Densities of aqueous MgCl2(aq), CaCl2(aq), KI(aq), NaCl(aq), KCl

Densities of aqueous MgCl2(aq), CaCl2(aq), KI(aq), NaCl(aq), KCl(aq),
AlCl3(aq) and (0.964 NaCl + 0.136 KCl)(aq) at temperatures between (283.15
and 473.15) K, pressures up to 68.5 MPa and molalities up to 6 mol·kg-1
Saif Al Ghafri, Geoffrey C. Maitland and J. P. Martin Trusler*
Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), Department of Chemical
Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ,
United Kingdom.
*
To whom correspondence should be addressed. E-mail: [email protected]
Supplementary Data
Table S1: Available literature sources for the densities of single-salts aqueous solutions with
uncertainties δρ, temperatures T, pressures p and molalities b.
Ref
Year
Method
δρ /( kg ⋅ m −3 )
T/K
p/MPa
b/mol·kg-1
0.10 to 60
0.10
0.10
0.10
≈7.0 & 40.0
0.60
0.10
0.10
0.1 to 38.92
0.60
2.03
0.10 to 40.71
0.10
0.10
0.10
0.10
0.10
0.10
0.10
2.03
0.184 to 6.007
3.000
0.501 to 2.498
0.022 to 7.878
0.242 to 6.150
1.459 to 5.541
0.300 to 2.000
0.987 to 9.887
0.0497 to 6.424
0.030 to 0.985
0.504 to 6.439
0.051 to 4.980
0.050 to 6.000
0.333 to 7.449
0.460 to 5.050
0.0334 to 7.4
0.050 to 6.464
0.010 to 0.984
0.01256 to 0.328
0.05 to 1.00
10.17 to 30.58
0.6
0.015 to 3.045
0.442 to 5.189
CaCl2(aq)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2005
2004
2003
1997
1995
1995
1995
1994
1989
1987
1986
1985
1984
1983
1983
1982
1981
1977
1974
1967
CVP
VTD
VTD
VTD
VTD
VTD
CTM
VTD
VTD
VTD
VTD
VTD
WD
VTD
OTTD
VTD
FD
VTD
FD
0.03
003
0.1
0.05
0.01
0.1
0.05
0.005
0.51
0.005
0.01
0.284
0.01
0.003
0.003
298.15 to 398.15
278.15 to 308.15
283.15 to 348.15
298.15
298.04 to 522.95
298.15 to 373.15
298.15
291.55 to 343.14
323.15 to 597.45
298.15 to 373.15
323.15 to 473.15
298.15
298.15 to 328.15
278.15 to 308.15
298.15 to 318.15
298.15
298.15
298.15
298.15
348.15 to 473.15
MgCl2(aq)
21
6
1997
1995
VTD
VTD
0.01
369.36 to 627.15
298.15 to 373.15
Ref
Year
Method
δρ /( kg ⋅ m −3 )
T/K
p/MPa
b/mol·kg-1
10
22
12
13
23
15
24
17
25
26
18
19
27
20
1987
1986
1985
1984
1984
1983
1982
1981
1980
1980
1977
1974
1973
1967
VTD
VTD
VTD
WD
SSP
OTTD
VTD
FD
0.005
0.005
0.005
0.01
0.13
0.233
0.003
0.01
VFD
VTD
FD
MFD
0.002
0.003
0.003
0.003
297.19 to 371.82
308.15 to 368.15
298.15
288.15 to 328.15
298.15
303.15 to 318.15
278.15 to 318.15
298.15
298.15
273.15 to 308.15
298.15
298.15
273.15 to 323.15
348.15 to 473.15
0.6
0.1
0.10 to 40.55
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2.03
0.108 to 0.528
0.350 to 4.608
0.0312to 2.952
0.050 to 5.000
0.303 to 5.567
0.54 to 3.31
0.046 to 5.426
0.482 to 5.028
0.025 to 5.674
0.005 to 1.475
0.048 to 0.971
0.004 to 0.341
0.009 to 0.994
0.1 to 1.00
0.35
0.1
0.1
0.6
0.1
2.027
0.1
0.015 to 7.501
0.100 to 0.999
0.050 to 0.100
0.010 to 1.964
0.049 to 0.999
0.10 to 10
0.220 to 0.845
0.1
0.1
6.95-30.23
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5 to 10.22
0.1 to 28.25
0.1
0.1
0.1
0.1
2
0.1
0.05 to 6
0.05 to 1.25
5.972
0.100 to 4.000
1.503
1.000 to 3.000
0.101 to 1.027
0-1
0 to 4
0.501 to 4.999
0.200 to 1.000
6.100 to 6.302
6.115 to 6.170
0 to 4.5
0.009 to 6.014
0 to 1
0.1 to 1
0.115 to 2.329
3.001
0.022 to 6.024
0.087 to 4.290
0.089 to 0.346
0.108 to 5.948
0 to 4.5
0.500
KI(aq)
28
29
30
31
18
32
33
2008
2005
1993
1992
1977
1968
1968
VTD
VTD
FVTD
FVTD
VTD
0.01
0.003
OP
278.15 to 368.15
278.15 to 338.15
296.02 to 321.1
297.19 to 373.17
298.15
348.15 to 473.15
278.15 to 338.15
NaCl(aq)
34
35
36
37
38
39
40
41
42
3
43
44
45
46
47
48
49
50
51
52
53
54
6
55
30
2006
2006
2006
2006
2006
2005
2005
2004
2003
2003
2003
2003
2003
2002
2001
2000
1999
1997
1996
1996
1996
1995
1995
1994
1993
VTD
BC
VTD
VTD
PC
VTD
VTD
VTD
VTD
VTD
VTD
VTD
DB
CTM
VTD
VTD
SVFD
FVTD
VTD
VTD
VTD
VTD
VTD
VTD
0.5
0.01
0.05
0.005
0.01
0.1
0.01
0.05
0.1
0.003
0.01
0.5
0.05
0.01
288.15 to 323.15
298.15
373.56 to 622.61
293.15 to 303.15
298.15 to 323.15
298.15
318.15
298.15
293.15 to 313.15
283.15 to 353.15
298.15
298.15 to 313.15
288.15
298.15
253-293
298.15
277.15 to 343.15
373.15 to 573.34
298.13 to 623.44
298.15
298.15
298.15 to 328.15
297.05 to 371.82
298.15 to 413.15
296.02 to 346.1
Ref
Year
Method
56
57
58
59
60
61
62
63
64.
22
12
65
66
14
15
67
68
24
69
70
71
72
26
73
74
75
76
77
33
78
79
80
81
1993
1991
1991
1990
1988
1988
1988
1988
1987
1986
1985
1985
1984
1983
1983
1982
1982
1982
1981
1981
1981
1980
1980
1978
1977
1972
1970
1969
1968
1968
1968
1966
1966
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
FVTD
SVTD
OTTD
Dil
FD
FVTD
PV
VTD
FD
VTD
FVTD
VFD
MFD
MFD
AB
OP
Dil
Dil
Dil
PV
T/K
p/MPa
b/mol·kg-1
623.09 to 623.2
604.41-716.73
393.4 to 673.2
298.23 to 308.12
298.15
298.15
298.15
321.57 to 549.75
298.15
308.15 to 368.15
298.15
298.15
298.15
278.15 to 308.15
298.15 to 318.15
348.15 to 473.15
298.15
278.15 to 318.15
627.38
298.15
278.15 to 318.15
288.15 to 318.15
273.15 to 308.15
293.15
298.15
323.15
273.15 to 328.15
298.15
278.15 to 338.15
278.25 to 318.21
298.15 to 423.15
298.15 to 448.15
348.15 to 473.15
15.24 to 16.8
18.36-33.02
1.00 to 40.00
0.1
0.1
0.1
0.1
0.1 to 40.16
0.1
0.1
1.01 to 40.78
0.1
0.1
0.1
0.1
2.03
0.1
0.1
20
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2.03
0.25 to 3
0.003-3.096
0.051 to 3.09
0.084 to 6.039
0.295 to 1.001
0.5 to 4
0.5 to 4.5
0.003 to 5.046
0.020 to 3.265
0.217 to 6.198
0.058 to 4.991
1.000 to 4.000
0.012 to 1.844
0.400 to 6.200
0 to 6.1
0.005 to 4.393
0.2788 to 5.105
0.371 to 5.997
0.1 to 4
0.011 to 5.325
0.787 to 5.952
0.062 to 5.924
0.010 to 1.500
0.002 to 4.278
0.010 to 1.000
0.005 to 0.984
0.001 to 0.965
1.023 to 5.604
0.211 to 1.007
4
0.010 to 3.602
0.1 to 2.5
0.1 to 1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.10 to 40.64
0.1
4.428 to 5.279
0.250 to 1.110
0.5 to 3.807
0.012 to 0.967
0.100 to 1.000
0.021 to 4.818
0.001-1.088
0.5 to 4.5
0.500 to 4.000
0.500 to 4.000
0.5 to 4.5
0.131 to 0.477
0.5 to 4.5
0.059 to 3.012
0 to 4.500
δρ /( kg ⋅ m −3 )
0.003
0.003
0.01
0.06
0.003
0.01
0.02
0.02
KCl(aq)
82
83
3
84
49
52
85
86
87
88
62
60
89
12
15
2008
2007
2003
2001
1999
1996
1990
1989
1989
1989
1988
1988
1986
1985
1983
DBM
VTD
VD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
VTD
OTTD
0.05
0.1
0.05
0.01
0.005
0.003
0.003
0.003
0.003
0.005
0.003
0.01
288.15 to 308.15
298.15
278.15 to 353.15
293.15 to 303.15
277.15 to 343.15
298.15
278.15 to 368.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15 to 318.15
Ref
Year
Method
δρ /( kg ⋅ m −3 )
T/K
p/MPa
b/mol·kg-1
90
91
27
77
79
33
81
92
93
94
95
96
97
98
99
100
101
102
1977
1975
1973
1969
1968
1968
1966
1962
1952
1941
1939
1937
1934
1933
1933
1927
1926
1912
VTD
OP
MFD
0.003
0.02
0.0003
LP
Dil
PV
0.01
298.15
298.15
323.15
298.15
298.15 to 423.15
278.15 to 338.15
348.15 to 473.15
308.15 to 318.15
298.15
278.15 to 298.15
298.15
298.15
298.15
298.15
298.15
313.15-353.15
298.15
293.15
0.1
0.1
0.1
0.1
0.1
0.1
2.03
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.100 to 1.005
0.042 to 3.420
0.029 to 1.003
0.120 to 0.965
0.100 to 3.608
0.046 to 0.200
0.1 to 1
0.045 to 4.632
0.002 to 0.145
0.005 to 0.500
0.412 to 1.025
0 to 0.799
0.134 to 0.537
0.123 to 0.789
0 to 0.049
0.443-5.229
0.1 to 4
0.249
0.10
0.60
2.03
0.10
0.10
0.10
0.10
2.03
0.10
0.10
0.100 to 3.629
0.027 to 1.993
0.303 to 2.718
0.050 to 2.500
0.240 to 2.218
0.200 to 0.996
0.004 to 0.312
0.100 to 1.000
0 to 0.500
0.050 to 0.264
2.00
0.10 to 20.00
0.10
0.10
0.10
0.10
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.500 to 4.500
0.009 to 1.586
0.050 to 1.500
0.100 to 0.962
0.004 to 0.387
0.191 to 0.830
0.100 to 1.000
0.183 to 0.651
0 to 0.500
0 to 1.043
0.049
0.010 to 0.285
0.005 to 0.845
0.005 to 1.040
MFD
Dil
Pyc
Pyc
PI
0.01
0.01
Pyc
SrCl2(aq)
103
10
104
13
105
90
106
20
107
108
1997
1987
1986
1984
1982
1977
1974
1967
1949
1934
VTD
VTD
Dil
WTD
Pyn
VTD
FD
0.005
0.22 to 0.51
0.01
0.03
0.003
0.003
Pyn
Pyn
298.20
297.20
323.20 to 473.20
288.20 to 328.20
298.20
298.20
298.20
348.20 to 473.20
298.20
298.15
BaCl2(aq)
55
109
13
90
106
33
20
110
111
112
108
113
114
115
1994
1991
1984
1977
1974
1968
1967
1966
1952
1941
1934
1932
1930
1930
VTD
VTD
WTD
VTD
FD
OP
PV
Dil
Pyn
Pyn
OP
OP
0.01 to 0.04
0.005
0.01
0.003
0.01
0.01
298.20 to 413.20
288.20 to 413.20
288.20 to 328.20
298.15
298.15
278.20 to 338.20
348.20 to 473.20
298.20
298.20
298.20
298.20
293.20
298.20
298.20
Ref
Year
Method
T/K
p/MPa
b/mol·kg-1
289.85 to 607.71
283.15 to 343.15
288.20 to 318.20
603.32 to 658.07
290.20 to 343.10
298.20
298.20
0.96 to 30.55
0.10
0.10
15.16 to 24.49
0.10
0.10
0.10
0.129 to 15.498
1.019 to 9.887
1.132 to 12.186
0 to 0.017
2.630 to 19.606
0.108 to 1.088
