Densities of aqueous MgCl2(aq), CaCl2(aq), KI(aq), NaCl(aq), KCl(aq), AlCl3(aq) and (0.964 NaCl + 0.136 KCl)(aq) at temperatures between (283.15 and 473.15) K, pressures up to 68.5 MPa and molalities up to 6 mol·kg-1 Saif Al Ghafri, Geoffrey C. Maitland and J. P. Martin Trusler* Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom. * To whom correspondence should be addressed. E-mail: [email protected] Supplementary Data Table S1: Available literature sources for the densities of single-salts aqueous solutions with uncertainties δρ, temperatures T, pressures p and molalities b. Ref Year Method δρ /( kg ⋅ m −3 ) T/K p/MPa b/mol·kg-1 0.10 to 60 0.10 0.10 0.10 ≈7.0 & 40.0 0.60 0.10 0.10 0.1 to 38.92 0.60 2.03 0.10 to 40.71 0.10 0.10 0.10 0.10 0.10 0.10 0.10 2.03 0.184 to 6.007 3.000 0.501 to 2.498 0.022 to 7.878 0.242 to 6.150 1.459 to 5.541 0.300 to 2.000 0.987 to 9.887 0.0497 to 6.424 0.030 to 0.985 0.504 to 6.439 0.051 to 4.980 0.050 to 6.000 0.333 to 7.449 0.460 to 5.050 0.0334 to 7.4 0.050 to 6.464 0.010 to 0.984 0.01256 to 0.328 0.05 to 1.00 10.17 to 30.58 0.6 0.015 to 3.045 0.442 to 5.189 CaCl2(aq) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2005 2004 2003 1997 1995 1995 1995 1994 1989 1987 1986 1985 1984 1983 1983 1982 1981 1977 1974 1967 CVP VTD VTD VTD VTD VTD CTM VTD VTD VTD VTD VTD WD VTD OTTD VTD FD VTD FD 0.03 003 0.1 0.05 0.01 0.1 0.05 0.005 0.51 0.005 0.01 0.284 0.01 0.003 0.003 298.15 to 398.15 278.15 to 308.15 283.15 to 348.15 298.15 298.04 to 522.95 298.15 to 373.15 298.15 291.55 to 343.14 323.15 to 597.45 298.15 to 373.15 323.15 to 473.15 298.15 298.15 to 328.15 278.15 to 308.15 298.15 to 318.15 298.15 298.15 298.15 298.15 348.15 to 473.15 MgCl2(aq) 21 6 1997 1995 VTD VTD 0.01 369.36 to 627.15 298.15 to 373.15 Ref Year Method δρ /( kg ⋅ m −3 ) T/K p/MPa b/mol·kg-1 10 22 12 13 23 15 24 17 25 26 18 19 27 20 1987 1986 1985 1984 1984 1983 1982 1981 1980 1980 1977 1974 1973 1967 VTD VTD VTD WD SSP OTTD VTD FD 0.005 0.005 0.005 0.01 0.13 0.233 0.003 0.01 VFD VTD FD MFD 0.002 0.003 0.003 0.003 297.19 to 371.82 308.15 to 368.15 298.15 288.15 to 328.15 298.15 303.15 to 318.15 278.15 to 318.15 298.15 298.15 273.15 to 308.15 298.15 298.15 273.15 to 323.15 348.15 to 473.15 0.6 0.1 0.10 to 40.55 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.03 0.108 to 0.528 0.350 to 4.608 0.0312to 2.952 0.050 to 5.000 0.303 to 5.567 0.54 to 3.31 0.046 to 5.426 0.482 to 5.028 0.025 to 5.674 0.005 to 1.475 0.048 to 0.971 0.004 to 0.341 0.009 to 0.994 0.1 to 1.00 0.35 0.1 0.1 0.6 0.1 2.027 0.1 0.015 to 7.501 0.100 to 0.999 0.050 to 0.100 0.010 to 1.964 0.049 to 0.999 0.10 to 10 0.220 to 0.845 0.1 0.1 6.95-30.23 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 to 10.22 0.1 to 28.25 0.1 0.1 0.1 0.1 2 0.1 0.05 to 6 0.05 to 1.25 5.972 0.100 to 4.000 1.503 1.000 to 3.000 0.101 to 1.027 0-1 0 to 4 0.501 to 4.999 0.200 to 1.000 6.100 to 6.302 6.115 to 6.170 0 to 4.5 0.009 to 6.014 0 to 1 0.1 to 1 0.115 to 2.329 3.001 0.022 to 6.024 0.087 to 4.290 0.089 to 0.346 0.108 to 5.948 0 to 4.5 0.500 KI(aq) 28 29 30 31 18 32 33 2008 2005 1993 1992 1977 1968 1968 VTD VTD FVTD FVTD VTD 0.01 0.003 OP 278.15 to 368.15 278.15 to 338.15 296.02 to 321.1 297.19 to 373.17 298.15 348.15 to 473.15 278.15 to 338.15 NaCl(aq) 34 35 36 37 38 39 40 41 42 3 43 44 45 46 47 48 49 50 51 52 53 54 6 55 30 2006 2006 2006 2006 2006 2005 2005 2004 2003 2003 2003 2003 2003 2002 2001 2000 1999 1997 1996 1996 1996 1995 1995 1994 1993 VTD BC VTD VTD PC VTD VTD VTD VTD VTD VTD VTD DB CTM VTD VTD SVFD FVTD VTD VTD VTD VTD VTD VTD 0.5 0.01 0.05 0.005 0.01 0.1 0.01 0.05 0.1 0.003 0.01 0.5 0.05 0.01 288.15 to 323.15 298.15 373.56 to 622.61 293.15 to 303.15 298.15 to 323.15 298.15 318.15 298.15 293.15 to 313.15 283.15 to 353.15 298.15 298.15 to 313.15 288.15 298.15 253-293 298.15 277.15 to 343.15 373.15 to 573.34 298.13 to 623.44 298.15 298.15 298.15 to 328.15 297.05 to 371.82 298.15 to 413.15 296.02 to 346.1 Ref Year Method 56 57 58 59 60 61 62 63 64. 22 12 65 66 14 15 67 68 24 69 70 71 72 26 73 74 75 76 77 33 78 79 80 81 1993 1991 1991 1990 1988 1988 1988 1988 1987 1986 1985 1985 1984 1983 1983 1982 1982 1982 1981 1981 1981 1980 1980 1978 1977 1972 1970 1969 1968 1968 1968 1966 1966 VTD VTD VTD VTD VTD VTD VTD VTD VTD VTD VTD VTD FVTD SVTD OTTD Dil FD FVTD PV VTD FD VTD FVTD VFD MFD MFD AB OP Dil Dil Dil PV T/K p/MPa b/mol·kg-1 623.09 to 623.2 604.41-716.73 393.4 to 673.2 298.23 to 308.12 298.15 298.15 298.15 321.57 to 549.75 298.15 308.15 to 368.15 298.15 298.15 298.15 278.15 to 308.15 298.15 to 318.15 348.15 to 473.15 298.15 278.15 to 318.15 627.38 298.15 278.15 to 318.15 288.15 to 318.15 273.15 to 308.15 293.15 298.15 323.15 273.15 to 328.15 298.15 278.15 to 338.15 278.25 to 318.21 298.15 to 423.15 298.15 to 448.15 348.15 to 473.15 15.24 to 16.8 18.36-33.02 1.00 to 40.00 0.1 0.1 0.1 0.1 0.1 to 40.16 0.1 0.1 1.01 to 40.78 0.1 0.1 0.1 0.1 2.03 0.1 0.1 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.03 0.25 to 3 0.003-3.096 0.051 to 3.09 0.084 to 6.039 0.295 to 1.001 0.5 to 4 0.5 to 4.5 0.003 to 5.046 0.020 to 3.265 0.217 to 6.198 0.058 to 4.991 1.000 to 4.000 0.012 to 1.844 0.400 to 6.200 0 to 6.1 0.005 to 4.393 0.2788 to 5.105 0.371 to 5.997 0.1 to 4 0.011 to 5.325 0.787 to 5.952 0.062 to 5.924 