Numbers and Exponents 1. Simplify each expression. a ) ( x8 )( x8 )( x8 ) b) ( x 6 )( x)( x 3 ) c) (−2a )(− a 5b)(a 3b 7 ) d ) (7 x 7 y 5 )(−2 x 4 y 8 ) e) ( xyz 5 )( x 5 y 8 z ) f ) (25 )(28 )(23 ) g ) (−7 a 7b 6 )(2a 5b) 1 h) (4 x 6 y )( x 7 y 8 ) 2 i ) (−3 xy 5 z 6 )( xyz 7 ) 2. Simplify each expression. a) a8b 4 c 3 a 5b 3 c b) a 9b ab c) a 8b10 a 2b6 d) 6a 2b − ab e) −72a 3b8 −8ab 6 f) −54a 6b 4 9a 3b b) (10)10 (10)100 (10)108 3. Evaluate each expression. a) (4)5 (4)8 (4)10 (4)6 (4)15 (−2)8 (−2)9 (−2)12 c) (−2)3 (−2)6 (−2)11 4. (7)2 (7)3 (7)10 d) (7)14 Evaluate. Leave all of your answers as powers using positive exponents. a ) 2 −6 × 2 2 b ) 5 −1 × 5 −2 c) 32 ÷ 3−2 d) (−3)−4 (−3)−2 e) 3−3 × 32 × 3−1 g) (−3)0 (−3) −1 h) j) 85 × 8−11 8 −3 k) 32 3−4 × 3−1 30 (−2)9 × (−2) −6 (−2) 2 f) 4 2 −2 × 4 −2 2 2 i) 2 5 4 −1 × 2 3 4 −2 l) 2 7 2 −4 × 2 −2 2 3 5. Simplify each of the following as far as possible. Leave your answer with positive exponents. ( )( a ) a 2b 4 a 2b −5 ( 3 d) x y 6. ) )( x y ) 2 2 3 b) x −6 x −6 ( c) −1 e) x y −2 )( x −2 y −3 ) x 2 y −2 y −1 x − 3 y −2 f ) 2 −6 x y Use the laws of exponents to simplify. Leave your answers with positive exponents. 2 5 3 4 a) 5 × 5 1 8 b) 3 5 c) 10 5 38 − 3 1 8 3 2 3 d) a ×a 5 4 −2 2 e) 27 3 1 2 −1 2 f ) m3n 4 7. Express each power as an equivalent radical. 1 1 a) 2 3 b) x 2 d) x − 3 7 c) 7 − 1 1 e) ( 3 x ) 2 1 2 f ) 3x 2 8. Express each radical as a power. a) d) 7 1 ( x) 5 4 b) 3 −11 c) e) 3 2b3 f) 3 n 64 27 9. Express each mixed radical as an equivalent entire radical. a) 3 2 b) − 4 3 c) 5 27 d) 6 8 e) 2 3 3 f ) 2 4 27 10. Express each entire radical as an equivalent mixed radical. a) 32 b) d ) − 6 150 e) 3 48 c) − 3 27 128 f ) 3 3 135 11. Arrange the following from least to greatest by changing to entire radicals: 3 6, 5 2, 2 15, 4 3 Polynomials 1. Expand and collect like terms. a ) (a + 1)(a + 2) b) (n − 3)(n − 2) c) ( x + 9)( x + 7) d ) (a − 2) 2 e) (2 x − 3)( x − 2) f ) (2a − 3)(3a + 2) 2. Use the distributive property to determine each product. a ) n(5n 2 − n + 4) ( ( c ) ( a − 2 ) a 2 + 2a + 4 b) − k (k 2 − 5k + 1) d ) (3 p + 2) 5 p2 − 6 p + 2 ) ( )( e) 2 x 2 + 3 x − 2 5 x 2 + x + 6 ) ) 3. Multiply and then collect like terms. a) ( x − 3)( x + 2 ) + ( 2 x − 5 ) b) ( 2a − 5b )( 3a + b ) − ( 6a − b )( 4a + 7b ) c) 3 ( 2a − 3b )( a + 2b ) − 2 ( 3a − b ) 4. A side of a cube is ( x + 2) 2 ( ) ( d ) ( 2 x + 3) 3 x 2 − 5 x + 4 + ( x − 4 ) 2 x 2 − 7 ) cm long. Write a polynomial expression for the volume of the cube and then expand and collect like terms. 