0.954 to 5.617
0.10
0.10
0.10
0.10
0.10
0.10
0.10
1.015 to 9.967
0.002 to 0.025
0.052 to 14.060
1.899 to 18.270
0.016 to 0.099
7.903 to 20.075
0.040 to 0.415
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
15.2 to 24.75
18.4 to 38.04
0.10
0.76 to 32.58
0.10
0.10
0.10
0.10
0.10 to 40.06
0.10
0.10
0.10
0.10
0.10
0.10
4.165
4.165
0 to 1
0.011 to 0.047
0 to 0.046
0.501 to 7.993
0 to 0.046
0.023 to 8.299
0.126 to 4.924
0 to 0.019
0.005 to 3.038
0.500 to 4
0.051 to 3.031
0.500 to 4
0.095 to 0.410
0.500 to 4
1 to 8.343
0.050 to 4.972
0.050 to 8
0.019 to 0.078
0.101 to 1
0.634 to 4.499
0.064 to 0.508
0.002 to 0.015
δρ /( kg ⋅ m −3 )
LiCl (aq)
116
3
117
118
8
90
77
2006
2003
2003
1997
1994
1977
1969
PI
VTD
AB
0.06
0.1
0.1
VTD
VTD
0.1
0.003
LiBr(aq)
3
119
120
8
121
122
123
2003
2002
2002
1994
1987
1983
1969
VTD
VTD
Pyn
VTD
VTD
0.1
0.1
0.16
0.1
0.001
FM
283.15 to 343.15
278.20 to 293.20
299.05 to 326.15
291.83 to 373.26
298.20
288.20 to 353.20
298.20
NaBr(aq)
124
125
126
127
128
3
128
120
129
118
130
88
131
87
60
61
132
12
13
133
90
91
123
134
2007
2007
2006
2005
2003
2003
2003
2002
2000
1997
1991
1989
1989
1989
1988
1988
1986
1985
1984
1981
1977
1975
1969
1968
VTD
VTD
VTD
Pyn
Pyn
VTD
Pyn
Pyn
VTD
VTD
VTD
VTD
VTD
VTD
VTD
SVTD
VTD
WTD
VTD
VTD
OP
FM
0.01
0.01
0.003
0.05
0.05
0.1
0.05
0.15
0.003
1
0.003
0.005
0.003
1
0.01
0.5
0.003
0.02
0.002
288.20 to 298.20
288.20 to 298.20
298.15
308.20
298.20
283.15 to 343.14
298.20
294.95 to 325.10
373.16 to 522.11
603.32 to 658.07
604.40 to 725.52
298.20
321.63 to 549.80
298.20
298.15
298.20
298.15
298.15
288.20 to 328.20
303.20 to 323.20
298.20
298.20
298.20
373.20 to 1073.20
KBr(aq)
Ref
Year
Method
83
135
29
3
120
136
30
88
60
65
137
66
13
90
123
32
138
33
139
140
141
98
113
2007
2006
2005
2003
2002
1997
1993
1989
1988
1985
1985
1984
1984
1977
1969
1968
1968
1968
1940
1937
1934
1933
1932
VTD
PI
VTD
VTD
Pyn
Pyn
FD
VTD
VTD
VTD
TP
FD
WTD
VTD
FM
Pyn
Pyn
OP
T/K
p/MPa
b/mol·kg-1
298.20
298.15 to 348.15
278.20 to 338.20
283.16 to 343.13
299.55 to 325.05
298.15
296.02 to 346.1
298.15
298.15
298.20
298.20
298.20
288.20 to 328.20
298.20
298.20
348.20 to 473.20
298.20
278.20 to 338.20
273.15
298.20
273.20 to 298.20
298.20
293.20
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
1.040 to 4.720
0.238 to 2.231
0.100 to 1.000
0.500 to 4.989
0.009 to 5.762
0.003 to 0.055
0.500
0.500 to 4.000
0.084 to 0.353
1.000 to 4.000
0.002 to 0.195
0.007 to 0.038
0.050 to 4.000
0.102 to 1.000
0.048 to 0.586
0.100 to 1.000
0.195 to 0.829
0.237 to 0.953
0.001 to 2.857
0.040 to 0.930
0.001 to 4.375
0.001 to 4.373
0.010 to 0.293
0.10
0.10
0.400 to 2.595
3.053 to 5.264
0.10
0.010 to 4.468
0.10
0.10
0.10
0.015 to 0.045
0.025 to 0.035
0 to 0.030
10 to 30.40
0.10
0.60
0.10
0.10
0.10
0.10
0.10
0.010 to 0.899
0.122 to 0.835
0.010 to 0.439
0.014 to 0.926
0.101 to 0.797
0.010 to 0.804
0.179 to 0.592
0.871 to 0.989
δρ /( kg ⋅ m −3 )
0.06%
0.1
0.14
0.01
0.003
0.005
0.003
0.01
0.003
0.002
0.01
0.01
SM
CaBr2(aq)
132
142
1986
1954
SVTD
Pyn
0.2
298.20
213.20 to 298.20
BaBr2(aq)
113
1932
293.20
LiF(aq)
143
123
112
1984
1969
1941
VTD
FM
OP
0.002
298.20
298.20
298.20
NaF(aq)
144
145
31
143
18
27
123
146
1997
1994
1992
1984
1977
1973
1969
1937
VTD
VTD
VTD
VTD
VTD
MFD
FM
Pyn
0.02
0.003
0.0003
0.002
298.20
298.20
297.19 to 371.82
298.15
298.20
273.20
298.20
273.20 to 308.20
Ref
Year
Method
T/K
p/MPa
b/mol·kg-1
298.20
298.20
297.19 to 371.82
298.20
298.20
298.20
323.20 to 473.20
10.00 to 30.40
0.10
0.60
0.10
0.10
0.10
2.03
0.010 to 2.999
0.098 to 0.803
0.097 to 2.100
0.052 to 8.885
0.050 to 1.106
0.050 to 0.557
0.100 to 1.000
0.10 to 58.63
0.10 to 31.20
0.10
0.111 to 4.881
0.091 to 3.089
1.314 to 2.766
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0 to 1
0.025 to 0.266
0.050
0.025 to 0.194
0.020 to 0.083
0.101 to 0.995
0.001 to 0.100
0.053 to 0.486
0.007 to 0.060
0.044 to 0.203
0.001 to 0.168
0.10
4.438 to 4.585
0.10
0.10
0.10
0.10
0.214 to 3.090
0.406 to 3.199
1.330
0.100 to 3.094
0.10
0.10
0.10
0.10
9.87 to 30.70
0.10
0.60
0.10
0.499 to 0.997
0.092 to 0.500
0.100 to 1.848
0.500 to 2.254
0.005 to 1.003
0 to 0.197
0.010 to 1.532
0.101 to 2.068
δρ /( kg ⋅ m −3 )
KF(aq)
144
145
31
143
90
123
32
1997
1994
1992
1984
1977
1969
1968
VTD
VTD
VTD
VTD
VTD
FM
Pyn
0.02
0.003
0.002
LiI(aq)
147
148
149
2006
2004
2004
PI
PI
VTD
0.03
0.76
0.4
298.15 to 398.15
298.2 to 348.20
303.2 to 343.20
NaI(aq)
150
151
152
137
133
90
153
123
154
93
155
2005
1989
1988
1985
1981
1977
1969
1969
1966
1952
1933
VTD
LP
UV
TP
VTD
VTD
FM
Pyn
MFD
0.01
0.1
0.1
0.5
0.003
0.002
0.2
298.15
299.20
293.20 to 303.20
298.20
303.20 to 323.20
298.20
373.20 to 1073.20
298.20
298.20
298.20
298.20
CaI2(aq)
142
1954
Pyn
0.2
213.20 to 298.20
Li2SO4(aq)
156
157
78
158
2007
1995
1968
1937
OTTD
VTD
Dil
Pyn
0.1
0.01
0.03
283.20 to 298.20
283.15 to 338.15
278.27 to 318.27
298.20
Na2SO4(aq)
159
160
161
3
162
163
31
22
2008
2008
2007
2003
1997
1994
1992
1986
VTD
VTD
VTD
VTD
VTD
OTTD
VTD
VTD
0.003
0.003
0.1
0.1
0.005
0.002
0.02
288.15 to 318.15
298.20
283.20 to 298.20
283.16 to 343.14
298.20 to 572.67
288.20 to 308.20
297.19 to 371.82
308.20 to 368.20
Ref
Year
Method
δρ /( kg ⋅ m −3 )
T/K
p/MPa
b/mol·kg-1
164
165
166
13
167
24
168
26
169
27
32
78
79
110
80
158
170
171
1986
1985
1985
1984
1984
1982
1982
1980
1977
1973
1968
1968
1968
1966
1966
1937
1926
1922
Dil
PVFD
0.1
WTD
VTD
VTD
VTD
VTD
VTD
MFD
Pyn
Dil
LP
Dil
LP
Pyn
PVFD
Pyn
0.01
0.01
0.003
0.005
0.02
0.003
0.0003
294.52 to 475.78
298.20
304.62 to 474.68
288.20 to 328.20
313.20
288.15 to 318.15
288.20 to 308.20
273.20 to 308.20
298.20
273.20 to 323.20
348.20 to 473.20
278.27 to 318.41
298.20 to 423.20
298.20
298.20 to 448.20
298.20
273.20 to 313.20
298.20
9.59 to 10.24
0.10
0.10 to 20
0.10
0.10
0.10
0.10
0.10
0.10
0.10
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.058 to 0.330
0.321 to 0.899
0.050 to 2.629
0.050 to 1.500
0.035 to 6.548
0.052 to 1.625
0.001 to 0.053
0 to 0.720
0.100 to 1
0.002 to 1.005
0.050 to 1
1.333
0.033 to 1.203
0.192 to 0.752
0.010 to 0.150
0 to 1.964
0.339 to 3.370
0.063 to 1.963
0.10
0.10
9.88 to 30.66
0.60
0.10
0.10
0.10
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.043 to 0.711
0.698 to 0.910
0.005 to 0.505
0.010 to 0.402
0.100 to 0.650
0.100 to 0.501
0.002 to 0.707
0.050 to 0.500
0.203 to 0.470
0.001 to 0.512
0.015 to 0.325
0 to 1.126
0 to 0.689
0 to 0.638
0.044 to 0.691
0.10
0.10
0.10
2.00
0.10
2.11 to 10.41
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.050 to 0.500
0.193 to 3.044
0.001 to 0.198
0 to 2.186
0.001 to 0.049
0.072 to 0.250
0.207 to 2.838
0.244 to 0.693
0.038 to 2.399
0.001 to 1.483
0.054 to 1.001
0.002 to 0.890
0.025 to 0.903
0.003
0.01
0.01
0.01
K2SO4(aq)
161
172
162
31
85
90
27
32
110
173
140
96
158
174
171
2007
2002
1997
1992
1990
1977
1973
1968
1966
1940
1937
1937
1937
1932
1922
VTD
VTD
VTD
VTD
VTD
VTD
MFD
PV
Dil
0.1
0.1
0.003
0.0003
0.02
0.01
SM
0.005
0.02
Pyn
Pyn
Pyn
283.20 to 298.20
298.15 to 318.15
298.20 to 572.75
297.19 to 371.82
278.20 to 368.20
298.20
273.20 to 323.20
348.20 to 473.20
298.20
273.20 to 298.20
298.20
298.20
298.20
298.20
298.20
MgSO4(aq)
160
156
163
175
168
164
22
165
24
26
90
27
79
2008
2007
1994
1986
1986
1986
1986
1985
1982
1980
1977
1973
1968
VTD
OTTD
OTTD
0.003
0.1
0.005
VTD
Dil
PVFD
PVFD
VTD
VTD
VTD
MFD
LP
0.005
0.04 to 0.1
0.02
0.003
0.012
0.003
0.0003
298.20
283.20 to 298.20
288.20 to 308.20
348.20 to 473.20
288.20 to 308.20
293.84 to 475.77
308.20 to 368.20
298.20
278.15 to 318.15
273.20 to 308.20
298.20
273.20 to 323.20
298.20 to 423.20
Ref
Year
Method
δρ /( kg ⋅ m −3 )
T/K
p/MPa
b/mol·kg-1
80
1966
LP
0.1
298.20 to 448.20
0.10
0.010 to 0.292
CaSO4(aq)
176
1977
VTD
0.003
298.20
0.10
0.001 to 0.007
177
1956
293.20 to 323.20
0.10
0.002 to 0.015
178
1941
TP
273.20 to 298.20
0.10
0.002 to 0.011
PVFD-Picker Vibrating Flow Densimeter, FM-Float Method, AB-Analytical Balance, SM-Sinker Method, TPTare Pycnometers, WTD-Weld Type Densitometer, PV-Pressure Vessel, PI-Piezometer, VTD-vibrating Tube
densimeter, Cal.-calculation, MFD-magnetic float densimeter, UV- Ubbelohde-type viscometer, FVTD-flow
vibrating tube densimeter, OTTD-Oscillating tube-type densitometer, LP-Lipkin Pycnometers, PycPycnometers, Dil-Dilatometer, DBM-Density Bottle Method, OP-Ostwald Pycnometers, ICT- International
Critical Tables, TP-Two arm pycnometers, FD-Flow densimeter, SVTD-Sodev Vibrating Tube Densimeter,
SVFD-Sodev Vibrating Flow Densimeter, CTM-Capillary Tube Method, CVP-Constant volume piezometer,
SSP-single-stem pycnometers, BP-bi-capillary pycnometers, DB-Densimetric Balance, AB-Analytical Balance.