0.010 to 1.500 0.002 to 4.278 0.010 to 1.000 0.005 to 0.984 0.001 to 0.965 1.023 to 5.604 0.211 to 1.007 4 0.010 to 3.602 0.1 to 2.5 0.1 to 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10 to 40.64 0.1 4.428 to 5.279 0.250 to 1.110 0.5 to 3.807 0.012 to 0.967 0.100 to 1.000 0.021 to 4.818 0.001-1.088 0.5 to 4.5 0.500 to 4.000 0.500 to 4.000 0.5 to 4.5 0.131 to 0.477 0.5 to 4.5 0.059 to 3.012 0 to 4.500 δρ /( kg ⋅ m −3 ) 0.003 0.003 0.01 0.06 0.003 0.01 0.02 0.02 KCl(aq) 82 83 3 84 49 52 85 86 87 88 62 60 89 12 15 2008 2007 2003 2001 1999 1996 1990 1989 1989 1989 1988 1988 1986 1985 1983 DBM VTD VD VTD VTD VTD VTD VTD VTD VTD VTD VTD VTD VTD OTTD 0.05 0.1 0.05 0.01 0.005 0.003 0.003 0.003 0.003 0.005 0.003 0.01 288.15 to 308.15 298.15 278.15 to 353.15 293.15 to 303.15 277.15 to 343.15 298.15 278.15 to 368.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 to 318.15 Ref Year Method δρ /( kg ⋅ m −3 ) T/K p/MPa b/mol·kg-1 90 91 27 77 79 33 81 92 93 94 95 96 97 98 99 100 101 102 1977 1975 1973 1969 1968 1968 1966 1962 1952 1941 1939 1937 1934 1933 1933 1927 1926 1912 VTD OP MFD 0.003 0.02 0.0003 LP Dil PV 0.01 298.15 298.15 323.15 298.15 298.15 to 423.15 278.15 to 338.15 348.15 to 473.15 308.15 to 318.15 298.15 278.15 to 298.15 298.15 298.15 298.15 298.15 298.15 313.15-353.15 298.15 293.15 0.1 0.1 0.1 0.1 0.1 0.1 2.03 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.100 to 1.005 0.042 to 3.420 0.029 to 1.003 0.120 to 0.965 0.100 to 3.608 0.046 to 0.200 0.1 to 1 0.045 to 4.632 0.002 to 0.145 0.005 to 0.500 0.412 to 1.025 0 to 0.799 0.134 to 0.537 0.123 to 0.789 0 to 0.049 0.443-5.229 0.1 to 4 0.249 0.10 0.60 2.03 0.10 0.10 0.10 0.10 2.03 0.10 0.10 0.100 to 3.629 0.027 to 1.993 0.303 to 2.718 0.050 to 2.500 0.240 to 2.218 0.200 to 0.996 0.004 to 0.312 0.100 to 1.000 0 to 0.500 0.050 to 0.264 2.00 0.10 to 20.00 0.10 0.10 0.10 0.10 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.500 to 4.500 0.009 to 1.586 0.050 to 1.500 0.100 to 0.962 0.004 to 0.387 0.191 to 0.830 0.100 to 1.000 0.183 to 0.651 0 to 0.500 0 to 1.043 0.049 0.010 to 0.285 0.005 to 0.845 0.005 to 1.040 MFD Dil Pyc Pyc PI 0.01 0.01 Pyc SrCl2(aq) 103 10 104 13 105 90 106 20 107 108 1997 1987 1986 1984 1982 1977 1974 1967 1949 1934 VTD VTD Dil WTD Pyn VTD FD 0.005 0.22 to 0.51 0.01 0.03 0.003 0.003 Pyn Pyn 298.20 297.20 323.20 to 473.20 288.20 to 328.20 298.20 298.20 298.20 348.20 to 473.20 298.20 298.15 BaCl2(aq) 55 109 13 90 106 33 20 110 111 112 108 113 114 115 1994 1991 1984 1977 1974 1968 1967 1966 1952 1941 1934 1932 1930 1930 VTD VTD WTD VTD FD OP PV Dil Pyn Pyn OP OP 0.01 to 0.04 0.005 0.01 0.003 0.01 0.01 298.20 to 413.20 288.20 to 413.20 288.20 to 328.20 298.15 298.15 278.20 to 338.20 348.20 to 473.20 298.20 298.20 298.20 298.20 293.20 298.20 298.20 Ref Year Method T/K p/MPa b/mol·kg-1 289.85 to 607.71 283.15 to 343.15 288.20 to 318.20 603.32 to 658.07 290.20 to 343.10 298.20 298.20 0.96 to 30.55 0.10 0.10 15.16 to 24.49 0.10 0.10 0.10 0.129 to 15.498 1.019 to 9.887 1.132 to 12.186 0 to 0.017 2.630 to 19.606 0.108 to 1.088 0.954 to 5.617 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.015 to 9.967 0.002 to 0.025 0.052 to 14.060 1.899 to 18.270 0.016 to 0.099 7.903 to 20.075 0.040 to 0.415 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 15.2 to 24.75 18.4 to 38.04 0.10 0.76 to 32.58 0.10 0.10 0.10 0.10 0.10 to 40.06 0.10 0.10 0.10 0.10 0.10 0.10 4.165 4.165 0 to 1 0.011 to 0.047 0 to 0.046 0.501 to 7.993 0 to 0.046 0.023 to 8.299 0.126 to 4.924 0 to 0.019 0.005 to 3.038 0.500 to 4 0.051 to 3.031 0.500 to 4 0.095 to 0.410 0.500 to 4 1 to 8.343 0.050 to 4.972 0.050 to 8 0.019 to 0.078 0.101 to 1 0.634 to 4.499 0.064 to 0.508 0.002 to 0.015 δρ /( kg ⋅ m −3 ) LiCl (aq) 116 3 117 118 8 90 77 2006 2003 2003 1997 1994 1977 1969 PI VTD AB 0.06 0.1 0.1 VTD VTD 0.1 0.003 LiBr(aq) 3 119 120 8 121 122 123 2003 2002 2002 1994 1987 1983 1969 VTD VTD Pyn VTD VTD 0.1 0.1 0.16 0.1 0.001 FM 283.15 to 343.15 278.20 to 293.20 299.05 to 326.15 291.83 to 373.26 298.20 288.20 to 353.20 298.20 NaBr(aq) 124 125 126 127 128 3 128 120 129 118 130 88 131 87 60 61 132 12 13 133 90 91 123 134 2007 2007 2006 2005 2003 2003 2003 2002 2000 1997 1991 1989 1989 1989 1988 1988 1986 1985 1984 1981 1977 1975 1969 1968 VTD VTD VTD Pyn Pyn VTD Pyn Pyn VTD VTD VTD VTD VTD VTD VTD SVTD VTD WTD VTD VTD OP FM 0.01 0.01 0.003 0.05 0.05 0.1 0.05 0.15 0.003 1 0.003 0.005 0.003 1 0.01 0.5 0.003 0.02 0.002 288.20 to 298.20 288.20 to 298.20 298.15 308.20 298.20 283.15 to 343.14 298.20 294.95 to 325.10 373.16 to 522.11 603.32 to 658.07 604.40 to 725.52 298.20 321.63 to 549.80 298.20 298.15 298.20 298.15 298.15 288.20 to 328.20 303.20 to 323.20 298.20 298.20 298.20 373.20 to 1073.20 KBr(aq) Ref Year Method 83 135 29 3 120 136 30 88 60 65 137 66 13 90 123 32 138 33 139 140 141 98 113 2007 2006 2005 2003 2002 1997 1993 1989 1988 1985 1985 1984 1984 1977 1969 1968 1968 1968 1940 1937 1934 1933 1932 VTD PI VTD VTD Pyn Pyn FD VTD VTD VTD TP FD WTD VTD FM Pyn Pyn OP T/K p/MPa b/mol·kg-1 298.20 298.15 to 348.15 278.20 to 338.20 283.16 to 343.13 299.55 to 325.05 298.15 296.02 to 346.1 298.15 298.15 298.20 298.20 298.20 288.20 to 328.20 298.20 298.20 348.20 to 473.20 298.20 278.20 to 338.20 273.15 298.20 273.20 to 298.20 298.20 293.