5. Write a simplified expression for the area of the shaded region: 6n n 8n 11n 6. Factor the following polynomials. a) 5 y − 10 b) 51x 2 y + 39 xy 2 − 72 xy c) 35 z 2 − 14 z 6 d) 3 x 2 + 5 x 3 + x e) 8 x 2 y − 32 xy 2 + 16 x 2 y 2 7. Factor the following polynomials. a) 2x ( y − 2) − 3( y − 2) b) a 2 + 2a + ab + 2b c) 2 p − 2q + pq − p 2 d) a 2 + 6a + 7 a + 42 8. Factor, if possible. a) x 2 + 14 x + 40 b) g 2 − 4 g − 77 c) x 2 − 10 x − 24 d) k 2 + 21k + 90 e) p 2 − 17 p − 60 f) x 2 + 2 x − 15 g) 2 y 2 − 6 y + 4 h) 6m 2 + 18m − 24 9. Factor each of the following, if possible. a) 2 x 2 + 3 x + 1 b) 3 y 2 − 2 y − 1 c) 12m 2 − 16m − 4 d) 16 x 2 + 56 xy + 49 y 2 e) 8 x 2 − 29 x − 12 f) 6 y 2 − 11 y − 10 g) 12m 2 + 19m − 10 h) 2 x 2 − 5 + 9 x 10. Determine two values of b that allow each expression to be factored. a) 3 x 2 + bx + 5 b) 4 x 2 + bx − 9 11. The CN Tower in Toronto has an area that can be expressed as 5 x 2 + 13 x − 6 square units. Factor 5 x 2 + 13 x − 6 to find binomials that represent the length and the width of the tower. 12. The area of a children’s playground measures 2a 2 + 8a − 10 square units. a) Factor the binomials that represent the length and the width of the playground. b) If a represents 13 m, what are the length and the width of the playground, in metres. 13. Factor each binomial, if possible. a) x 2 − 81 b) 4 x 2 − 25 y 2 c) 25 x 2 − 121 d) 81 + x 2 14. Factor each trinomial, if possible. a) b) c) d) 15. x 2 − 18 x + 81 x 2 + 14 x + 49 5 x 2 − 10 x + 5 x 2 + 16 x + 64 The area of a square can be given by the expression 9 x 2 − 12 x + 4 , where x represents a positive integer. Write a possible expression for the perimeter of the square. Solving Right Triangles 1. A sighting is made of a sailboat from a lighthouse. If the lighthouse is 123.5 m above the level of the water, how far, to the nearest tenth of a metre, is the sailboat from the shore if the angle of depression is 18°? 2. The light on the Prince Shoal lighthouse is 25 m above the water level. From a position beside the light, the angle of depression of a sailboat is 12°. How far is the sailboat from the lighthouse, to the nearest metre? 