Table S2: Available literature sources for the densities of mixed-salts aqueous solutions with
uncertainties δρ, temperatures T, pressures p and molalities bi.
Ref
Year
Method
δρ /(kg ⋅ m −3 )
p/MPa
b1/mol·kg-1
b2/mol·kg-1
298.15
0.1
0.012 to 4.255
0.036 to 1.426
298.15
0.1
0.370 to 0.683
0.510 to 0.493
T/K
(NaCl + KCl)(aq)
52
1996
VTD
0.05
179
1996
SSP
85
1990
SVFD
0.003
278.15 to 368.15
0.1
0.000 t0 1.763
1.950 to 0.187
62
1988
VTD
0.003
298.15
0.1
0.024 to 4.109
0.477 to 0.392
180
1986
VFTD
198.15
0.1
0.000 to 1.205
1.500 to 0.296
181
1977
198.15
0.1
0.167 to 2.500
0.833 to 2.500
182
1969
298.15 to 423.15
0.1
0.477 to 3.245
0.224 to 0.361
0.10
0.040 to 0.368
0.008 to 0.011
(CaCl2 + CaSO4)(aq)
183
2007
VTD
0.05
308.20
(KCl + K2SO4)(aq)
85
1990
VTD
278.20 to 368.20
0.10
0 to 1.950
0 to 0.650
180
1986
PVFD
298.20
0.10
0 to 1.500
0 to 0.500
0.10
0.614 to 1.904
0.635 to 1.230
(NaCl + SrCl2)(aq)
184
2000
298.20
(NaCl- Na2SO4)(aq)
85
1990
VTD
278.20 to 368.20
0.10
0 to 1.950
0 to 0.650
180
1986
PVFD
298.20
0.10
0 to 1.500
0 to 0.500
182
1969
298.20 to 423.20
0.10
0.551 to 3.422
0.012 to 0.264
80
1966
298.20 to 448.20
0.10
0.100 to 2.500
0.010 to 0.150
298.20 to 423.20
0.10
0.551 to 3.422
0.012 to 0.264
298.20
0.10
0.100 to 2.500
0.010 to 0.150
296.02 to 346.10
0.10
0.100 to 0.400
0.100 to 0.400
298.20
0.10
0 to 4
0 to 4
LP
0.1
(NaCl + MgSO4)(aq)
182
1969
80
1966
LP
0.1
(NaCl + KBr)(aq)
30
1993
FVTD
65
1985
VTD
0.003
Ref
Year
181
1977
Method
δρ /(kg ⋅ m −3 )
T/K
p/MPa
b1/mol·kg-1
b2/mol·kg-1
298.20
0.10
0.500 to 2.500
0.500 to 2.500
(NaCl- K2SO4)(aq)
85
1990
VTD
278.20 to 368.20
0.10
0 to 1.950
0 to 0.650
180
1986
PVFD
298.20
0.10
0 to 1.500
0 to 0.500
0.10
0 to 4.200
0.015 to 0.053
2
0.500 to 4.500
0.05 to 4.050
(NaCl + CaSO4)(aq)
183
2007
0.05
308.20
(NaCl + BaCl2)(aq)
55
1994
VTD
0.01 to 0.04
298.2 to 413.2
(Na2SO4 + K2SO4)(aq)
85
1990
VTD
278.20 to 368.20
0.10
0 to 1.950
0 to 0.650
180
1986
PVFD
298.20
0.10
0 to 1.500
0 to 0.500
0.10
0 to 3.087
0 to 5.223
0.10
0 to 4.012
0 to 4.012
0.10
0.057 to 3.854
0.031 to 1.378
(Li2SO4 + MgSO4)(aq)
185
2008
DBM
0.0002
348.20
(KCl + NaBr)(aq)
87
1989
VTD
0.003
298.20
(KCl + MgCl2)(aq)
86
1989
VTD
0.003
298.20
PVFD-Picker Vibrating Flow Densimeter, FM-Float Method, AB-Analytical Balance, SM-Sinker Method, TPTare Pycnometers, WTD-Weld Type Densitometer, PV-Pressure Vessel, PI-Piezometer, VTD-vibrating Tube
densimeter, Cal.-calculation, MFD-magnetic float densimeter, UV- Ubbelohde-type viscometer, FVTD-flow
vibrating tube densimeter, OTTD-Oscillating tube-type densitometer, LP-Lipkin Pycnometers, PycPycnometers, Dil-Dilatometer, DBM-Density Bottle Method, OP-Ostwald Pycnometers, ICT- International
Critical Tables, TP-Two arm pycnometers, FD-Flow densimeter, SVTD-Sodev Vibrating Tube Densimeter,
SVFD-Sodev Vibrating Flow Densimeter, CTM-Capillary Tube Method, CVP-Constant volume piezometer,
SSP-single-stem pycnometers, BP-bi-capillary pycnometers, DB-Densimetric Balance, AB-Analytical
Balance.
Table S3: Deviations of literature data for densities ρ of CaCl2(aq), MgCl2(aq), NaCl(aq),
KCl(aq), and KI(aq) from the model developed in this work.
Ref
Tmin
K
Tmax
K
pmin
MPa
pmax
MPa
bmin
bmax
102∆AAD
-1
mol ⋅ kg mol ⋅ kg-1
102∆Bias
102∆MAD
N
CaCl2(aq)
1
5
9
10
20
1
5
9
1
6
8
9
13
1
4
7
8
12
13
16
17
18
19
323.15
398.15
323.18
472.95
323.16
450.13
321.90
371.96
348.15
473.15
298.15
298.15
≈298.15 ≈ 298.15
298.15
298.15
323.15
398.15
321.97
371.82
303.07
343.06
323.16
323.16
288.15
328.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
3.78
≈7.0
1.00
0.60
2.03
5.03
≈7.0
1.00
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
60
40.0
40.71
0.60
2.03
59.94
40.0
40.71
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.184
0.242
0.0497
0.030
0.05
0.184
0.242
0.050
0.184
1.456
0.987
0.050
0.05
0.184
0.022
0.300
3.821
0.101
0.050
0.033
0.050
0.010
0.013
6.007
6.150
6.424
0.985
1.00
6.007
6.150
4.980
6.007
5.541
5.902
6.424
6.00
6.007
7.878
2.000
5.902
4.980
6.000
6.286
6.464
0.984
0.328
0.063
0.056
0.066
0.053
0.009
0.068
0.039
0.020
0.120
0.052
0.051
0.041
0.042
0.103
0.069
0.103
0.080
0.055
0.040
0.081
0.095
0.007
0.007
0.042
0.042
-0.063
-0.053
0.004
0.038
0.029
-0.004
0.114
-0.052
0.042
0.000
-0.005
0.102
0.066
-0.003
0.080
0.051
-0.007
0.069
0.092
-0.003
-0.007
0.327
0.224
0.267
0.216
0.040
0.273
0.100
0.090
0.369
0.112
0.124
0.102
0.159
0.340
0.216
0.202
0.107
0.213
0.157
0.253
0.210
0.011
0.013
168
86
176
25
30
41
24
31
21
17
54
17
48
6
97
4
5
7
8
17
14
12
8
1.153
5.189
0.528
1.00
2.952
4.608
5.000
3.31
5.272
0.974
1.018
2.952
5.781
5.028
5.674
1.475
0.971
0.027
0.088
0.013
0.039
0.033
0.013
0.157
0.021
0.011
0.010
0.007
0.015
0.019
0.015
0.018
0.011
0.017
0.024
0.084
-0.013
-0.032
-0.033
-0.006
-0.157
0.011
0.001
-0.009
-0.002
-0.010
-0.018
0.013
0.012
-0.008
-0.017
0.118
0.204
0.021
0.112
0.059
0.053
0.350
0.051
0.032
0.025
0.028
0.022
0.041
0.041
0.049
0.020
0.021
52
25
20
24
26
59
36
24
65
54
41
7
19
11
10
27
10
MgCl2(aq)
21
6
10
20
12
22
13
15
24
26
27
12
23
17
25
26
18
369.36
297.05
297.19
348.15
298.15
308.15
288.15
303.15
278.15
273.15
273.15
298.15
298.15
298.15
298.15
298.15
298.15
450.07
371.82
371.82
473.15
298.15
368.15
328.15
318.15
318.15
308.15
323.15
298.15
298.15
298.15
298.15
298.15
298.15
10.17
0.6
0.6
2.03
10.38
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
30.58
0.6
0.6
2.03
40.55
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.031
0.442
0.108
0.1
0.0312
0.695
0.50
0.54
0.491
0.005
0.009
0.031
0.303
0.482
0.656
0.005
0.048
Ref
Tmin
K
Tmax
K
pmin
MPa
pmax
MPa
19
298.15
298.15
0.10
0.10
bmin
bmax
102∆AAD
-1
mol ⋅ kg mol ⋅ kg-1
0.004
102∆Bias
102∆MAD
N
0.341
0.011
-0.011
0.024
9
1.001
1.000
0.999
0.100
1.040
0.999
0.845
0.018
0.064
0.017
0.006
0.009
0.007
0.021
-0.012
0.015
0.005
0.005
0.004
0.007
-0.001
0.075
0.256
0.063
0.021
0.026
0.012
0.091
77
18
183
7
28
10
15
5.972
2.329
3.001
4.500
3.090
5.046
4.991
4.393
1.000
6.000
1.027
4.000
4.999
6.014
1.000
0.346
5.948
5.134
5.046
6.198
6.200
6.100
5.997
5.952
5.924
3.602
2.500
1.500
4.000
1.250
1.000
4.500
1.000
6.040
1.001
4.000
3.265
4.991
0.146
0.021
0.021
0.016
0.022
0.022
0.013
0.014
0.018
0.023
0.003
0.008
0.120
0.018
0.006
0.005
0.020
0.004
0.013
0.008
0.013
0.009
0.014
0.010
0.005
0.033
0.048
0.050
0.009
0.038
0.008
0.068
0.009
0.005
0.060
0.041
0.010
0.009
-0.133
-0.016
0.005
-0.006
-0.021
-0.008
-0.004
-0.009
-0.016
0.000
0.001
-0.004
0.056
0.007
-0.004
-0.005
0.009
0.000
0.008
-0.003
0.001
-0.007
0.003
-0.006
-0.003
0.023
0.040
-0.050
-0.009
0.038
-0.008
-0.019
-0.009
0.004
-0.060
0.020
0.001
-0.001
0.327
0.036
0.056
0.041
0.039
0.114
0.039
0.073
0.039
0.093
0.008
0.025
0.395
0.137
0.060
0.009
0.052
0.008
0.030
0.022
0.051
0.021
0.055
0.033
0.016
0.150
0.196
0.535
0.018
0.093
0.012
0.138
0.013
0.012
0.205
0.154
0.090
0.022
6
8
12
32
8
326
32
48
24
29
5
27
25
123
201
12
36
10
17
140
33
36
25
36
57
28
28
32
15
7
6
10
6
13
4
5
33
8
KI(aq)
28
32
29
30
31
18
33
278.15
348.15
278.15
296.02
297.19
298.15
278.15
368.15
423.15
338.15
321.1
373.17
298.15
338.15
0.35
2.03
0.10
0.10
0.6
0.1
0.1
0.35
2.03
0.10
0.10
0.6
0.1
0.1
0.015
0.100
0.100
0.050
0.010
0.049
0.221
NaCl(aq)
36
50
51
55
57
63
12
67
81
34
40
42
3
47
49
54
6
59
63
22
14
15
24
71
72
79
80
26
37
35
41
46
48
59
60
62
64
12
373.56
373.15
298.15
298.15
393.40
321.57
298.15
348.15
348.15
288.15
318.15
293.15
283.15
263.00
277.15
298.15
297.05
308.12
323.16
308.15
278.15
303.15
278.15
278.15
288.15
298.15
318.15
273.15
293.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