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.040 to 4.720 0.238 to 2.231 0.100 to 1.000 0.500 to 4.989 0.009 to 5.762 0.003 to 0.055 0.500 0.500 to 4.000 0.084 to 0.353 1.000 to 4.000 0.002 to 0.195 0.007 to 0.038 0.050 to 4.000 0.102 to 1.000 0.048 to 0.586 0.100 to 1.000 0.195 to 0.829 0.237 to 0.953 0.001 to 2.857 0.040 to 0.930 0.001 to 4.375 0.001 to 4.373 0.010 to 0.293 0.10 0.10 0.400 to 2.595 3.053 to 5.264 0.10 0.010 to 4.468 0.10 0.10 0.10 0.015 to 0.045 0.025 to 0.035 0 to 0.030 10 to 30.40 0.10 0.60 0.10 0.10 0.10 0.10 0.10 0.010 to 0.899 0.122 to 0.835 0.010 to 0.439 0.014 to 0.926 0.101 to 0.797 0.010 to 0.804 0.179 to 0.592 0.871 to 0.989 δρ /( kg ⋅ m −3 ) 0.06% 0.1 0.14 0.01 0.003 0.005 0.003 0.01 0.003 0.002 0.01 0.01 SM CaBr2(aq) 132 142 1986 1954 SVTD Pyn 0.2 298.20 213.20 to 298.20 BaBr2(aq) 113 1932 293.20 LiF(aq) 143 123 112 1984 1969 1941 VTD FM OP 0.002 298.20 298.20 298.20 NaF(aq) 144 145 31 143 18 27 123 146 1997 1994 1992 1984 1977 1973 1969 1937 VTD VTD VTD VTD VTD MFD FM Pyn 0.02 0.003 0.0003 0.002 298.20 298.20 297.19 to 371.82 298.15 298.20 273.20 298.20 273.20 to 308.20 Ref Year Method T/K p/MPa b/mol·kg-1 298.20 298.20 297.19 to 371.82 298.20 298.20 298.20 323.20 to 473.20 10.00 to 30.40 0.10 0.60 0.10 0.10 0.10 2.03 0.010 to 2.999 0.098 to 0.803 0.097 to 2.100 0.052 to 8.885 0.050 to 1.106 0.050 to 0.557 0.100 to 1.000 0.10 to 58.63 0.10 to 31.20 0.10 0.111 to 4.881 0.091 to 3.089 1.314 to 2.766 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0 to 1 0.025 to 0.266 0.050 0.025 to 0.194 0.020 to 0.083 0.101 to 0.995 0.001 to 0.100 0.053 to 0.486 0.007 to 0.060 0.044 to 0.203 0.001 to 0.168 0.10 4.438 to 4.585 0.10 0.10 0.10 0.10 0.214 to 3.090 0.406 to 3.199 1.330 0.100 to 3.094 0.10 0.10 0.10 0.10 9.87 to 30.70 0.10 0.60 0.10 0.499 to 0.997 0.092 to 0.500 0.100 to 1.848 0.500 to 2.254 0.005 to 1.003 0 to 0.197 0.010 to 1.532 0.101 to 2.068 δρ /( kg ⋅ m −3 ) KF(aq) 144 145 31 143 90 123 32 1997 1994 1992 1984 1977 1969 1968 VTD VTD VTD VTD VTD FM Pyn 0.02 0.003 0.002 LiI(aq) 147 148 149 2006 2004 2004 PI PI VTD 0.03 0.76 0.4 298.15 to 398.15 298.2 to 348.20 303.2 to 343.20 NaI(aq) 150 151 152 137 133 90 153 123 154 93 155 2005 1989 1988 1985 1981 1977 1969 1969 1966 1952 1933 VTD LP UV TP VTD VTD FM Pyn MFD 0.01 0.1 0.1 0.5 0.003 0.002 0.2 298.15 299.20 293.20 to 303.20 298.20 303.20 to 323.20 298.20 373.20 to 1073.20 298.20 298.20 298.20 298.20 CaI2(aq) 142 1954 Pyn 0.2 213.20 to 298.20 Li2SO4(aq) 156 157 78 158 2007 1995 1968 1937 OTTD VTD Dil Pyn 0.1 0.01 0.03 283.20 to 298.20 283.15 to 338.15 278.27 to 318.27 298.20 Na2SO4(aq) 159 160 161 3 162 163 31 22 2008 2008 2007 2003 1997 1994 1992 1986 VTD VTD VTD VTD VTD OTTD VTD VTD 0.003 0.003 0.1 0.1 0.005 0.002 0.02 288.15 to 318.15 298.20 283.20 to 298.20 283.16 to 343.14 298.20 to 572.67 288.20 to 308.20 297.19 to 371.82 308.20 to 368.20 Ref Year Method δρ /( kg ⋅ m −3 ) T/K p/MPa b/mol·kg-1 164 165 166 13 167 24 168 26 169 27 32 78 79 110 80 158 170 171 1986 1985 1985 1984 1984 1982 1982 1980 1977 1973 1968 1968 1968 1966 1966 1937 1926 1922 Dil PVFD 0.1 WTD VTD VTD VTD VTD VTD MFD Pyn Dil LP Dil LP Pyn PVFD Pyn 0.01 0.01 0.003 0.005 0.02 0.003 0.0003 294.52 to 475.78 298.20 304.62 to 474.68 288.20 to 328.20 313.20 288.15 to 318.15 288.20 to 308.20 273.20 to 308.20 298.20 273.20 to 323.20 348.20 to 473.20 278.27 to 318.41 298.20 to 423.20 298.20 298.20 to 448.20 298.20 273.20 to 313.20 298.20 9.59 to 10.24 0.10 0.10 to 20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.058 to 0.330 0.321 to 0.899 0.050 to 2.629 0.050 to 1.500 0.035 to 6.548 0.052 to 1.625 0.001 to 0.053 0 to 0.720 0.100 to 1 0.002 to 1.005 0.050 to 1 1.333 0.033 to 1.203 0.192 to 0.752 0.010 to 0.150 0 to 1.964 0.339 to 3.370 0.063 to 1.963 0.10 0.10 9.88 to 30.66 0.60 0.10 0.10 0.10 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.043 to 0.711 0.698 to 0.910 0.005 to 0.505 0.010 to 0.402 0.100 to 0.650 0.100 to 0.501 0.002 to 0.707 0.050 to 0.500 0.203 to 0.470 0.001 to 0.512 0.015 to 0.325 0 to 1.126 0 to 0.689 0 to 0.638 0.044 to 0.691 0.10 0.10 0.10 2.00 0.10 2.11 to 10.41 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.050 to 0.500 0.193 to 3.044 0.001 to 0.198 0 to 2.186 0.001 to 0.049 0.072 to 0.250 0.207 to 2.838 0.244 to 0.693 0.038 to 2.399 0.001 to 1.483 0.054 to 1.001 0.002 to 0.890 0.025 to 0.903 0.003 0.01 0.01 0.01 K2SO4(aq) 161 172 162 31 85 90 27 32 110 173 140 96 158 174 171 2007 2002 1997 1992 1990 1977 1973 1968 1966 1940 1937 1937 1937 1932 1922 VTD VTD VTD VTD VTD VTD MFD PV Dil 0.1 0.1 0.003 0.0003 0.02 0.01 SM 0.005 0.02 Pyn Pyn Pyn 283.20 to 298.20 298.15 to 318.15 298.20 to 572.75 297.19 to 371.82 278.20 to 368.20 298.20 273.20 to 323.20 348.20 to 473.20 298.20 273.20 to 298.20 298.20 298.20 298.20 298.20 298.20 MgSO4(aq) 160 156 163 175 168 164 22 165 24 26 90 27 79 2008 2007 1994 1986 1986 1986 1986 1985 1982 1980 1977 1973 1968 VTD OTTD OTTD 0.003 0.1 0.005 VTD Dil PVFD PVFD VTD VTD VTD MFD LP 0.005 0.04 to 0.1 0.02 0.003 0.012 0.003 0.0003 298.20 283.20 to 298.20 288.20 to 308.20 348.20 to 473.20 288.20 to 308.20 293.84 to 475.77 308.20 to 368.20 298.20 278.15 to 318.15 273.20 to 308.20 298.20 273.20 to 323.20 298.20 to 423.20 Ref Year Method δρ /( kg ⋅ m −3 ) T/K p/MPa b/mol·kg-1 80 1966 LP 0.1 298.20 to 448.20 0.10 0.010 to 0.292 CaSO4(aq) 176 1977 VTD 0.003 298.20 0.10 0.001 to 0.007 177 1956 293.20 to 323.20 0.10 0.002 to 0.015 178 1941 TP 273.20 to 298.20 0.10 0.002 to 0.011 PVFD-Picker Vibrating Flow Densimeter, FM-Float Method, AB-Analytical Balance, SM-Sinker Method, TPTare Pycnometers, WTD-Weld Type Densitometer, PV-Pressure Vessel, PI-Piezometer, VTD-vibrating Tube densimeter, Cal.