Calculus 221 worksheet Trig Limit and Sandwich Theorem Example 1. sin(x) = 1. Use this limit along with the other “basic limits” to find the Recall that lim x→0 x following: 1 − cos(x) (1) lim . [Hint: Multiply top and bottom by 1 + cos(x).] x→0 x2 1 − cos(x) . (2) lim x→0 x tan(x) (3) lim . x→0 x Solution: (1) 1 − cos(x) 1 − cos(x) 1 + cos(x) = lim · 2 x→0 x→0 x x2 1 + cos(x) 2 1 − cos (x) = lim 2 x→0 x (1 + cos(x)) sin2 (x) = lim 2 x→0 x (1 + cos(x)) 2 sin(x) 1 = lim x→0 x 1 + cos(x) 1 1 = =1· 1+1 2 lim (2) Using (a), 1 − cos(x) 1 − cos(x) = lim x · x→0 x→0 x x2 1 =0· =0 2 lim (3) sin(x) tan(x) cos(x) lim = lim x→0 x→0 x x sin(x) 1 = lim · x→0 x cos(x) 1 =1· =1 1 Example 2. Evaluate the limit limπ tan(x) − sec(x) or show that it does not exist. x→ 2 1 2 Solution: limπ tan(x) − sec(x) = limπ x→ x→ 2 2 = limπ x→ 2 = limπ x→ 2 = limπ x→ 2 = limπ x→ 2 1 sin(x) − cos(x) cos(x) sin(x) − 1 sin(x) + 1 · cos(x) sin(x) + 1 sin2 (x) − 1 cos(x)(sin(x) + 1) − cos2 (x) cos(x)(sin(x) + 1) − cos(x) sin(x) + 1 0 = =0 2 sin(x) or show that it does not exist. x→0 1 − cos(x) Example 3. Evaluate the limit lim Solution: lim x→0 sin(x) sin(x) 1 + cos(x) = lim · x→0 1 − cos(x) 1 − cos(x) 1 + cos(x) sin(x)(1 + cos(x)) = lim x→0 1 − cos2 (x) sin(x)(1 + cos(x)) = lim x→0 sin2 (x) 1 + cos(x) = lim x→0 sin(x) 2 =‘ ’=∞ 0 so the limit does not exist. 1 Example 4. Use the Sandwich Theorem to evaluate the limit lim x · sin . x→0 x 1 1 Solution: Since −1 ≤ sin ≤ 1 for all x, it follows that −|x| ≤ x sin ≤ |x| for all x x x. We know that lim |x| = 0 and lim −|x| = 0. Therefore, the Sandwich Theorem says that x→0 x→0 1 lim x · sin = 0. x→0 x 3 Exercise 1 − cos(3x) x→0 2x2 ex 2) lim x→0 sin(πx) 1) lim sin(sin(x)) x→0 sin(x) 3) lim 4) lim sin(sin(x)) x 5) lim 1 − cos(5x) sin2 (3x) x→0 x→0 x − 4 sin(x) . x→∞ 2x 6) Use the Sandwich Theorem to evaluate the limit lim 4 Answers 1) 9 4 2) e π 3) 1 4) 1 5) 25 18 6) 1 2
© Copyright 2026 Paperzz