473.40
475.94
448.57
413.15
393.40
498.90
298.15
473.15
473.15
323.15
318.15
313.15
353.15
293.00
343.15
328.15
371.82
308.12
323.16
368.15
308.15
318.15
318.15
318.15
318.15
423.15
448.15
308.15
303.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
6.96
0.50
10.00
2.00
1.00
0.10
10.38
2.03
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
30.20
10.22
28.25
2.00
37.40
40.16
40.78
2.03
2.03
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
5.972
0.115
3.001
0.500
0.051
0.003
0.058
0.053
0.100
0.050
0.101
0.000
0.501
0.009
0.100
0.089
0.108
0.084
0.056
0.217
0.400
0.000
0.371
0.787
0.062
0.100
0.100
0.010
0.100
0.050
0.000
0.000
0.000
0.504
0.295
0.500
0.020
0.058
Ref
Tmin
K
Tmax
K
pmin
MPa
pmax
MPa
66
15
68
24
71
18
26
52
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
bmin
bmax
102∆AAD
-1
mol ⋅ kg mol ⋅ kg-1
0.012
0.000
0.279
0.378
0.995
0.010
0.010
0.022
102∆Bias
102∆MAD
N
1.844
6.100
5.105
5.993
5.952
1.000
1.500
6.024
0.005
0.020
0.010
0.006
0.014
0.008
0.006
0.008
-0.004
-0.020
-0.010
-0.005
-0.014
-0.008
-0.006
-0.001
0.011
0.030
0.032
0.012
0.032
0.011
0.011
0.026
17
9
10
21
17
12
25
54
1.000
3.012
2.013
4.632
1.003
4.500
3.608
1.000
0.828
4.000
4.501
5.229
0.100
4.500
0.477
0.600
4.500
0.997
3.012
4.818
1.005
4.500
3.993
4.400
1.025
3.308
0.020
0.014
0.003
0.032
0.009
0.010
0.036
0.009
0.011
0.099
0.010
0.094
0.010
0.007
0.001
0.006
0.007
0.051
0.037
0.013
0.010
0.009
0.024
0.030
0.015
0.005
-0.006
-0.013
0.003
-0.010
0.009
0.009
0.035
0.009
0.011
0.099
-0.003
-0.003
0.010
-0.006
0.000
0.006
-0.006
0.051
0.033
0.013
0.010
-0.008
0.015
-0.029
0.015
0.005
0.105
0.048
0.014
0.077
0.018
0.023
0.151
0.027
0.022
0.106
0.058
0.270
0.011
0.015
0.002
0.012
0.016
0.148
0.148
0.033
0.017
0.017
0.053
0.066
0.022
0.017
23
28
29
16
7
36
24
201
16
8
97
37
14
4
4
12
5
10
10
24
10
10
8
21
24
15
KCl(aq)
81
12
31
92
27
15
79
49
33
84
85
100
186
89
60
93
62
140
12
52
18
15
77
85
95
96
348.15
298.15
297.19
308.15
323.15
303.15
313.15
277.15
273.20
303.15
278.15
313.15
291.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
473.15
298.15
371.97
318.15
323.15
318.15
423.15
343.15
338.15
303.15
368.15
353.15
358.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
298.15
2.03
10.38
0.60
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
2.03
40.64
0.60
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.100
0.059
0.010
0.045
0.029
0.500
0.100
0.100
0.190
0.050
0.005
0.443
0.100
0.500
0.131
0.009
0.500
0.040
0.059
0.021
0.100
0.000
0.498
0.051
0.412
0.000
0.2
(b) 0.5
0.1
0.3
102 (∆ρ / ρ)
102(∆ρ/ρ)
(a)
0.0
-0.1
0.1
-0.1
-0.3
-0.5
-0.2
0.0
0.3
0.6
0.9
0
1.2
1
3
4
5
6
5
6
b/(mol.kg-1)
b/(mol.kg-1)
(d) 0.3
(c) 0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
102 (∆ρ/ ρ)
102 (∆ρ / ρ)
2
0
1
2
3
4
b/(mol.kg-1)
5
6
0.2
0.1
0.0
-0.1
-0.2
-0.3
0
1
2
3
4
b/(mol.kg-1)
Fig S1. Relative deviations ∆ρ/ρ of densities ρ from the present model for CaCl2(aq) as a
function of molaity b. (a): high p, high T, () Safarov et al,1 T = 323 K to 398 K, p = 5.7
MPa to 59.9 MPa. () Oakes et al.,5 T = 323 K to 473 K, p = 7.1 MPa to 41.5 MPa. ()
Gates and Wood,9 T = 323 K to 450 K, p = 1 MPa to 40.7 MPa. () Ellis,20 T = 348 K to 473
K, p = 2.0 MPa. (b): 0.1 MPa, 298.15 K, () Zhang et al.,4 () Oakes et al.,5 () Wimby
and Berntsson,8 () Gates and Wood,12 () Isono,13 () Kumar et al.,16 () Perron et al.,17
() Millero et al.,18 (c): 0.1 MPa, () Safarov et al.,1 T = 323 K to 398 K, () Yan et al.,2 T
= 288 to 288 K to 308 K, () Saluja et al.,6 T = 322 K to 372 K, () Wimby and
Berntsson,8 T = 292 K to 352 K, () Gates and Wood,9 T = 323 K, () Isono,13 T = 288 K
to 323 K. (d): 298.15 K, () Safarov et al.,1 p = 5.4 MPa to 59.9 MPa, () Oakes et al.,5 p
= 7.3 MPa and 42 MPa, () Gates and Wood,12 p = 10.4 MPa to 40.6 MPa.
(b) 0.10
0.05
102 (∆ρ / ρ)
102 (∆ρ /ρ)
(a) 0.10
0.00
-0.05
-0.10
0.05
0.00
-0.05
-0.10
0
1
2
3
4
5
0
1
2
4
5
b/(mol.kg-1)
b/(mol.kg-1)
(c) 0.02
(d) 0.20
0.00
102 (∆ρ / ρ)
102 (∆ρ / ρ)
3
-0.02
-0.04
-0.06
0
10
20
30
p/MPa
40
0.10
0.00
-0.10
-0.20
0
1
2
3
4
b/(mol.kg-1)
Fig. S2. Relative deviations ∆ρ/ρ of densities ρ from the present model for MgCl2 (aq) as a
function of molaity b. (a): p = 0.1 MPa, T = 298.15 K, () Gates and Wood,9 () Miller et
al.,23 () Perron,17() Phang,25 () Chen et al.,26 () Millero et al.,18 () Perron et al.,19.
(b): p = 0.1 MPa, () Connaughton et al.,22 T = 308 K to 368 K, () Isono,13 T = 288 K to
328 K, () Romanklw and Chou,15 T = 303 K to 318 K, () Surdo,24 T = 278 K to 318 K,
() Chen et al.,26 T = 273 K to 308 K, () Millero and Knox,27T = 273 K to 323 K. (c): T =
298.15 K, Gates and Wood,12 (), b = 0.031 mol·kg-1 , (), b = 0.252 mol·kg-1, (), b =
0.489 mol·kg-1 , (), b = 0.992 mol·kg-1 , () , b = 2.952 mol·kg-1 . (d): high p, high T, ()
Obsil et al.,21 T = 369 K to 450 K, p = 10.2 MPa to 30.6MPa, () Saluja et al.,6 T = 297 K to
372 K, p = 0.6 MPa, () Saluja and Leblanc,10 T = 297 K to 372 K, p = 0.6 MPa, ()
Ellis.,20 T = 348 K to 473 K, p = 2.0 MPa.
(a) 0.05
(b) 0.2
102 (∆ρ / ρ)
102 (∆ρ / ρ)
0.00
-0.05
0.1
0.0
-0.1
-0.10
-0.2
0.0
0.4
0.8
-1
b/(mol.kg )
0.0
0.2
0.4
0.6
0.8
1.0
b/(mol.kg-1)
Fig. S3. Relative deviations ∆ρ/ρ of densities ρ from the present model for KI (aq) as a
function of molaity b. (a): p = 0.1 MPa, () Apelblat and Manzurola,29 T = 278 K to 338 K,
() Lemire et al.,30 T = 296 K and 321 K, () Millero et al.,18 T = 298.15 K, () Dunn,33 T
= 278 K to 338 K. (b): () Swenson and Woolley.,28 T = 278 K to 368 K, p = 0.35 MPa, ()
Ellis,20 T = 348 K to 423 K, p = 2.0 MPa, () Saluja et al.,31 T = 297 K to 373 K, p = 0.6
MPa
Figure S4: Relative deviations ∆ρ/ρ of densities ρ from the present model for NaCl(aq) as a
function of molaity b. (a): 298.15 K, 0.1 MPa, () Singha and Sharmaa,35 () Soto et al.,41
() Chenlo et al46 () Zhuo et al.,48 () Oakes et al.,59 () Kawaizumi et al.,60 () 62, ()
Lankford and Criss,64 () Gates and Wood,12 () Lankford, et al.,66 () Romankiw and
Chou,15 () Alary et al.,68 () Surdo et al.,24 () Perron et al.,71 () Millero et al.,18 ()
Chen et al.,26 () Zhang and Han.52 (b): 0.1 MPa, T, () Sandengen and Kaasa,34 (288.15 to
323.15) K, () Mendonça et al.,40 (318.15 K), () Comesaña et al.,42 (293.15 to 313.15) K,
() Kiepe et al.,3 (283.15 to 353.15) K, () Mironenko et al.,47 (263.00 to 293.00) K, ()
Apelblat and Manzurola,49 (277.15 to 343.15) K, () Patel and Kishore,54 (298.15 to 328.15)
K, () Saluja et al.,6 (297.05 to 371.82) K, () Oakes et al.,59 (308.12) K, () Majer et al.,63
(323.16) K, () Connaughton et al.,22 (308.15 to 368.15) K, () Kumar and Atkinson,14
(278.15 to 308.15) K, () Romankiw and Chou,15 (303.15 to 318.15) K, () Surdo et al.,24
(278.15 to 318.15) K, () Perron et al.,71 (278.15 to 318.15) K, () Dessauges et al.,72
(288.15 to 318.15) K, () Korosi and Fabuss.,79 (298.15 to 423.15) K, ()Fabuss et al.,80
(318.15 to 448.15 ) K, () Chen et al.,26 (273.15 to 308.15) K, () Galleguillos et al.,37
(293.15 to 303.15) K. (c): high P, High T, () Corti and Simonson,36 (373.56 to 473.27) K
and (7.09 to 30.05) MPa, () Xiao and Trentaine,50 (373.18 to 475.94) K and (0.5 to 10.02)
MPa, () Sharygin and Wood,51 (298.15 to 448.57) K and (10.10 to 28.25) MPa, ()
Manohar et al.,55 (298.15 to 413.15) K and (2.0) MPa, () Majer et al.,58 (393.40) K and (1.0
to 37.40) MPa, () Majer et al.,63 (323.05 to 498.90) and (0.1 to 40.16) MPa, () Gates and
Wood,12 (298.15) K and (10.38 to 40.68) MPa, () Rogers et al.,67 (348.15 to 473.15) K and
(2.03) MPa, () Ellis,81 (348.15 to 473.15) K and (2.03) MPa.