-calculation, MFD-magnetic float densimeter, UV- Ubbelohde-type viscometer, FVTD-flow vibrating tube densimeter, OTTD-Oscillating tube-type densitometer, LP-Lipkin Pycnometers, PycPycnometers, Dil-Dilatometer, DBM-Density Bottle Method, OP-Ostwald Pycnometers, ICT- International Critical Tables, TP-Two arm pycnometers, FD-Flow densimeter, SVTD-Sodev Vibrating Tube Densimeter, SVFD-Sodev Vibrating Flow Densimeter, CTM-Capillary Tube Method, CVP-Constant volume piezometer, SSP-single-stem pycnometers, BP-bi-capillary pycnometers, DB-Densimetric Balance, AB-Analytical Balance. Table S2: Available literature sources for the densities of mixed-salts aqueous solutions with uncertainties δρ, temperatures T, pressures p and molalities bi. Ref Year Method δρ /(kg ⋅ m −3 ) p/MPa b1/mol·kg-1 b2/mol·kg-1 298.15 0.1 0.012 to 4.255 0.036 to 1.426 298.15 0.1 0.370 to 0.683 0.510 to 0.493 T/K (NaCl + KCl)(aq) 52 1996 VTD 0.05 179 1996 SSP 85 1990 SVFD 0.003 278.15 to 368.15 0.1 0.000 t0 1.763 1.950 to 0.187 62 1988 VTD 0.003 298.15 0.1 0.024 to 4.109 0.477 to 0.392 180 1986 VFTD 198.15 0.1 0.000 to 1.205 1.500 to 0.296 181 1977 198.15 0.1 0.167 to 2.500 0.833 to 2.500 182 1969 298.15 to 423.15 0.1 0.477 to 3.245 0.224 to 0.361 0.10 0.040 to 0.368 0.008 to 0.011 (CaCl2 + CaSO4)(aq) 183 2007 VTD 0.05 308.20 (KCl + K2SO4)(aq) 85 1990 VTD 278.20 to 368.20 0.10 0 to 1.950 0 to 0.650 180 1986 PVFD 298.20 0.10 0 to 1.500 0 to 0.500 0.10 0.614 to 1.904 0.635 to 1.230 (NaCl + SrCl2)(aq) 184 2000 298.20 (NaCl- Na2SO4)(aq) 85 1990 VTD 278.20 to 368.20 0.10 0 to 1.950 0 to 0.650 180 1986 PVFD 298.20 0.10 0 to 1.500 0 to 0.500 182 1969 298.20 to 423.20 0.10 0.551 to 3.422 0.012 to 0.264 80 1966 298.20 to 448.20 0.10 0.100 to 2.500 0.010 to 0.150 298.20 to 423.20 0.10 0.551 to 3.422 0.012 to 0.264 298.20 0.10 0.100 to 2.500 0.010 to 0.150 296.02 to 346.10 0.10 0.100 to 0.400 0.100 to 0.400 298.20 0.10 0 to 4 0 to 4 LP 0.1 (NaCl + MgSO4)(aq) 182 1969 80 1966 LP 0.1 (NaCl + KBr)(aq) 30 1993 FVTD 65 1985 VTD 0.003 Ref Year 181 1977 Method δρ /(kg ⋅ m −3 ) T/K p/MPa b1/mol·kg-1 b2/mol·kg-1 298.20 0.10 0.500 to 2.500 0.500 to 2.500 (NaCl- K2SO4)(aq) 85 1990 VTD 278.20 to 368.20 0.10 0 to 1.950 0 to 0.650 180 1986 PVFD 298.20 0.10 0 to 1.500 0 to 0.500 0.10 0 to 4.200 0.015 to 0.053 2 0.500 to 4.500 0.05 to 4.050 (NaCl + CaSO4)(aq) 183 2007 0.05 308.20 (NaCl + BaCl2)(aq) 55 1994 VTD 0.01 to 0.04 298.2 to 413.2 (Na2SO4 + K2SO4)(aq) 85 1990 VTD 278.20 to 368.20 0.10 0 to 1.950 0 to 0.650 180 1986 PVFD 298.20 0.10 0 to 1.500 0 to 0.500 0.10 0 to 3.087 0 to 5.223 0.10 0 to 4.012 0 to 4.012 0.10 0.057 to 3.854 0.031 to 1.378 (Li2SO4 + MgSO4)(aq) 185 2008 DBM 0.0002 348.20 (KCl + NaBr)(aq) 87 1989 VTD 0.003 298.20 (KCl + MgCl2)(aq) 86 1989 VTD 0.003 298.20 PVFD-Picker Vibrating Flow Densimeter, FM-Float Method, AB-Analytical Balance, SM-Sinker Method, TPTare Pycnometers, WTD-Weld Type Densitometer, PV-Pressure Vessel, PI-Piezometer, VTD-vibrating Tube densimeter, Cal.-calculation, MFD-magnetic float densimeter, UV- Ubbelohde-type viscometer, FVTD-flow vibrating tube densimeter, OTTD-Oscillating tube-type densitometer, LP-Lipkin Pycnometers, PycPycnometers, Dil-Dilatometer, DBM-Density Bottle Method, OP-Ostwald Pycnometers, ICT- International Critical Tables, TP-Two arm pycnometers, FD-Flow densimeter, SVTD-Sodev Vibrating Tube Densimeter, SVFD-Sodev Vibrating Flow Densimeter, CTM-Capillary Tube Method, CVP-Constant volume piezometer, SSP-single-stem pycnometers, BP-bi-capillary pycnometers, DB-Densimetric Balance, AB-Analytical Balance. Table S3: Deviations of literature data for densities ρ of CaCl2(aq), MgCl2(aq), NaCl(aq), KCl(aq), and KI(aq) from the model developed in this work. Ref Tmin K Tmax K pmin MPa pmax MPa bmin bmax 102∆AAD -1 mol ⋅ kg mol ⋅ kg-1 102∆Bias 102∆MAD N CaCl2(aq) 1 5 9 10 20 1 5 9 1 6 8 9 13 1 4 7 8 12 13 16 17 18 19 323.15 398.15 323.18 472.95 323.16 450.13 321.90 371.96 348.15 473.15 298.15 298.15 ≈298.15 ≈ 298.15 298.15 298.15 323.15 398.15 321.97 371.82 303.07 343.06 323.16 323.16 288.15 328.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 3.78 ≈7.0 1.00 0.60 2.03 5.03 ≈7.0 1.