Implementation of a Controlled Phasegate for Ultracold Calcium Atoms Using Optimal Control 1 2 Michael Goerz , Tommaso Calarco , Christiane P. Koch 1 1: Institut für Theoretische Physik, Freie Universität Berlin, 2: Institut für Quanteninformationsverarbeitung, Universität Ulm Summary 1 t = T − ∆t nt−2 2 T 20 10 nt−1 Ψbw(t0) Ψbw(t) Ψ.bw. .(t) Ψbw(t) µ̂ µ̂ . µ̂. . µ̂ Ψfw(t) . Ψ.fw. (t) Ψi ˜1 Ψt Ψt T = 1.23 ps phase dynamics (|00i, |01i, |0i) = τ Ψfw(T ) Ψfw(T ) Ψfw(t) ˜nt−2 ˜2 -20 0 1P 1 1P 0 µ(t) E1 0 + + 1x 2 ⊗ 0 Ea X (ij) X (ij) V̂trap (x1, x2) + V̂BO (|x2 − x1|) + 3 t0 + 23 ∆t t0 + ∆t 2 ... T − 32 ∆t T − ∆t 2 1 1 T = 15 ps F = 0.773 200 iterations x2 |aai |a1i |1ai d |11i |0ai |a0i |01i + |10i R |00i |00i target |01i target |10i target |11i target d µω 1/4 X 0 initialize to trap ground state Ψ00,i(R) ≈ 4π~ e φ00, φ01, φ10, (φ11) |00i −→ ei(φ+φT ) |00i |01i −→ eiφT |01i gate phases Look at different targets, and use one-photon or three-photon guess pulses; Use Gaussian guess pulses that perform full Rabi cycles in the given time window. 0.2 0.4 0.6 t / ps 0.8 1 1 0.5 0 0.5 1.2 0.5 1 1 0.5 0 0.5 1 1 1 0 -5 -10 0.8 0.6 0.4 0.2 -15 2 4 6 8 t/ps 10 12 0 0 14 2 4 6 8 t / ps 10 12 14 20 1 15 10 5 0 -5 -10 0.8 0.6 0.4 0.2 -15 φ00 φ10 = φ01 φ11 = φ00 = φ0 + φ1 = 2φ1 true two-qubit phase χ = φ00 − φ01 − φ10 + φ11 χ = φ00 − 2φ0 True two-qubit phase χ from Cartan decomposition [4]. Û = Uˆ1Ô(χ)Uˆ2, 0 5 -20 0 χ00 φ00 φ0 where Û1 and Û2 are purely local operations. Parameters: T = 0.1 – 1.0 ps 0 0 1.2 10 |0i −→ eiφT /2 |0i ± Optimize for different gate times: medium T = 1.23 – 50 ps, long T = 150 – 800 ps, and short 1 15 |00i −→ ei(φ+φT ) |00i −mω0 2 (d±R) 2~ Spatial grid: Rmin = 5.0 a.u., Rmax = 300.0 a.u., nr = 512 Trap parameters: ω = 400 MHz, d = 5 nm. 0.8 20 T = 290 ps F = 0.984 70 iterations φ00, φ0, (φ1) |10i −→ eiφT |10i 0.5 reduced optimization scheme |1i optimization targets x1 = full optimization scheme |0i 0.6 t/ps 0 -20 0 ij ij 0.4 0.5 ˜nt−1 N E S(t̃) X 1 D † † Ψik Ô Û (T → t, (0))µ̂Û (0 → t, (1)) Ψik ∆(t̃) = = α 2 system phases 1S 0 0.2 0.5 |ai ωL = 23652 cm-1 0.4 1 One-Qubit and Two-Qubit Phases ⊗ 1x 1 + -5 0.6 -15 /10−5 a.u. E0 0 Ĥ2q = 0 E1 µ(t) 0 0 0.8 0.2 Qubit Encoding in Calcium µ(t) 0 ⊗ 11q Ea E0 11q ⊗ 0 µ(t) 5 -10 k=1 1 15 population |00i |01i ... t = t0 + ∆t T = 1.23 ps F = 0.622 41 iterations /10−5 a.u. t0 J = −F + population |00i |01i The set of all one-qubit gates plus the two-qubit CNOT is universal. More generally, the CNOT is equivalent to the controlled phasegate, combined with Hadamard and X-gates. iφ e 0 0 0 0 1 0 0 X X Ô(φ) = ; CN OT = 0 0 1 0 O(π) H X X H 0 0 0 1 Change pulse iteratively to minimize[2, 3] α 1 h † i ∆(t) dt, F = < tr Ô Û S(t) N population |00i |01i Universal Quantum Computing Z Results /10−5 a.u. We consider a quantum computational system of ultracold Calcium atoms in an optical lattice [1]. The qubits are encoded in the electronic states. A shaped laser pulse couples |0i to an auxilliary state |ai. For the two-qubit system of two neighboring atoms, there is a dipole-type (1/R3) interacting for the |0ai state, allowing the implementation of a controlled phasegate on the |00i state. Via optimal control, for different pulse lengths T , we attempt to find laser pulses that yield the target transformation. At very short trap distances (5 nm), we find that for short pulses, a two-qubit phase can be reached; however, the atoms couple to the motional degree of freedoms. Only for very long pulses that can resolve the trap frequency, good fidelities can be found. OCT: Finding an Optimized Pulse T /ps 1.23 2.00 5.00 8.00 12.36 15.00 30.00 50.00 150.00 290.00 430.00 800.00 iters 41 15 15 15 50 200 4 10 20 70 40 30 F 0.622 0.639 0.719 0.787 0.779 0.773 0.630 0.653 0.898 0.984 0.998 0.999 50 100 χ/π |00i pur. 0.162 0.844 0.190 0.807 0.354 0.589 0.560 0.367 0.662 0.229 0.783 0.343 0.174 0.014 0.266 0.000 0.982 0.639 1.004 0.936 0.998 0.991 0.998 0.997 150 t/ps 200 0 0 250 T /ps 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 C3 1 × 106 4 × 108 8 × 108 1.6 × 109 1 × 106 4 × 108 8 × 108 1.6 × 109 iters 40 40 40 40 40 40 40 40 50 100 F 0.582 0.684 0.549 0.523 0.579 0.607 0.568 0.555 150 t / ps 200 250 χ/π |00i pur. 0.027 0.996 0.655 0.289 0.853 0.042 0.880 0.025 0.023 0.998 0.810 0.085 0.866 0.045 0.874 0.033 All optimizations for φ = π. Dipole Interaction Is it possible to get a two-qubit phasegate in arbitrarily short time if we make the dipole interaction sufficiently strong? At d = 200 nm, try: C3 = 1 × 106, 4 × 108, 8 × 108, 1.6 × 109. References |aai |0ai C3 = −R 3 |a0i [1] T. Calarco et al., Phys. Rev. A 61, 022304 (2004) [2] J. P. Palao, R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002), Phys. Rev. A 68, 062308 (2003). [3] C. P. Koch et. al. Phys. Rev. A 70, 013402 (2004). |00i [4] J. Zhang et. al. Phys. Rev. A. 67, 042313 (2003).
© Copyright 2026 Paperzz