Figure S5: Relative deviations ∆ρ/ρ of densities ρ from the present model for KCl(aq) as a
function of molaity b. (a): 298.15 K, 0.1 MPa, () Kumar,104 () MacInnes and Dayhoff,93
() Kawaizumi et al.,60 () Kumar,62 () Gates and Wood,12 () Zhang and Han,52 ()
Ruby and Kawai,101 () Millero et al.,18 () Romankiw and Chou.,15 () Ostroff et al.,77
() Dedick et al.,85 () Parton et al.,95 () Jones and Ray.96 (b): high P, High T, () Ellis,81
(348.15 to 473.15) K and (2.03) MPa, () Gates and Wood,12 (298.15) K and (10.38 to
40.64) MPa, () Saluja et al.,31 (297.19 to 371.97) K and (0.6) MPa. (c): 0.1 MPa, T, ()
Firth and Tyrrell,92 (308.15 to 318.15) K, () Millero and Knox,27 (323.15) K, ()
Romankiw and Chou,15 (303.15 to 318.15) K, () Korosi and Fabuss,79 (313.14 to 423.15)
K, () Apelblat and Manzurola,49 (277.15 to 343.15) K, () Dunn,33 (278.15 to 338.15) K,
() Galleguillos et al.,84 (303.15) K, () Dedick et al.,85 (278.15 to 368.15) K, () Harrison
and Perman.,100 (313.15 to 353.15), () Sulston,186 (291.15 to 358.15) K.
1180
ρ/kg·m-3
1130
1080
1030
980
0
1
2
3
4
5
6
b/kg·mol-1
Figure S6: Densities ρ of NaCl-KCl (aq) solution as a function of molality b at different
molar fractions of KCl y: () our work, y = 0.136. () Zhang,52 y = 0.251. () Zhang,52 y =
0.750. ()Zhang,52 y = 1.0.
References
1.
Safarov, J. T.; Najafov, G. N.; Shahverdiyev, A. N.; Hassel, E., (p,ρ,T) and (ps,ρs,Ts) properties,
and apparent molar volumes VØ of CaCl2 (aq) at T=298.15 to 398.15 K and at pressures up to
p=60 MPa. J. Mol. Liq. 2005, 116, (3), 165-174.
2.
Yan, Z.; Wang, J.; Kong, W.; Lu, J., Effect of temperature on volumetric and viscosity properties
of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilib. 2004, 215,
(2), 143-150.
3.
Kiepe, J.; Karine de Araújo Rodrigues, A.; Horstmann, S.; Gmehling, J., Experimental
determination and correlation of liquid density data of electrolyte mixtures containing water
or methanol. Ind. Eng. Chem. Res. 2003, 42, (9), 2022-2029.
4.
Zhang, H.-L.; Chen, G.-H.; Han, S.-J., Viscosity and density of H2O + NaCl + CaCl2 and H2O + KCl +
CaCl2 at 298.15 K. J. Chem. Eng. Data 1997, 42, (3), 526-530.
5.
Oakes, C. S.; Simonson, J. M.; Bodnar, R. J., Apparent molar volumes of aqueous calcium
chloride to 250°C, 400 bars, and from molalities of 0.242 to 6.150. J. Solution Chem. 1995, 24,
(9), 897-916.
6.
Saluja, P. P. S.; Jobe, D. J.; LeBlanc, J. C.; Lemire, R. J., Apparent molar heat capacities and
volumes of mixed electrolytes: [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) +
MgCl2(aq)]. J. Chem. Eng. Data 1995, 40, (2), 398-406.
7.
Oakes, C. S.; Bodnar, R. J.; Simonson, J. M.; Pitzer, K. S., CaCl2-H2O in the supercritical and twophase ranges Int. J. Thermophys. 1995, 16, (2), 483-492.
8.
Wimby, J. M.; Berntsson, T. S., Viscosity and density of aqueous solutions of lithium bromide,
lithium chloride, zinc bromide, calcium chloride and lithium nitrate. 1. Single salt solutions. J.
Chem. Eng. Data 1994, 39, (1), 68-72.
9.
Gates, J. A.; Wood, R. H., Density and apparent molar volume of aqueous calcium chloride at
323-600 K. J. Chem. Eng. Data 1989, 34, (1), 53-56.
10. Saluja, P. P. S.; LeBlanc, J. C., Apparent molar heat capacities and volumes of aqueous
solutions of magnesium chloride, calcium chloride, and strontium chloride at elevated
temperatures. J. Chem. Eng. Data 1987, 32, (1), 72-76.
11. Kumar, A., Densities and apparent molal volumes of aqueous concentrated calcium chloride
solutions from 50 to 200°C at 20.27 bar. J. Solution Chem. 1986, 15, (5), 409-412.
12. Gates, J. A.; Wood, R. H., Densities of aqueous solutions of sodium chloride, magnesium
chloride, potassium chloride, sodium bromide, lithium chloride, and calcium chloride from
0.05 to 5.0 mol·kg-1 and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 1985, 30, (1), 44-49.
13. Isono, T., Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte
solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium
chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and
cadmium nitrate. J. Chem. Eng. Data 1984, 29, (1), 45-52.
14. Kumar, A.; Atkinson, G., Thermodynamics of concentrated electrolyte mixtures. 3. Apparent
molal volumes, compressibilities, and expansibilities of sodium chloride-calcium chloride
mixtures from 5 to 35.degree.C. J. Phys. Chem. 1983, 87, (26), 5504-5507.
15. Romankiw, L. A.; Chou, I. M., Densities of aqueous sodium chloride, potassium chloride,
magnesium chloride, and calcium chloride binary solutions in the concentration range 0.5-6.1
m at 25, 30, 35, 40, and 45.degree.C. J. Chem. Eng. Data 1983, 28, (3), 300-305.
16. Kumar, A.; Atkinson, G.; Howell, R. D., Thermodynamics of concentrated electrolyte mixtures.
II. Densities and compressibilities of aqueous NaCl−CaCl2 at 25 °C. J. Solution Chem. 1982, 11,
(12), 857-870.
17. Gèrald Perron, A. R., Jacques E. Desnoyers, Heat capacities and volumes of NaCl, MgCl2, CaCl2,
and NiCl2 up to 6 molal in water. Can. J. Chem. 1981, 59, (21), 3049-3054.
18. Millero, F. J. W., Gary K.; Chetirkin, Peter V., Relative sound velocities of sea salts at 25°C. J.
Acoust. Soc. Am. 1977, 61, ( 6), 1492-1498.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
Gérald Perron, J. E. D., Frank J. Millero, Apparent molal volumes and heat capacities of alkaline
earth chlorides in water at 25°C. Can. J. Chem. 1974, 52, (22), 3738-3741.
Ellis, A. J., Partial molal volumes of MgCl2, CaCl2, SrCl2, and BaCl2 in aqueous solution to
200[degree]. J. Chem. Soc. A: Ino, Phy, Theo. 1967, 660-664.
Obsil, M.; Majer, V.; Hefter, G. T.; Hynek, V., Volumes of MgCl2(aq) at temperatures from 298
K to 623 K and pressures up to 30 MPa. J. Chem. Thermodyn. 1997, 29, (5), 575-593.
Connaughton, L.; Hershey, J.; Millero, F., PVT properties of concentrated aqueous electrolytes:
V. Densities and apparent molal volumes of the four major sea salts from dilute solution to
saturation and from 0 to 100°C. J. Solution Chem. 1986, 15, (12), 989-1002.
Miller, D. G.; Rard, J. A.; Eppstein, L. B.; Albright, J. G., Mutual diffusion coefficients and ionic
transport coefficients lij of magnesium chloride-water at 25.degree.C. J. Phys. Chem. 1984, 88,
(23), 5739-5748.
Surdo, A. L.; Alzola, E. M.; Millero, F. J., The (p, V, T) properties of concentrated aqueous
electrolytes I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2, and MgSO4
solutions from 0.1 mol·kg-1 to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn.
1982, 14, (7), 649-662.
Phang, S.; Stokes, R. H., Density, viscosity, conductance, and transference number of
concentrated aqueous magnesium chloride at 25°C. J. Solution Chem. 1980, 9, (7), 497-505.
Chen, C.-T. A.; Chen, J. H.; Millero, F. J., Densities of sodium chloride, magnesium chloride,
sodium sulfate, and magnesium sulfate aqueous solutions at 1 atm from 0 to 50.degree.C and
from 0.001 to 1.5 m. J. Chem. Eng. Data 1980, 25, (4), 307-310.
Millero, F. J.; Knox, J. H., Apparent molal volumes of aqueous sodium fluoride, sodium sulfate,
potassium chloride, potassium sulfate, magnesium chloride, and magnesium sulfate solutions
at 0.deg. and 50.deg. J. Chem. Eng. Data 1973, 18, (4), 407-411.
Swenson, D. M.; Woolley, E. M., Apparent molar volumes and apparent molar heat capacities
of aqueous KI, HIO3, NaIO3, and KIO3 at temperatures from 278.15 K to 393.15 K and at the
pressure 0.35 MPa. J. Chem. Thermodyn. 2008, 40, (1), 54-66.
Apelblat, A.; Manzurola, E., Volumetric and thermal properties of some aqueous electrolyte
solutions: Part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol·kg-1 solutions
at temperatures from T=278.15 to 338.15 K. J. Mol. Liq. 2005, 118, (1-3), 77-88.
Lemire, R. J.; Campbell, A. B.; Saluja, P. P. S.; LeBlanc, J. C., Heat capacities and densities of
electrolyte mixtures in aqueous solution __ Application to the determination of apparent molar
heat capacities and volumes for potassium triiodide and dioxoneptunium(V) perchlorate. J.
Nucl. Mater. 1993, 201, 165-175.
Saluja, P. P. S.; Lemire, R. J.; LeBlanc, J. C., High-temperature thermodynamics of aqueous
alkali-metal salts. J. Chem. Thermodyn. 1992, 24, (2), 181-203.
Ellis, A. J., Partial molal volumes in high-temperature water. Part III. Halide and oxyanion salts.
J. Chem. Soc. A: Ino, Phy, Theo. 1968, 1138-1143.
Dunn, L. A., Apparent molar volumes of electrolytes. Part 3.-Some 1-1 and 2-1 electrolytes in
aqueous solution at 0, 5, 15, 35, 45, 55 and 65 [degree]C. Transactions of the Faraday Society
1968, 64, 2951-2961.
Sandengen, K.; Kaasa, B., Estimation of monoethylene Glycol (MEG) content in water + MEG +
NaCl + NaHCO3 solutions. J. Chem. Eng. Data 2006, 51, (2), 443-447.