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 60 40.0 40.71 0.60 2.03 59.94 40.0 40.71 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.184 0.242 0.0497 0.030 0.05 0.184 0.242 0.050 0.184 1.456 0.987 0.050 0.05 0.184 0.022 0.300 3.821 0.101 0.050 0.033 0.050 0.010 0.013 6.007 6.150 6.424 0.985 1.00 6.007 6.150 4.980 6.007 5.541 5.902 6.424 6.00 6.007 7.878 2.000 5.902 4.980 6.000 6.286 6.464 0.984 0.328 0.063 0.056 0.066 0.053 0.009 0.068 0.039 0.020 0.120 0.052 0.051 0.041 0.042 0.103 0.069 0.103 0.080 0.055 0.040 0.081 0.095 0.007 0.007 0.042 0.042 -0.063 -0.053 0.004 0.038 0.029 -0.004 0.114 -0.052 0.042 0.000 -0.005 0.102 0.066 -0.003 0.080 0.051 -0.007 0.069 0.092 -0.003 -0.007 0.327 0.224 0.267 0.216 0.040 0.273 0.100 0.090 0.369 0.112 0.124 0.102 0.159 0.340 0.216 0.202 0.107 0.213 0.157 0.253 0.210 0.011 0.013 168 86 176 25 30 41 24 31 21 17 54 17 48 6 97 4 5 7 8 17 14 12 8 1.153 5.189 0.528 1.00 2.952 4.608 5.000 3.31 5.272 0.974 1.018 2.952 5.781 5.028 5.674 1.475 0.971 0.027 0.088 0.013 0.039 0.033 0.013 0.157 0.021 0.011 0.010 0.007 0.015 0.019 0.015 0.018 0.011 0.017 0.024 0.084 -0.013 -0.032 -0.033 -0.006 -0.157 0.011 0.001 -0.009 -0.002 -0.010 -0.018 0.013 0.012 -0.008 -0.017 0.118 0.204 0.021 0.112 0.059 0.053 0.350 0.051 0.032 0.025 0.028 0.022 0.041 0.041 0.049 0.020 0.021 52 25 20 24 26 59 36 24 65 54 41 7 19 11 10 27 10 MgCl2(aq) 21 6 10 20 12 22 13 15 24 26 27 12 23 17 25 26 18 369.36 297.05 297.19 348.15 298.15 308.15 288.15 303.15 278.15 273.15 273.15 298.15 298.15 298.15 298.15 298.15 298.15 450.07 371.82 371.82 473.15 298.15 368.15 328.15 318.15 318.15 308.15 323.15 298.15 298.15 298.15 298.15 298.15 298.15 10.17 0.6 0.6 2.03 10.38 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 30.58 0.6 0.6 2.03 40.55 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.031 0.442 0.108 0.1 0.0312 0.695 0.50 0.54 0.491 0.005 0.009 0.031 0.303 0.482 0.656 0.005 0.048 Ref Tmin K Tmax K pmin MPa pmax MPa 19 298.15 298.15 0.10 0.10 bmin bmax 102∆AAD -1 mol ⋅ kg mol ⋅ kg-1 0.004 102∆Bias 102∆MAD N 0.341 0.011 -0.011 0.024 9 1.001 1.000 0.999 0.100 1.040 0.999 0.845 0.018 0.064 0.017 0.006 0.009 0.007 0.021 -0.012 0.015 0.005 0.005 0.004 0.007 -0.001 0.075 0.256 0.063 0.021 0.026 0.012 0.091 77 18 183 7 28 10 15 5.972 2.329 3.001 4.500 3.090 5.046 4.991 4.393 1.000 6.000 1.027 4.000 4.999 6.014 1.000 0.346 5.948 5.134 5.046 6.198 6.200 6.100 5.997 5.952 5.924 3.602 2.500 1.500 4.000 1.250 1.000 4.500 1.000 6.040 1.001 4.000 3.265 4.991 0.146 0.021 0.021 0.016 0.022 0.022 0.013 0.014 0.018 0.023 0.003 0.008 0.120 0.018 0.006 0.005 0.020 0.004 0.013 0.008 0.013 0.009 0.014 0.010 0.005 0.033 0.048 0.050 0.009 0.038 0.008 0.068 0.009 0.005 0.060 0.041 0.010 0.009 -0.133 -0.016 0.005 -0.006 -0.021 -0.008 -0.004 -0.009 -0.016 0.000 0.001 -0.004 0.056 0.007 -0.004 -0.005 0.009 0.000 0.008 -0.003 0.001 -0.007 0.003 -0.006 -0.003 0.023 0.040 -0.050 -0.009 0.038 -0.008 -0.019 -0.009 0.004 -0.060 0.020 0.001 -0.001 0.327 0.036 0.056 0.041 0.039 0.114 0.039 0.073 0.039 0.093 0.008 0.025 0.395 0.137 0.060 0.009 0.052 0.008 0.030 0.022 0.051 0.021 0.055 0.033 0.016 0.150 0.196 0.535 0.018 0.093 0.012 0.138 0.013 0.012 0.205 0.154 0.090 0.022 6 8 12 32 8 326 32 48 24 29 5 27 25 123 201 12 36 10 17 140 33 36 25 36 57 28 28 32 15 7 6 10 6 13 4 5 33 8 KI(aq) 28 32 29 30 31 18 33 278.15 348.15 278.15 296.02 297.19 298.15 278.15 368.15 423.15 338.15 321.1 373.17 298.15 338.15 0.35 2.03 0.10 0.10 0.6 0.1 0.1 0.35 2.03 0.10 0.10 0.6 0.1 0.1 0.015 0.100 0.100 0.050 0.010 0.049 0.221 NaCl(aq) 36 50 51 55 57 63 12 67 81 34 40 42 3 47 49 54 6 59 63 22 14 15 24 71 72 79 80 26 37 35 41 46 48 59 60 62 64 12 373.56 373.15 298.15 298.15 393.40 321.57 298.15 348.15 348.15 288.15 318.15 293.15 283.15 263.00 277.15 298.15 297.05 308.12 323.16 308.15 278.15 303.15 278.15 278.15 288.15 298.15 318.15 273.15 293.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 473.40 475.94 448.57 413.15 393.40 498.90 298.15 473.15 473.15 323.15 318.15 313.15 353.15 293.00 343.15 328.15 371.82 308.12 323.16 368.15 308.15 318.15 318.15 318.15 318.15 423.15 448.15 308.15 303.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 6.96 0.50 10.00 2.00 1.00 0.10 10.38 2.03 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 30.20 10.22 28.25 2.00 37.40 40.16 40.78 2.03 2.03 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 5.972 0.115 3.001 0.500 0.051 0.003 0.058 0.053 0.100 0.050 0.101 0.000 0.501 0.009 0.100 0.089 0.108 0.084 0.056 0.217 0.400 0.000 0.371 0.787 0.062 0.100 0.100 0.010 0.100 0.050 0.000 0.000 0.000 0.504 0.295 0.500 0.020 0.058 Ref Tmin K Tmax K pmin MPa pmax MPa 66 15 68 24 71 18 26 52 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 bmin bmax 102∆AAD -1 mol ⋅ kg mol ⋅ kg-1 0.012 0.000 0.279 0.378 0.995 0.010 0.010 0.022 102∆Bias 102∆MAD N 1.844 6.100 5.105 5.993 5.952 1.000 1.500 6.024 0.005 0.020 0.010 0.006 0.014 0.008 0.006 0.008 -0.004 -0.020 -0.010 -0.005 -0.014 -0.008 -0.006 -0.001 0.011 0.030 0.032 0.012 0.032 0.011 0.011 0.026 17 9 10 21 17 12 25 54 1.000 3.012 2.013 4.632 1.003 4.500 3.608 1.000 0.828 4.000 4.501 5.229 0.100 4.500 0.477 0.600 4.500 0.997 3.012 4.818 1.005 4.500 3.993 4.400 1.025 3.308 0.020 0.014 0.003 0.032 0.009 0.010 0.036 0.009 0.011 0.099 0.010 0.094 0.010 0.007 0.001 0.006 0.007 0.051 0.037 0.013 0.010 0.009 0.024 0.030 0.015 0.005 -0.006 -0.013 0.003 -0.010 0.009 0.009 0.035 0.009 0.011 0.099 -0.003 -0.003 0.010 -0.006 0.000 0.006 -0.006 0.051 0.033 0.013 0.010 -0.008 0.015 -0.029 0.015 0.005 0.105 0.048 0.014 0.077 0.018 0.023 0.151 0.027 0.022 0.106 0.058 0.270 0.011 0.015 0.002 0.012 0.016 0.148 0.148 0.033 0.017 0.017 0.053 0.066 0.022 0.017 23 28 29 16 7 36 24 201 16 8 97 37 14 4 4 12 5 10 10 24 10 10 8 21 24 15 KCl(aq) 81 12 31 92 27 15 79 49 33 84 85 100 186 89 60 93 62 140 12 52 18 15 77 85 95 96 348.15 298.15 297.19 308.15 323.15 303.15 313.15 277.15 273.20 303.15 278.15 313.15 291.