3. Find YZ, to the nearest tenth of a metre: 4. Find EF, to the nearest tenth of a metre: 5. Find UV, to the nearest tenth of a metre: 6. From the window of one building, Sam finds the angle of elevation of the top of a second building is 41° and the angle of depression of the bottom of the building is 54°. The buildings are 56 m apart. Find the height of the second building. Answer Key Numbers and Exponents 1a. x 24 g. 2a. 3a. −14a12b 7 42 or 16 1 24 5a. a4 b 5 7 8 7a. 3 8a. 72 1 53 b. 2 10a. 11. 18 3 3 4 ( −3 ) x c. e. 2 1 1 f. 4 or 22 g. −3 h. 2 3 3 6 25 1 7 5 x y d. d. a d. b. − 48 d. x c. d. 4 2 b. 4 3 c. −9 3 4 3, 5 2, 3 6, 2 15 23 12 e. e. x3 − 5 e. 1 7 c. 6 3 675 e. x6 y9 z6 −3x 2 y 6 z13 d. −6a e. 9a 2b 2 9 c. ( −2 ) or − 512 4 ( −11) 3 −14x11 y13 d. x2 y c. 10 1 b. 1 c. 1 b. 1 9a. c. 34 d. b. b. 2a 9b8 c. h. 2x13 y 9 i. 8 6 4 b. a c. a b 2 b. 10 or 100 a 3bc 2 4a. 6a. x10 b. 4 5 1 27 f. 3x f. 288 d. −30 6 3 1 k. −2 83 l. 2 2 y4 x5 f. m 1 3 1 3 x 1 ( 2b3 ) 3 or 23 b 24 3 e. 4 2 e. 7 n8 1 e. 1 3 5 x y −6a 3b 3 f. d. i. 4 2 or 2 4 j. 216 f. f. f. 1 27 n f. 4 432 3 9 5 Polynomials 1a. a 2 + 3a + 2 b. n 2 − 5n + 6 c. x 2 + 16 x + 63 d. a 2 − 4a + 4 e. 2 x 2 − 7 x + 6 f. 6a 2 − 5a − 6 2a. 5n 3 − n 2 + 4n b. − k 3 + 5k 2 − k c. a 3 − 8 d. 15 p 3 − 8 p 2 − 6 p + 4 e. 10 x 4 + 17 x 3 + 5 x 2 + 16 x − 12 x 2 + x − 11 b. −18a 2 − 51ab + 2b 2 c. −12a 2 + 15ab − 20b 2 d. 8 x 3 − 9 x 2 − 14 x + 40 3a. 3 4. ( x + 2 ) ⇒ x3 + 6 x 2 + 12 x + 8 5. 6a. 58n 2 5 ( y − 2) 7a. ( 2 x − 3)( y − 2 ) b. 3xy (17 x + 13 y − 24 ) b. ( a + b )( a + 2 ) c. 7 z 2 ( 5 − 2 z 4 ) c. ( 2 − p )( p − q ) d. x ( 3 x + 5 x 2 + 1) e. 8 xy ( x − 4 y + 2 xy ) d. ( a + 6 )( a + 7 ) 8a. e. 9a. f. ( x + 10 )( x + 4 ) b. ( p − 20 )( p + 3) f. ( 2 x + 1)( x + 1) b. ( 3 y + 2 )( 2 y − 5) g. ( g − 11)( g + 7 ) c. ( x + 5)( x − 3) g. ( 3 y + 1)( y − 1) c. (12m − 5)( m + 2 ) h. ( x − 12 )( x + 2 ) 2 ( y − 2 )( y − 1) d. h. 4 ( 3m 2 − 4m − 1) d. ( k + 15)( k + 6 ) 6 ( m + 4 )( m − 1) 2 ( 4 x + 7 ) e. ( 8 x + 3)( x − 4 ) ( 2 x − 1)( x + 5) 10a. b = ±8 or ± 16 11. ( 5 x − 2 )( x + 3) b. 12 m × 36 m or ( 2a − 2 )( a − 5) or ( a − 1)( 2a + 10 ) ( x + 9 )( x − 9 ) b. ( 2 x − 5)( 2 x + 5) c. ( 5 x − 11)( 5 x + 11) d. 2 2 2 2 b. ( x + 7 ) c. 5 ( x − 1) d. ( x − 9) ( x + 8) 12a. 13a. 14a. Trigonometry 1. 2. 3. 4. 5. 6. 380.1 m 117.6 m YZ = 24.3 m EF = 332.3 m UV = 38.6 m 125.8 m b. b = 0; ± 5; ± 9; ± 16 or ± 35 24 m × 18 m Not Possible
© Copyright 2025 Paperzz