Singha, M.; Sharmaa, Y. K., Applications of activation energy and transition state theory for
nucleos(t)ides and furanose helix puckering interactions in aqueous medium from 288.15 to
298.15K Phys. Chem. Liq. 2006, 44, (1), 1-14.
Corti, H.; Simonson, J., Densities and apparent molar volumes of NaOH(aq) to the temperature
623 K and pressure to 30 MPa. J. Solution Chem. 2006, 35, (8), 1057-1074.
Galleguillos, H. R.; Molina, M. A.; Graber, T. A.; Taboada, M. E.; Hernández-Luis, F.,
Experimental determination of densities of aqueous electrolyte mixtures containing B(OH)3 or
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
Na2B4O7 and their correlation with the Pitzer model. Ind. Eng. Chem. Res. 2006, 45, (19), 66046613.
Riyazuddeen; Bansal, G. K., Intermolecular/interionic interactions in l-leucine-, l-asparagine-,
and glycylglycine-aqueous electrolyte systems. Thermochim. Acta 2006, 445, (1), 40-48.
Tromans, A.; Königsberger, E.; May, P. M.; Hefter, G., Heat capacities and volumes of aqueous
dicarboxylate salt solutions of relevance to the bayer process. J. Chem. Eng. Data 2005, 50, (6),
2019-2025.
Mendonça, Â. F. S. S.; Magalhães, S. R. J.; Rodrigues, S. I. M.; Lampreia, I. M. S., Apparent
molar volumes of proline-leucine dipeptide in NaCl aqueous solutions at 318.15 K. J. Solution
Chem. 2005, 34, (1), 25-32.
Soto, A.; Arce, A.; Khoshkbarchi, M. K., Thermodynamics of diglycine and triglycine in aqueous
NaCl solutions: Apparent molar volume, isentropic compressibility, and refractive index. J.
Solution Chem. 2004, 33, (1), 11-21.
Comesaña, J. F.; Otero, J. J.; García, E.; Correa, A., Densities and viscosities of ternary systems
of water + glucose + sodium chloride at several temperatures. J. Chem. Eng. Data 2003, 48,
(2), 362-366.
Rodríguez, H.; Soto, A.; Arce, A.; Khoshkbarchi, M. K., Apparent molar volume, isentropic
compressibility, refractive index, and viscosity of DL-alanine in aqueous NaCl solutions. J.
Solution Chem. 2003, 32, (1), 53-63.
Galleguillos, H. R.; Taboada, M. E.; Graber, T. A.; Bolado, S., Compositions, densities, and
refractive indices of potassium chloride + ethanol + water and sodium chloride + ethanol +
water solutions at (298.15 and 313.15) K. J. Chem. Eng. Data 2003, 48, (2), 405-410.
Zhao, H.-K.; Luo, T.-L.; Ren, B.-Z.; Li, J.; Liu, G.-J.; Wang, H.-X., Phase diagram of the quaternary
system sodium sulfate + sodium chloride + hydrogen peroxide + water and Its subsystems:
experimental data. J. Chem. Eng. Data 2003, 48, (6), 1540-1543.
Chenlo, F.; Moreira, R.; Pereira, G.; Ampudia, A., Viscosities of aqueous solutions of sucrose
and sodium chloride of interest in osmotic dehydration processes. J. Food Eng. 2002, 54, (4),
347-352.
Mironenko, M. V.; Boitnott, G. E.; Grant, S. A.; Sletten, R. S., Experimental determination of
the volumetric properties of NaCl solutions to 253 K. J. Phys. Chem. B 2001, 105, (41), 99099912.
Zhuo, K.; Wang, J.; Yue, Y.; Wang, H., Volumetric properties for the monosaccharide (d-xylose,
d-arabinose, d-glucose, d-galactose)-NaCl-water systems at 298.15 K. Carbohydr. Res. 2000,
328, (3), 383-391.
Apelblat, A.; Manzurola, E., Volumetric properties of water, and solutions of sodium chloride
and potassium chloride at temperatures fromT = 277.15 K toT = 343.15 K at molalities of (0.1,
0.5, and 1.0)mol·kg - 1. J. Chem. Thermodyn. 1999, 31, (7), 869-893.
Xiao, C.; Trentaine, P., Apparent molar volumes of aqueous sodium trifluoromethanesulfonate
and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. J. Solution
Chem. 1997, 26, (3), 277-294.
Sharygin, A. V.; Wood, R. H., Volumes and heat capacities of aqueous solutions of ammonium
chloride from the temperatures 298.15 K to 623 K and pressures to 28 MPa. J. Chem.
Thermodyn. 1996, 28, (8), 851-872.
Zhang; Han, Viscosity and density of water + sodium chloride + potassium chloride solutions at
298.15 K. J. Chem. Eng. Data 1996, 41, (3), 516-520.
Guetachew, T.; Ye, S.; Mokbel, I.; Jose, J.; Xans, P., Study of NaCl solutions in a mixed solvent
H2O-CH3OH: Experimental densities and comparison with calculated values obtained with a
modified Pitzer's model. J. Solution Chem. 1996, 25, (9), 895-903.
Patel, S. G.; Kishore, N., Thermodynamics of nucleic acid bases and nucleosides in water from
25 to 55°C. J. Solution Chem. 1995, 24, (1), 25-38.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
Manohar, S.; Puchalska, D.; Atkinson, G., Pressure-volume-temperature properties of aqueous
mixed electrolyte solutions: sodium chloride + barium chloride from 25 to 140.degree.C. J.
Chem. Eng. Data 1994, 39, (1), 150-154.
Crovetto, R.; Lvov, S. N.; Wood, R. H., Vapor pressures and densities of NaCl(aq) and KCl(aq) at
the temperature 623 K and CaCl2(aq) at the temperatures 623 K and 643 K. J. Chem.
Thermodyn. 1993, 25, (1), 127-138.
Majer, V.; Hui, L.; Crovetto, R.; Wood, R. H., Volumetric properties of aqueous 1-1 electrolyte
solutions near and above the critical temperature of water I. Densities and apparent molar
volumes of NaCl(aq) from 0.0025 mol·kg-1 to 3.1 mol·kg-1, 604.4 K to 725.5 K, and 18.5 MPa to
38.0 MPa. J. Chem. Thermodyn. 1991, 23, (3), 213-229.
Majer, V.; Crovetto, R.; Wood, R. H., A new version of vibrating-tube flow densitometer for
measurements at temperatures up to 730 K. J. Chem. Thermodyn. 1991, 23, (4), 333-344.
Oakes, C. S.; Simonson, J. M.; Bodnar, R. J., The system sodium chloride-calcium chloridewater. 2. Densities for ionic strengths 0.1-19.2 mol·kg-1 at 298.15 and 308.15 and at 0.1 MPa. J.
Chem. Eng. Data 1990, 35, (3), 304-309.
Kawaizumi, F.; Nakao, F.; Nomura, H., Partial molar volumes and compressibilities of 1-1 type
chlorides, bromides, tetraphenylphosphonium chloride, and sodium tetraphenylborate in
water-acetone mixtures. J. Chem. Eng. Data 1988, 33, (2), 204-211.
Kumar, A., Mixtures of 1-1 electrolytes: Densities and excess volumes of aqueous NaCl-NaBr
solutions at 25°C. Monatshefte für Chemie / Chemical Monthly 1988, 119, (11), 1201-1206.
Kumar, A., Mixture densities of aqueous potassium chloride with sodium chloride up to ionic
strength 4.5 mol·kg-1 and at 298.15 K. J. Chem. Eng. Data 1988, 33, (2), 198-199.
Majer, V.; Gates, J. A.; Inglese, A.; Wood, R. H., Volumetric properties of aqueous NaCl
solutions from 0.0025 to 5.0 mol·kg-1, 323 to 600 K, and 0.1 to 40 MPa. J. Chem. Thermodyn.
1988, 20, (8), 949-968.
Lankford, J. I.; Criss, C. M., Partial molar heat capacities of selected electrolytes and benzene in
methanol and dimethylsulfoxide at 25, 40, and 80°C. J. Solution Chem. 1987, 16, (11), 885-906.
Kumar, A., Densities and apparent molar volumes of aqueous NaCl–KBr mixtures at 298.15 K.
Can. J. Chem. 1985, 63, (11), 3200-3202.
Lankford, J. I.; Holladay, W. T.; Criss, C. M., Isentropic compressibilities of univalent
electrolytes in methanol at 25°C. J. Solution Chem. 1984, 13, (10), 699-720.
Rogers, P. S. Z.; Bradley, D. J.; Pitzer, K. S., Densities of aqueous sodium chloride solutions from
75 to 200.degree.C at 20 bar. J. Chem. Eng. Data 1982, 27, (1), 47-50.
Alary, J. F.; Simard, M. A.; Dumont, J.; Jolicoeur, C., Simultaneous flow measurement of
specific heats and thermal expansion coefficients of liquids: Aqueous t=BuOH mixtures and
neat alkanols and alkanediols at 25°C. J. Solution Chem. 1982, 11, (11), 755-776.
Grant-Taylor, D. F., Partial molar volumes of sodium chloride solutions at 200 bar, and
temperatures from 175 to 350°C. J. Solution Chem. 1981, 10, (9), 621-630.
Simard, M.-A.; Fortier, J.-L., Heat capacity measurements of liquids with a Picker mixing flow
microcalorimeter. Can. J. Chem. 1981, 59, (22), 3208-3211.
Perron, G.; Roux, A.; Desnoyers, J. E., Heat capacities and volumes of NaCl, MgCl2, CaCl2, and
NiCl2 up to 6 molal in water. Can. J. Chem. 1981, 59, (21), 3049-3054.
Dessauges, G.; Miljevic, N.; Van Hook, W. A., Isotope effects in aqueous systems. 9. Partial
molar volumes of sodium chloride/water and sodium chloride/water-d2 solutions at 15, 30,
and 45.degree.C. J. Phys. Chem. 1980, 84, (20), 2587-2595.
Jelinek, R. M.; Leopold, H., Präzisionsmessung der dichte einiger organischer flüssigkeiten nach
der biegeschwingermethode. Monatshefte für Chemie / Chemical Monthly 1978, 109, (2), 387393.
Millero, F. J. W., Gary K.; Chetirkin, Peter V. , Relative sound velocities of sea salts at 25°C. The
Journal of the Acoustical Society of America, 1977, 61, (6), 1492-1498.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
Millero, F.; Hoff, E.; Kahn, L., The effect of pressure on the ionization of water at various
temperatures from molal-volume data1. J. Solution Chem. 1972, 1, (4), 309-327.
Millero, F. J., The apparent and partial molal volume of aqueous sodium chloride solutions at
various temperatures. J. Phys. Chem. 1970, 74, (2), 356-362.
Ostroff, A. G.; Snowden, B. S.; Woessner, D. E., Viscosities of protonated and deuterated water
solutions of alkali metal chlorides. J. Phys. Chem. 1969, 73, (8), 2784-2785.
Wirth, H. E.; LoSurdo, A., Temperature dependence of volume changes on mixing electrolyte
solutions. J. Chem. Eng. Data 1968, 13, (2), 226-231.
Korosi, A.; Fabuss, B. M., Viscosities of binary aqueous solutions of sodium chloride, potassium
chloride, sodium sulfate, and magnesium sulfate at concentrations and temperatures of
interest in desalination processes. J. Chem. Eng. Data 1968, 13, (4), 548-552.
Fabuss, B. M.; Korosi, A.; Hug, A. K. M. S., Densities of binary and ternary aqueous solutions of
NaCl, Na2SO4 and MgSO4 of sea waters, and sea water concentrates. J. Chem. Eng. Data 1966,
11, (3), 325-331.
Ellis, A. J., Partial molal volumes of alkali chlorides in aqueous solution to 200[degree]. J.
Chem. Soc. A: Ino, Phy, Theo. 1966, 1579-1584.
Deng, T.; Li, D.; Wang, S., Metastable phase equilibrium in the aqueous ternary system
(KCl−CaCl2−H2O) at (288.15 and 308.15) K. J. Chem. Eng. Data 2008, 53, (4), 1007-1011.