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 473.15 298.15 371.97 318.15 323.15 318.15 423.15 343.15 338.15 303.15 368.15 353.15 358.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 2.03 10.38 0.60 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 2.03 40.64 0.60 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.100 0.059 0.010 0.045 0.029 0.500 0.100 0.100 0.190 0.050 0.005 0.443 0.100 0.500 0.131 0.009 0.500 0.040 0.059 0.021 0.100 0.000 0.498 0.051 0.412 0.000 0.2 (b) 0.5 0.1 0.3 102 (∆ρ / ρ) 102(∆ρ/ρ) (a) 0.0 -0.1 0.1 -0.1 -0.3 -0.5 -0.2 0.0 0.3 0.6 0.9 0 1.2 1 3 4 5 6 5 6 b/(mol.kg-1) b/(mol.kg-1) (d) 0.3 (c) 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 102 (∆ρ/ ρ) 102 (∆ρ / ρ) 2 0 1 2 3 4 b/(mol.kg-1) 5 6 0.2 0.1 0.0 -0.1 -0.2 -0.3 0 1 2 3 4 b/(mol.kg-1) Fig S1. Relative deviations ∆ρ/ρ of densities ρ from the present model for CaCl2(aq) as a function of molaity b. (a): high p, high T, () Safarov et al,1 T = 323 K to 398 K, p = 5.7 MPa to 59.9 MPa. () Oakes et al.,5 T = 323 K to 473 K, p = 7.1 MPa to 41.5 MPa. () Gates and Wood,9 T = 323 K to 450 K, p = 1 MPa to 40.7 MPa. () Ellis,20 T = 348 K to 473 K, p = 2.0 MPa. (b): 0.1 MPa, 298.15 K, () Zhang et al.,4 () Oakes et al.,5 () Wimby and Berntsson,8 () Gates and Wood,12 () Isono,13 () Kumar et al.,16 () Perron et al.,17 () Millero et al.,18 (c): 0.1 MPa, () Safarov et al.,1 T = 323 K to 398 K, () Yan et al.,2 T = 288 to 288 K to 308 K, () Saluja et al.,6 T = 322 K to 372 K, () Wimby and Berntsson,8 T = 292 K to 352 K, () Gates and Wood,9 T = 323 K, () Isono,13 T = 288 K to 323 K. (d): 298.15 K, () Safarov et al.,1 p = 5.4 MPa to 59.9 MPa, () Oakes et al.,5 p = 7.3 MPa and 42 MPa, () Gates and Wood,12 p = 10.4 MPa to 40.6 MPa. (b) 0.10 0.05 102 (∆ρ / ρ) 102 (∆ρ /ρ) (a) 0.10 0.00 -0.05 -0.10 0.05 0.00 -0.05 -0.10 0 1 2 3 4 5 0 1 2 4 5 b/(mol.kg-1) b/(mol.kg-1) (c) 0.02 (d) 0.20 0.00 102 (∆ρ / ρ) 102 (∆ρ / ρ) 3 -0.02 -0.04 -0.06 0 10 20 30 p/MPa 40 0.10 0.00 -0.10 -0.20 0 1 2 3 4 b/(mol.kg-1) Fig. S2. Relative deviations ∆ρ/ρ of densities ρ from the present model for MgCl2 (aq) as a function of molaity b. (a): p = 0.1 MPa, T = 298.15 K, () Gates and Wood,9 () Miller et al.,23 () Perron,17() Phang,25 () Chen et al.,26 () Millero et al.,18 () Perron et al.,19. (b): p = 0.1 MPa, () Connaughton et al.,22 T = 308 K to 368 K, () Isono,13 T = 288 K to 328 K, () Romanklw and Chou,15 T = 303 K to 318 K, () Surdo,24 T = 278 K to 318 K, () Chen et al.,26 T = 273 K to 308 K, () Millero and Knox,27T = 273 K to 323 K. (c): T = 298.15 K, Gates and Wood,12 (), b = 0.031 mol·kg-1 , (), b = 0.252 mol·kg-1, (), b = 0.489 mol·kg-1 , (), b = 0.992 mol·kg-1 , () , b = 2.952 mol·kg-1 . (d): high p, high T, () Obsil et al.,21 T = 369 K to 450 K, p = 10.2 MPa to 30.6MPa, () Saluja et al.,6 T = 297 K to 372 K, p = 0.6 MPa, () Saluja and Leblanc,10 T = 297 K to 372 K, p = 0.6 MPa, () Ellis.,20 T = 348 K to 473 K, p = 2.0 MPa. (a) 0.05 (b) 0.2 102 (∆ρ / ρ) 102 (∆ρ / ρ) 0.00 -0.05 0.1 0.0 -0.1 -0.10 -0.2 0.0 0.4 0.8 -1 b/(mol.kg ) 0.0 0.2 0.4 0.6 0.8 1.0 b/(mol.kg-1) Fig. S3. Relative deviations ∆ρ/ρ of densities ρ from the present model for KI (aq) as a function of molaity b. (a): p = 0.1 MPa, () Apelblat and Manzurola,29 T = 278 K to 338 K, () Lemire et al.,30 T = 296 K and 321 K, () Millero et al.,18 T = 298.15 K, () Dunn,33 T = 278 K to 338 K. (b): () Swenson and Woolley.,28 T = 278 K to 368 K, p = 0.35 MPa, () Ellis,20 T = 348 K to 423 K, p = 2.0 MPa, () Saluja et al.,31 T = 297 K to 373 K, p = 0.6 MPa Figure S4: Relative deviations ∆ρ/ρ of densities ρ from the present model for NaCl(aq) as a function of molaity b. (a): 298.15 K, 0.1 MPa, () Singha and Sharmaa,35 () Soto et al.,41 () Chenlo et al46 () Zhuo et al.,48 () Oakes et al.,59 () Kawaizumi et al.,60 () 62, () Lankford and Criss,64 () Gates and Wood,12 () Lankford, et al.,66 () Romankiw and Chou,15 () Alary et al.,68 () Surdo et al.,24 () Perron et al.,71 () Millero et al.,18 () Chen et al.,26 () Zhang and Han.52 (b): 0.1 MPa, T, () Sandengen and Kaasa,34 (288.15 to 323.15) K, () Mendonça et al.,40 (318.15 K), () Comesaña et al.,42 (293.15 to 313.15) K, () Kiepe et al.,3 (283.15 to 353.15) K, () Mironenko et al.,47 (263.00 to 293.00) K, () Apelblat and Manzurola,49 (277.15 to 343.15) K, () Patel and Kishore,54 (298.15 to 328.15) K, () Saluja et al.,6 (297.05 to 371.82) K, () Oakes et al.,59 (308.12) K, () Majer et al.,63 (323.16) K, () Connaughton et al.,22 (308.15 to 368.15) K, () Kumar and Atkinson,14 (278.15 to 308.15) K, () Romankiw and Chou,15 (303.15 to 318.15) K, () Surdo et al.,24 (278.15 to 318.15) K, () Perron et al.,71 (278.15 to 318.15) K, () Dessauges et al.,72 (288.15 to 318.15) K, () Korosi and Fabuss.,79 (298.15 to 423.15) K, ()Fabuss et al.,80 (318.15 to 448.15 ) K, () Chen et al.,26 (273.15 to 308.15) K, () Galleguillos et al.,37 (293.15 to 303.15) K. (c): high P, High T, () Corti and Simonson,36 (373.56 to 473.27) K and (7.09 to 30.05) MPa, () Xiao and Trentaine,50 (373.18 to 475.94) K and (0.5 to 10.02) MPa, () Sharygin and Wood,51 (298.15 to 448.57) K and (10.10 to 28.25) MPa, () Manohar et al.,55 (298.15 to 413.15) K and (2.0) MPa, () Majer et al.,58 (393.40) K and (1.0 to 37.40) MPa, () Majer et al.,63 (323.05 to 498.90) and (0.1 to 40.16) MPa, () Gates and Wood,12 (298.15) K and (10.38 to 40.68) MPa, () Rogers et al.,67 (348.15 to 473.15) K and (2.03) MPa, () Ellis,81 (348.15 to 473.15) K and (2.03) MPa. Figure S5: Relative deviations ∆ρ/ρ of densities ρ from the present model for KCl(aq) as a function of molaity b. (a): 298.15 K, 0.1 MPa, () Kumar,104 () MacInnes and Dayhoff,93 () Kawaizumi et al.,60 () Kumar,62 () Gates and Wood,12 () Zhang and Han,52 () Ruby and Kawai,101 () Millero et al.,18 () Romankiw and Chou.,15 () Ostroff et al.,77 () Dedick et al.,85 () Parton et al.,95 () Jones and Ray.96 (b): high P, High T, () Ellis,81 (348.15 to 473.15) K and (2.03) MPa, () Gates and Wood,12 (298.15) K and (10.38 to 40.64) MPa, () Saluja et al.,31 (297.19 to 371.97) K and (0.6) MPa. (c): 0.1 MPa, T, () Firth and Tyrrell,92 (308.15 to 318.15) K, () Millero and Knox,27 (323.15) K, () Romankiw and Chou,15 (303.15 to 318.15) K, () Korosi and Fabuss,79 (313.14 to 423.15) K, () Apelblat and Manzurola,49 (277.15 to 343.15) K, () Dunn,33 (278.15 to 338.15) K, () Galleguillos et al.,84 (303.15) K, () Dedick et al.,85 (278.15 to 368.15) K, () Harrison and Perman.,100 (313.15 to 353.15), () Sulston,186 (291.15 to 358.15) K. 1180 ρ/kg·m-3 1130 1080 1030 980 0 1 2 3 4 5 6 b/kg·mol-1 Figure S6: Densities ρ of NaCl-KCl (aq) solution as a function of molality b at different molar fractions of KCl y: () our work, y = 0.136. () Zhang,52 y = 0.251. () Zhang,52 y = 0.750. ()Zhang,52 y = 1.0. References 1. Safarov, J. T.; Najafov, G. N.; Shahverdiyev, A. N.; Hassel, E., (p,ρ,T) and (ps,ρs,Ts) properties, and apparent molar volumes VØ of CaCl2 (aq) at T=298.15 to 398.15 K and at pressures up to p=60 MPa. J. Mol. Liq. 2005, 116, (3), 165-174. 2. Yan, Z.; Wang, J.; Kong, W.; Lu, J., Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilib. 2004, 215, (2), 143-150. 3. Kiepe, J.; Karine de Araújo Rodrigues, A.; Horstmann, S.; Gmehling, J., Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol. Ind. Eng. Chem. Res. 2003, 42, (9), 2022-2029. 4. Zhang, H.-L.; Chen, G.-H.; Han, S.-J., Viscosity and density of H2O + NaCl + CaCl2 and H2O + KCl + CaCl2 at 298.15 K. J. Chem. Eng. Data 1997, 42, (3), 526-530. 5. Oakes, C. S.; Simonson, J. M.; Bodnar, R. J., Apparent molar volumes of aqueous calcium chloride to 250°C, 400 bars, and from molalities of 0.242 to 6.150. J. Solution Chem. 1995, 24, (9), 897-916. 6. Saluja, P. P. S.; Jobe, D. J.; LeBlanc, J. C.; Lemire, R. J., Apparent molar heat capacities and volumes of mixed electrolytes: [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) + MgCl2(aq)]. J. Chem. Eng. Data 1995, 40, (2), 398-406. 7. Oakes, C. S.; Bodnar, R. J.; Simonson, J. M.; Pitzer, K. S., CaCl2-H2O in the supercritical and twophase ranges Int. J. Thermophys. 1995, 16, (2), 483-492. 8. Wimby, J. M.; Berntsson, T. S., Viscosity and density of aqueous solutions of lithium bromide, lithium chloride, zinc bromide, calcium chloride and lithium nitrate. 1. Single salt solutions. J. Chem. Eng. Data 1994, 39, (1), 68-72. 9. Gates, J. A.; Wood, R. H., Density and apparent molar volume of aqueous calcium chloride at 323-600 K. J. Chem. Eng. Data 1989, 34, (1), 53-56. 10. Saluja, P. P. S.; LeBlanc, J. C., Apparent molar heat capacities and volumes of aqueous solutions of magnesium chloride, calcium chloride, and strontium chloride at elevated temperatures. J. Chem. Eng. Data 1987, 32, (1), 72-76. 11. Kumar, A., Densities and apparent molal volumes of aqueous concentrated calcium chloride solutions from 50 to 200°C at 20.27 bar. J. Solution Chem. 1986, 15, (5), 409-412. 12. Gates, J. A.; Wood, R. H., Densities of aqueous solutions of sodium chloride, magnesium chloride, potassium chloride, sodium bromide, lithium chloride, and calcium chloride from 0.05 to 5.0 mol·kg-1 and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 1985, 30, (1), 44-49. 13. Isono, T., Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate. J. Chem. Eng. Data 1984, 29, (1), 45-52. 14. Kumar, A.; Atkinson, G., Thermodynamics of concentrated electrolyte mixtures. 3. Apparent molal volumes, compressibilities, and expansibilities of sodium chloride-calcium chloride mixtures from 5 to 35.degree.C. J. Phys. Chem. 1983, 87, (26), 5504-5507. 15. Romankiw, L. A.; Chou, I. M., Densities of aqueous sodium chloride, potassium chloride, magnesium chloride, and calcium chloride binary solutions in the concentration range 0.5-6.1 m at 25, 30, 35, 40, and 45.degree.C. J. Chem. Eng. Data 1983, 28, (3), 300-305. 16. Kumar, A.; Atkinson, G.; Howell, R. D., Thermodynamics of concentrated electrolyte mixtures. II. Densities and compressibilities of aqueous NaCl−CaCl2 at 25 °C. J. Solution Chem. 1982, 11, (12), 857-870. 17. Gèrald Perron, A. R., Jacques E. Desnoyers, Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 1981, 59, (21), 3049-3054. 18. Millero, F. J. W., Gary K.; Chetirkin, Peter V., Relative sound velocities of sea salts at 25°C. J. Acoust. Soc. Am. 1977, 61, ( 6), 1492-1498. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Gérald Perron, J. E. D., Frank J. Millero, Apparent molal volumes and heat capacities of alkaline earth chlorides in water at 25°C. Can. J. Chem. 1974, 52, (22), 3738-3741. Ellis, A. J., Partial molal volumes of MgCl2, CaCl2, SrCl2, and BaCl2 in aqueous solution to 200[degree]. J. Chem. Soc. A: Ino, Phy, Theo. 1967, 660-664. Obsil, M.; Majer, V.; Hefter, G. T.; Hynek, V., Volumes of MgCl2(aq) at temperatures from 298 K to 623 K and pressures up to 30 MPa. J. Chem. Thermodyn. 