Integration by Substitution: I Identify u (usually the inside of a composition); use that to find du = u 0 dx I Replace the appropriate expressions of x in the integrand with u and du. Note: du can not be in the denominator, raised to any power, or otherwise be inside any function. I Your substitution has been successful if (1) you now have only u and du – no more x and dx – and (2) if your new integral is something you can integrate. I Integrate the new simpler function. I Back substitute: Replace u with its original more complicated formulation in terms of x. Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 1/9 In Class Work Find the following indefinite integrals, and check your answers!! Z x 1. dx (u = 1 + x 2 ) 1 + x2 Z √x+1 √ e √ 2. dx (u = x + 1) x +1 Z 3. sec2 x e tan x dx Z 4. 12x cos(3x 2 + 5) dx Z 5. (x 2 + 4x)(x 3 + 6x 2 + 4)100 dx Z sin(x) 6. tan(x) dx Hint: Write tan(x) as cos(x) Z 1 7. dx x ln |x| Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 2/9 Solutions: Z 1. I I x dx (u = 1 + x 2 ) 1 + x2 Notice The composition is not obvious (you can see it if you write x = x(1 + x 2 )−1 ). When stuck, look for what portion of the 1+x 2 integrand is particularly troublesome. Identify u and find du: u = 1 + x2 I I I ⇒ u 0 = 2x ⇒ du = 2x dx Replace appropriate expressions of x in the integrand with u and du: Z Z Z x 1 2x 1 1 dx = dx = du. 1 + x2 2 1 + x2 2 u Integrate the new simpler function: Z 1 1 1 = ln |u| + C 2 u 2 Z x 1 dx = ln |1 + x 2 | + C Substitute back in 2 1+x 2 Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 3/9 Solutions: Z √ e √ x+1 √ I x + 1) x +1 Notice Have a double-composition. Chose u to be biggest inside. Identify u and find du: I 1 1 1 x + 1 ⇒ u 0 = (x + 1)−1/2 ⇒ du = √ dx 2 2 x +1 Replace appropriate expressions of x in the integrand with u and du: 2. I dx u= (u = √ √ Z I e √ x+1 dx = 2 e x+1 1 1 √ dx = 2 2 x +1 x +1 Integrate the new simpler function: Z 2 e u = 2e u + C √ Z I √ Z Back substitute: Math 101-Calculus 1 (Sklensky) e √ x+1 x +1 √ dx = 2e In-Class Work x+1 Z e u du + C. December 6, 2010 4/9 Solutions Z 3. sec2 x e tan x dx I Choose u = inside of composition= tan(x). Then u 0 = sec2 x, so du = sec2 (x) dx I Substitute: Z 2 sec x e I Z dx = e u du Integrate: Z 2 sec x e I tan x tan x Z dx = e u du = e u + C Back-substitute: Z Z 2 tan x sec x e dx = e u du = e u + C = e tan x + C Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 5/9 Solutions Z 12x cos(3x 2 + 5) dx 4. I Choose u = inside of composition= 3x 2 + 5. Then u 0 = 6x, so du = 6x dx I Substitute: Z Z Z 2 2 12x cos(3x + 5) dx = 2 6x cos(3x + 5) dx = 2 cos(u) du I Integrate: Z I Z 12x cos(3x 2 + 5) dx = 2 Z cos(u) du = 2 sin(u) + C Back-substitute: 12x cos(3x 2 +5) dx = 2 Math 101-Calculus 1 (Sklensky) Z cos(u) du = 2 sin(u)+C = 2 sin(3x 2 +5)+C In-Class Work December 6, 2010 6/9 Solutions Z (x 2 + 4x)(x 3 + 6x 2 + 4)100 dx 5. I I Choose u = inside of composition= x 3 + 6x 2 + 4. Then u 0 = 3x 2 + 12x, so du = (3x 2 + 12x) dx = 3(x 2 + 4x) dx Substitute: Z Z 1 3(x 2 + 4x)(x 3 + 6x 2 + 4)100 (x 2 + 4x)(x 3 + 6x 2 + 4)100 dx = 3 Z 1 = u 100 du 3 I Integrate: Z Z 1 1 2 3 2 100 (x + 4x)(x + 6x + 4) dx = u 100 du = u 101 + C 3 3(101) I Back-substitute: Z 1 (x 2 + 4x)(x 3 + 6x 2 + 4)100 dx = (x 3 + 6x 2 + 4)101 + C 303 Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 7/9 Solutions Z 6. tan(x) dx I I I I Hint: Write tan(x) as Composition isn’t obvious, but seen this before, in #1. Choose u = cos(x). Then u 0 = − sin(x), so du = − sin(x) dx Substitute: Z Z Z 1 − sin(x) dx = − du tan(x) dx = − cos(x) u Integrate: Z Z tan(x) dx = − I sin(x) cos(x) 1 du = − ln |u| + C u Back-substitute: Z Z 1 tan(x) dx = − du = − ln |u| + C = − ln | cos(x)| + C u Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 8/9 Solutions Z 7. I I I I I 1 dx x ln |x| Again have a fraction; this time, letting u be the entire denominator isn’t going to work. Try letting u be just a part (the more complicated part) of the denominator. Choose u = ln |x|. Then u 0 = x1 , so du = x1 dx Substitute: Z Z Z 1 1 1 1 dx = dx = du x ln |x| x ln |x| u Integrate: Z Z 1 tan(x) dx = du = ln |u| + C u Back-substitute: Z Z 1 1 dx = du = ln |u| + C = ln ln |x| + C x ln |x| u Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 9/9 In Class Work Z 1 2 xe x dx 1. 0 Z (π/4)1/3 x 2 sec(x 3 ) tan(x 3 ) dx 2. 0 Z 4 1 dx x(ln |x|)2 2 Z 3 √ 4. x 1 + x dx 3. 1 Math 101-Calculus 1 (Sklensky) In-Class Work December 6, 2010 10 / 9
© Copyright 2026 Paperzz