Venkatesu, P.; Lee, M.-J.; Lin, H.-m., Densities of aqueous solutions containing model
compounds of amino acids and ionic salts at T = 298.15 K. J. Chem. Thermodyn. 2007, 39, (8),
1206-1216.
Galleguillos, H. R.; Flores, E. K.; Aguirre, C. E., Density and refractive index for boric acid +
potassium chloride + water and disodium tetraborate + potassium chloride + water systems at
(20, 25, and 30) °C. J. Chem. Eng. Data 2001, 46, (6), 1632-1634.
Dedick, E.; Hershey, J.; Sotolongo, S.; Stade, D.; Millero, F., The PVT properties of concentrated
aqueous electrolytes IX. The volume properties of KCl and K2SO4 and their mixtures with NaCl
and Na2SO4 as a function of temperature. J. Solution Chem. 1990, 19, (4), 353-374.
Kumar, A., The mixture densities and volumes of aqueous potassium chloride-magnesium
chloride up to ionic strength of 4.5 mol·kg-1 and at 298.15 K. J. Chem. Eng. Data 1989, 34, (1),
87-89.
Kumar, A., Densities and excess volumes of aqueous potassium chloride-sodium bromide up
to ionic strength of 4 mol·kg-1. J. Chem. Eng. Data 1989, 34, (4), 446-447.
Kumar, A., Concentrated mixtures of 1:1 electrolytes: densities and excess volumes of
aqueous KBr with KCl and NaBr. Bull. Chem. Soc. Jpn. 1989, 62, (10), 3311-3314.
Kumar, A., Densities and apparent molal volumes of aqueous potassium chloride-calcium
chloride mixtures at 298.15 K. J. Chem. Eng. Data 1986, 31, (1), 21-23.
Millero, F., Relative sound velocities of sea salts at 25°C J. Acoust. Soc. Am. 1977, 61, (6), 14921498.
Gucker, F. T.; Stubley, D.; Hill, D. J., The isentropic compressibilities of aqueous solutions of
some alkali halides at 298.15 K. J. Chem. Thermodyn. 1975, 7, (9), 865-873.
Firth, J. G.; Tyrrell, H. J. V., 381. Diffusion coefficients for aqueous silver nitrate solutions at
25[degree], 35[degree], and 45[degree] from diaphragm-cell measurements. Journal of the
Chemical Society (Resumed) 1962, 2042-2047.
MacInnes, D. A.; Dayhoff, M. O., The partial molal volumes of potassium chloride, potassium
and sodium iodides and of iodine in aqueous solution at 25°C. J. Am. Chem. Soc. 1952, 74, (4),
1017-1020.
Halasey, S. M. E., Partial molal volumes of potassium salts of the hofmeister series. J. Phys.
Chem. 1941, 45, (8), 1252-1263.
Parton, H. N.; Robinson, R. A.; Metson, A. J., Anomalies in aqueous solutions of potassium
chloride and lead chloride. Transactions of the Faraday Society 1939, 35, 402-412.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
Jones, G.; Ray, W. A., The surface tension of solutions of electrolytes as a function of the
concentration. I. A differential method for measuring relative surface tension. J. Am. Chem.
Soc. 1937, 59, (1), 187-198.
Lanman, E. H.; Mair, B. J., The compressibility of aqueous solutions. J. Am. Chem. Soc. 1934,
56, (2), 390-393.
Jones, G.; Talley, S. K., The viscosity of aqueous solutions as a function of the concentration. II.
Potassium bromide and potassium chloride. J. Am. Chem. Soc. 1933, 55, (10), 4124-4125.
Jones, G.; Talley, S. K., The viscosity of aqueous solutions as a function of the concentration. J.
Am. Chem. Soc. 1933, 55, (2), 624-642.
Harrison, W. R.; Perman, E. P., Vapour pressure and heat of dilution of aqueous solutions.
Transactions of the Faraday Society 1927, 23, 1-22.
Ruby, C. E.; Kawai, J., the densities, equivalent conductances and relative viscosities at 25°C of
solutions of hydrochloric acid, potassium chloride and sodium chloride, and the binary and
ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 1926, 48, (5),
1119-1128.
Haigh, F. L., Certain physical properties of the alkali nitrates and chlorides. J. Am. Chem. Soc.
1912, 34, (9), 1137-1159.
Peña, M. P.; Vercher, E.; Martínez-Andreu, A., Apparent molar volumes of strontium chloride
in ethanol + water at 298.15 K. J. Chem. Eng. Data 1997, 42, (1), 187-189.
Kumar, A., Densities of aqueous strontium chloride solutions up to 200.degree.C and at 20
bar. J. Chem. Eng. Data 1986, 31, (3), 347-349.
Rard, J. A.; Miller, D. G., Mutual diffusion coefficients of SrCl2-H2O and CsCl-H2O at 25
[degree]C from Rayleigh interferometry. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond
Phas 1982, 78, (3), 887-896.
Perron, G.; Desnoyers, J. E.; Millero, F. J., Apparent molal volumes and heat capacities of
alkaline earth chlorides in water at 25°C. Can. J. Chem. 1974, 52, (22), 3738-3741.
Bateman, R. L., The apparent molal volume of strontium chloride in ethanol—water mixtures.
J. Am. Chem. Soc. 1949, 71, (7), 2291-2293.
Shedlovsky, T.; Brown, A. S., The electrolytic conductivity of alkaline earth chlorides in water at
25°C. J. Am. Chem. Soc. 1934, 56, (5), 1066-1071.
Puchalska, D.; Atkinson, G., Densities and apparent molal volumes of aqueous BaCl2 solutions
from 15 to 140 .degree.C and from 1 to 200 bar. J. Chem. Eng. Data 1991, 36, (4), 449-452.
Dunn, L. A., Apparent molar volumes of electrolytes. Part 1.-Some 1-1, 1-2, 2-1, 3-1
electrolytes in aqueous solution at 25[degree]C. Transactions of the Faraday Society 1966, 62,
2348-2354.
Bateman, R. L., The apparent molal volume of barium chloride in ethanol—water mixtures. J.
Am. Chem. Soc. 1952, 74, (21), 5516-5516.
Jones, G.; Ray, W. A., The surface tension of solutions of electrolytes as a function of the
concentration II*. J. Am. Chem. Soc. 1941, 63, (1), 288-294.
Kidokoro, M., The interfacial tension between hexane and aqueous salt solutions. Bull. Chem.
Soc. Jpn. 1932, 7, (8), 280-286.
Jones, G.; Dole, M., The viscosity of aqueous solutions of strong electrolytes with special
reference to barium chloride. J. Am. Chem. Soc. 1929, 51, (10), 2950-2964.
Jones, G.; Dole, M., The electrical conductance of aqueous solutions of barium chloride as a
function of the concentration. J. Am. Chem. Soc. 1930, 52, (6), 2245-2256.
Abdulagatov, I. M.; Azizov, N. D., Densities and apparent molar volumes of concentrated
aqueous LiCl solutions at high temperatures and high pressures. Chem. Geol. 2006, 230, (1-2),
22-41.
Vercher, E.; Solsona, S.; Isabel Vázquez, M.; Martínez-Andreu, A., Apparent molar volumes of
lithium chloride in 1-propanol + water in the temperature range from 288.15 to 318.15 K.
Fluid Phase Equilib. 2003, 209, (1), 95-111.
118. Gruszkiewicz, M. S.; Wood, R. H., Conductance of dilute LiCl, NaCl, NaBr, and CsBr solutions in
supercritical water using a flow conductance cell. J. Phys. Chem. 1997, 101, (33), 6549-6559.
119. Palaiologou, M. M.; Molinou, I. E.; Tsierkezos, N. G., Viscosity studies on lithium bromide in
water + dimethyl sulfoxide mixtures at 278.15 K and 293.15 K. J. Chem. Eng. Data 2002, 47,
(5), 1285-1289.
120. Rohman, N.; Dass, N. N.; Mahiuddin, S., Isentropic compressibility, effective pressure, classical
sound absorption and shear relaxation time of aqueous lithium bromide, sodium bromide and
potassium bromide solutions. J. Mol. Liq. 2002, 100, (3), 265-290.
121. Esteso, M. A.; Esparza, M.; Grandoso, D. M.; Gonzalez-Diaz, O. M., Transference number
measurements in aqueous solutions at 25.degree.C. 3. Lithium bromide. J. Chem. Eng. Data
1987, 32, (4), 474-476.
122. Fried, I.; Segal, M., Electrical conductivity of concentrated lithium bromide aqueous solutions.
J. Chem. Eng. Data 1983, 28, (1), 127-130.
123. Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C., Apparent molal volumes of alkali halides in
water at 25.deg.. Influence of structural hydration interactions on the concentration
dependence. J. Phys. Chem. 1969, 73, (10), 3346-3351.
124. Sanmamed, Y. A.; González-Salgado, D.; Troncoso, J.; Cerdeiriña, C. A.; Romaní, L., Viscosityinduced errors in the density determination of room temperature ionic liquids using vibrating
tube densitometry. Fluid Phase Equilib. 2007, 252, (1-2), 96-102.
125. Sanmamed, Y. A.; Dopazo-Paz, A.; González-Salgado, D.; Troncoso, J.; Romaní, L., An accurate
calibration method for high pressure vibrating tube densimeters in the density interval (700 to
1600) kg · m-3. J. Chem. Thermodyn. 2009, 41, (9), 1060-1068.
126. Yang, L.; Zhuo, K.; Zhao, Y.; Wang, J., Thermodynamics of the Interaction between electrolyte
(CaCl2, NaCl, NaBr, NaI) and monosaccharide (D-mannose, D-ribose) in water at 298.15 K. Z.
Phys. Chem. 2004, 218, (3-2004), 349-362.
127. Nikam, P. S.; Shewale, R. P.; Sawant, A. B.; Hasan, M., Limiting ionic partial molar volumes and
viscosities of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I-, and BPh4- in aqueous acetone at 308.15 K. J. Chem.
Eng. Data 2005, 50, (2), 487-491.
128. Nikam, P. S.; Hasan, M.; Shewale, R. P.; Sawant, A. B., Limiting ionic partial molar volumes and
viscosities of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I-, and BPh4- in aqueous acetone at 308.15 K. J.
Solution Chem. 2003, 32, (11), 987-995.
129. Hakin, A. W.; Liu, J. L.; Marriott, R. A., An investigation of the volumetric properties of -alanine
and sodium bromide in water at elevated temperatures and pressures. J. Chem. Thermodyn.
2000, 32, (10), 1355-1380.
130. Majer, V.; Hui, L.; Crovetto, R.; Wood, R. H., Volumetric properties of aqueous 1-1 electrolyte
solutions near and above the critical temperature of water II. Densities and apparent molar
volumes of LiCl(aq) and NaBr(aq) at molalities from 0.0025 mol·kg-1 to 3.0 mol·kg-1,
temperatures from 604.4 K to 725.5 K, and pressures from 18.5 MPa to 38.0 MPa. J. Chem.
Thermodyn. 1991, 23, (4), 365-378.
131. Majer, V.; Inglese, A.; Wood, R. H., Volumetric properties of NaBr(aq, m = 0.05 to 3.0 mol·kg-1,
T = 322 to 550 K, p = 0.8 to 32.6 MPa). J. Chem. Thermodyn. 1989, 21, (4), 397-406.
132. Grzybkowski, W.; Atkinson, G., Thermodynamics of concentrated electrolyte mixtures. Part 8.
Apparent molal volumes, adiabatic compressibilities, and hydration numbers of aqueous zinc
bromide, calcium bromide, and sodium bromide at 25.degree.C. J. Chem. Eng. Data 1986, 31,
(3), 309-312.
133. Sacco, A.; de Giglio, A.; Dell'atti, A.; Petrella, M., Ionic B coefficients in water at 30, 40 and 50
[degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1981, 77, (11), 2693-2699.
