 5x − sec(x) + 6 x 3 d (cot x ) = − csc 2 x dx 3. h(y) = sin 4 (5y 3 + 6y 2 ) 5. f (t) = ln tan( t ) 6. y = ecos 7. y= ( 2 (4 x) cos x 1 − sin x ) Differentiate the following examples 2 different ways 8. 9. ⎛ ex ⎞ ⎟⎟ g( x ) = ⎜⎜ ⎝ tan x ⎠ ⎛ sin θ + cosθ ⎞ r=⎜ ⎟ ⎝ cos θ ⎠
© Copyright 2026 Paperzz