134. Quist, A. S.; Marshall, W. L., Electrical conductances of aqueous sodium bromide solutions
from 0 to 800.deg. and at pressures to 4000 bars. J. Phys. Chem. 1968, 72, (6), 2100-2105.
135. Abdulagatov, I. M.; Azizov, N. D., Densities, apparent and partial molar volumes of aqueous
KBr solutions at high temperatures and high pressures. Fluid Phase Equilib. 2006, 246, (1-2),
96-110.
136. Nikam, P. S.; Sawant, A. B., Viscosity of potassium halides and symmetrical
tetraalkylammonium bromides in acetonitrile + water mixtures at 298.15 K. J. Chem. Eng. Data
1997, 42, (6), 1151-1156.
137. Mulcahy, D. E.; Steel, B. J., Relative viscosity and density data for some alkali halides in
aqueous 20% sucrose solution at 25.degree.C. J. Chem. Eng. Data 1985, 30, (2), 191-194.
138. Dunn, L. A., Apparent molar volumes of electrolytes. Part 2.-Some 1-1 electrolytes in aqueous
solution at 25[degree]C. Transactions of the Faraday Society 1968, 64, 1898-1903.
139. Jones, G.; Stauffer, R. E., The viscosity of solutions of electrolytes as a function of the
concentration. VI. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 1940, 62, (2),
335-337.
140. Wirth, H. E., The partial molal volumes of potassium chloride, potassium bromide and
potassium sulfate in sodium chloride solutions. J. Am. Chem. Soc. 1937, 59, (12), 2549-2554.
141. Jones, G.; Bickford, C. F., The conductance of aqueous solutions as a function of the
concentration. I. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 1934, 56, (3),
602-611.
142. Rakowsky, F., Low-temperature electrolytes. J. Electrochem. Soc. 1954, 101, (3), 117.
143. Pedersen, T.; Dethlefsen, C.; Hvidt, A., Volumetric properties of aqueous solutions of alkali
halides. Carlsberg Research Communications 1984, 49, (3), 445-455.
144. Majer, V.; Obšil, M.; Hefter, G.; Grolier, J.-P., Volumetric behavior of aqueous NaF and KF
solutions up to 350 °C and 30 MPa. J. Solution Chem. 1997, 26, (9), 847-875.
145. Buchner, R.; Hefter, G. T.; Barthel, J., Dielectric relaxation of aqueous NaF and KF solutions. J.
Chem. Soc., Faraday Trans. 1994, 90, (17), 2475-2479.
146. Payne, J. H., The solubility of lithium and sodium fluorides. J. Am. Chem. Soc. 1937, 59, (5),
947-947.
147. Safarov, J., (p, ρ, T) and (ps, ρs, Ts) properties, and apparent molar volumes VØ of LiI (aq) at
T = 298.15 to 398.15 K and at pressures up to p = 60 MPa. J. Mol. Liq. 2006, 123, (2-3), 139145.
148. Abdulagatov, I. M.; Azizov, N. D., Densities and apparent molar volumes of aqueous LiI
solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa. J. Chem.
Thermodyn. 2004, 36, (10), 829-843.
149. Salavera, D.; Esteve, X.; Patil, K. R.; Mainar, A. M.; Coronas, A., Solubility, heat capacity, and
density of lithium bromide + lithium iodide + lithium nitrate + lithium chloride aqueous
solutions at several compositions and temperatures. J. Chem. Eng. Data 2004, 49, (3), 613619.
150. Zhuo, K.; Wang, J.; Zheng, H.; Xuan, X.; Zhao, Y., Volumetric parameters of Interaction of
monosaccharides (D-xylose, D-arabinose, D-glucose, D-galactose) with NaI in water at 298.15
K. J. Solution Chem. 2005, 34, (2), 155-170.
151. Kacperska, A.; Taniewska-Osinska, S.; Bald, A.; Szejgis, A., Influence of ionic association on the
B coefficient of the Jones-Dole equation for NaI in water-t-butyl alcohol mixtures at 26
[degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1989, 85, (12), 4147-4155.
152. Nowicka, B.; Kacperska, A.; Barczynska, J.; Bald, A.; Taniewska-Osinska, S., Viscosity of
solutions of NaI and CaCl2 in water-ethanol and of Nai in water-tetrahydrofuran mixtures. J.
Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1988, 84, (11), 3877-3884.
153. Dunn, L. A.; Marshall, W. L., Electrical conductances of aqueous sodium iodide and the
comparative thermodynamic behavior of aqueous sodium halide solutions to 800.deg. and
4000 bars. J. Phys. Chem. 1969, 73, (3), 723-728.
154. R. E. Robertson, S. E. S., R. Tse, C.-Y. Wu, E solvent isotope effect and the partial molar volume
of ions. Can. J. Chem. 1966, 44, (4), 487-494.
155. Lasselle, P. A.; Aston, J. G., The conductivity of sodium iodide solutions at 25°C and the limiting
conductance of the iodide ion. J. Am. Chem. Soc. 1933, 55, (8), 3067-3071.
156. Hervello, M. F.; Sánchez, A., Densities of (lithium, magnesium, or copper(II)) sulfates in
ethanol−water solutions. J. Chem. Eng. Data 2007, 52, (3), 906-909.
157. Carton, A.; Sobron, F.; Bolado, S.; Gerboles, J. I., Density, viscosity, and electrical conductivity
of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 1995, 40, (4), 987-991.
158. Pearce, J. N.; Eckstrom, H. C., Vapor pressures and partial molal volumes of aqueous solutions
of the alkali sulfates at 25°C. J. Am. Chem. Soc. 1937, 59, (12), 2689-2691.
159. Banipal, P. K.; Dhanjun, H. S.; Sharma, S.; Hundal, H.; Banipal, T. S., Effect of sodium sulphate
on the volumetric, rheological and refractometric properties of some disaccharides in aqueous
solutions at different temperatures. Z. Phys. Chem. 2008, 222, (1), 177-204.
160. Zhuo, K.; Chen, Y.; Wang, W.; Wang, J., Volumetric and viscosity properties of MgSO4/CuSO4 in
sucrose + water solutions at 298.15 K. J. Chem. Eng. Data 2008, 53, (9), 2022-2028.
161. Hervello, M. F.; Sánchez, A., Densities of univalent cation sulfates in ethanol + water solutions.
J. Chem. Eng. Data 2007, 52, (3), 752-756.
162. Obšil, M.; Majer, V.; Hefter, G. T.; Hynek, V., Densities and apparent molar volumes of
Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa.
J. Chem. Eng. Data 1997, 42, (1), 137-142.
163. Sanchez, M. M.; Dominguez, B.; Raposo, R. R.; Vivo, A., Densities and molar volumes of Na2SO4
and MgSO4 in ethanol + water mixtures at 15, 25, and 35 .degree.C. J. Chem. Eng. Data 1994,
39, (3), 453-456.
164. Phutela, R. C.; Pitzer, K. S., Densities and apparent molar volumes of aqueous magnesium
sulfate and sodium sulfate to 473 K and 100 bar. J. Chem. Eng. Data 1986, 31, (3), 320-327.
165. Millero, F. J.; Connaughton, L. M.; Vinokurova, F.; Chetirkin, P. V., PVT properties of
concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts at I=1.0
and 3.0 at 25°C. J. Solution Chem. 1985, 14, (12), 837-851.
166. Rogers, P. S. Z.; Pitzer, K. S., High-temperature thermodynamic properties of aqueous sodium
sulfate solutions. J. Phys. Chem. 1981, 85, (20), 2886-2895.
167. Fleischmann, W.; Mersmann, A., Solubility, density and viscosity for sodium sulfate-methanolwater systems. J. Chem. Eng. Data 1984, 29, (4), 452-456.
168. Quintana, C.; Llorente, M. L.; Sanchez, M.; Vivo, A., Viscosity of Na2SO4 and MgSO4 solutions in
ethanol-water mixtures at 15, 25 and 35 [degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem
in Cond Phas 1986, 82, (11), 3307-3314.
169. Frank J. Millero, G. K. W., and Peter V. Chetirkin, Relative sound velocities of sea salts at 25°C
J. Acoust. Soc. Am. 1977, 61, (6), 1492-1498
170. Garran, R. R., The ternary system sodium thiosulfate - sodium sulfate - water. J. Chem. Soc.
1926, 848-855.
171. Trimble, H. M., The solubility of potassium permanganate in solutions of potassium sulfate
and of sodium, sulfate. J. Am. Chem. Soc. 1922, 44, (3), 451-460.
172. Taboada, M. E.; Véliz, D. M.; Galleguillos, H. R.; Graber, T. A., Solubilities, densities, viscosities,
electrical conductivities, and refractive indices of saturated solutions of potassium sulfate in
water + 1-propanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 2002, 47, (5), 11931196.
173. Jones, G.; Colvin, J. H., The viscosity of solutions of electrolytes as a function of the
concentration. VII. Silver nitrate, potassium sulfate and potassium chromate. J. Am. Chem.
Soc. 1940, 62, (2), 338-340.
174. Adams, L. H., Equilibrium in binary systems under pressure. II. The system, K2SO4-H2O, at 25°C.
J. Am. Chem. Soc. 1932, 54, (6), 2229-2243.
175. Phutela, R. C.; Pitzer, K. S., Heat capacity and other thermodynamic properties of aqueous
magnesium sulfate to 473 K. J. Phys. Chem. 1986, 90, (5), 895-901.
176. Millero, F.; Gombar, F.; Oster, J., The partial molal volume and compressibility change for the
formation of the calcium sulfate ion pair at 25°C. J. Solution Chem. 1977, 6, (4), 269-280.
177. Madgin, W. M.; Swales, D. A., 37. Specific conductivity measurements directly related to
solubilities with special reference to calcium sulphate (anhydrite) solutions. Journal of the
Chemical Society (Resumed) 1956, 196-200.
178. Hamm, R. E.; Thompson, T. G., Specific gravities and electrical conductances of some calcium
sulfate solutions and mixtures of sodium chloride and calcium sulfate. J. Am. Chem. Soc. 1941,
63, (5), 1418-1422.
179. Miller, D. G.; Sartorio, R.; Paduano, L.; Rard, J. A.; Albright, J. G., Effects of different sized
concentration differences across free diffusion boundaries and comparison of Gouy and
Rrayleigh diffusion measurements using NaCl−KCl−H2O. J. Solution Chem. 1996, 25, (12), 11851211.
180. Millero, F. J.; Sotolongo, S., PVT properties of concentrated aqueous electrolytes. 7. The
volumes of mixing of the reciprocal salt pairs potassium chloride, potassium sulfate, sodium
chloride, and sodium sulfate at 25.degree.C and I = 1.5 M. J. Chem. Eng. Data 1986, 31, (4),
470-472.
181. Goldsack, D. E.; Franchetto, A. A., The viscosity of concentrated electrolyte solutions__III. A
mixture law. Electrochim. Acta 1977, 22, (11), 1287-1294.
182. Fabuss, B. M.; Korosi, A.; Othmer, D. F., Viscosities of aqueous solutions of several electrolytes
present in sea water. J. Chem. Eng. Data 1969, 14, (2), 192-197.
183. Kumar, A.; Sanghavi, R.; Mohandas, V. P., Solubility pattern of CaSO4·2H2O in the system NaCl
+ CaCl2 + H2O and solution densities at 35 °C: non-ideality and ion pairing. J. Chem. Eng. Data
2007, 52, (3), 902-905.
184. Leaist, D. G.; Al-Dhaher, F. F., Predicting the diffusion coefficients of concentrated mixed
electrolyte solutions from binary solution data. NaCl + MgCl2 + H2O and NaCl + SrCl2 + H2O at
25°C. J. Chem. Eng. Data 2000, 45, (2), 308-314.
185. Deng, T.; Yin, H.; Li, D., Metastable phase equilibrium in the aqueous ternary system (Li2SO4 +
MgSO4 + H2O) at 348.15 K. J. Chem. Eng. Data 2008, 54, (2), 498-501.
186. Sulston, W. J., The temperature variation of the viscosity of aqueous solutions of strong
electrolytes Proceedings of the Physical Society 1935, 47, (4), 657.