1997, 29, (5), 575-593. Connaughton, L.; Hershey, J.; Millero, F., PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100°C. J. Solution Chem. 1986, 15, (12), 989-1002. Miller, D. G.; Rard, J. A.; Eppstein, L. B.; Albright, J. G., Mutual diffusion coefficients and ionic transport coefficients lij of magnesium chloride-water at 25.degree.C. J. Phys. Chem. 1984, 88, (23), 5739-5748. Surdo, A. L.; Alzola, E. M.; Millero, F. J., The (p, V, T) properties of concentrated aqueous electrolytes I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2, and MgSO4 solutions from 0.1 mol·kg-1 to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 1982, 14, (7), 649-662. Phang, S.; Stokes, R. H., Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25°C. J. Solution Chem. 1980, 9, (7), 497-505. Chen, C.-T. A.; Chen, J. H.; Millero, F. J., Densities of sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate aqueous solutions at 1 atm from 0 to 50.degree.C and from 0.001 to 1.5 m. J. Chem. Eng. Data 1980, 25, (4), 307-310. Millero, F. J.; Knox, J. H., Apparent molal volumes of aqueous sodium fluoride, sodium sulfate, potassium chloride, potassium sulfate, magnesium chloride, and magnesium sulfate solutions at 0.deg. and 50.deg. J. Chem. Eng. Data 1973, 18, (4), 407-411. Swenson, D. M.; Woolley, E. M., Apparent molar volumes and apparent molar heat capacities of aqueous KI, HIO3, NaIO3, and KIO3 at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 2008, 40, (1), 54-66. Apelblat, A.; Manzurola, E., Volumetric and thermal properties of some aqueous electrolyte solutions: Part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol·kg-1 solutions at temperatures from T=278.15 to 338.15 K. J. Mol. Liq. 2005, 118, (1-3), 77-88. Lemire, R. J.; Campbell, A. B.; Saluja, P. P. S.; LeBlanc, J. C., Heat capacities and densities of electrolyte mixtures in aqueous solution __ Application to the determination of apparent molar heat capacities and volumes for potassium triiodide and dioxoneptunium(V) perchlorate. J. Nucl. Mater. 1993, 201, 165-175. Saluja, P. P. S.; Lemire, R. J.; LeBlanc, J. C., High-temperature thermodynamics of aqueous alkali-metal salts. J. Chem. Thermodyn. 1992, 24, (2), 181-203. Ellis, A. J., Partial molal volumes in high-temperature water. Part III. Halide and oxyanion salts. J. Chem. Soc. A: Ino, Phy, Theo. 1968, 1138-1143. Dunn, L. A., Apparent molar volumes of electrolytes. Part 3.-Some 1-1 and 2-1 electrolytes in aqueous solution at 0, 5, 15, 35, 45, 55 and 65 [degree]C. Transactions of the Faraday Society 1968, 64, 2951-2961. Sandengen, K.; Kaasa, B., Estimation of monoethylene Glycol (MEG) content in water + MEG + NaCl + NaHCO3 solutions. J. Chem. Eng. Data 2006, 51, (2), 443-447. Singha, M.; Sharmaa, Y. K., Applications of activation energy and transition state theory for nucleos(t)ides and furanose helix puckering interactions in aqueous medium from 288.15 to 298.15K Phys. Chem. Liq. 2006, 44, (1), 1-14. Corti, H.; Simonson, J., Densities and apparent molar volumes of NaOH(aq) to the temperature 623 K and pressure to 30 MPa. J. Solution Chem. 2006, 35, (8), 1057-1074. Galleguillos, H. R.; Molina, M. A.; Graber, T. A.; Taboada, M. E.; Hernández-Luis, F., Experimental determination of densities of aqueous electrolyte mixtures containing B(OH)3 or 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. Na2B4O7 and their correlation with the Pitzer model. Ind. Eng. Chem. Res. 2006, 45, (19), 66046613. Riyazuddeen; Bansal, G. K., Intermolecular/interionic interactions in l-leucine-, l-asparagine-, and glycylglycine-aqueous electrolyte systems. Thermochim. Acta 2006, 445, (1), 40-48. Tromans, A.; Königsberger, E.; May, P. M.; Hefter, G., Heat capacities and volumes of aqueous dicarboxylate salt solutions of relevance to the bayer process. J. Chem. Eng. Data 2005, 50, (6), 2019-2025. Mendonça, Â. F. S. S.; Magalhães, S. R. J.; Rodrigues, S. I. M.; Lampreia, I. M. S., Apparent molar volumes of proline-leucine dipeptide in NaCl aqueous solutions at 318.15 K. J. Solution Chem. 2005, 34, (1), 25-32. Soto, A.; Arce, A.; Khoshkbarchi, M. K., Thermodynamics of diglycine and triglycine in aqueous NaCl solutions: Apparent molar volume, isentropic compressibility, and refractive index. J. Solution Chem. 2004, 33, (1), 11-21. Comesaña, J. F.; Otero, J. J.; García, E.; Correa, A., Densities and viscosities of ternary systems of water + glucose + sodium chloride at several temperatures. J. Chem. Eng. Data 2003, 48, (2), 362-366. Rodríguez, H.; Soto, A.; Arce, A.; Khoshkbarchi, M. K., Apparent molar volume, isentropic compressibility, refractive index, and viscosity of DL-alanine in aqueous NaCl solutions. J. Solution Chem. 2003, 32, (1), 53-63. Galleguillos, H. R.; Taboada, M. E.; Graber, T. A.; Bolado, S., Compositions, densities, and refractive indices of potassium chloride + ethanol + water and sodium chloride + ethanol + water solutions at (298.15 and 313.15) K. J. Chem. Eng. Data 2003, 48, (2), 405-410. Zhao, H.-K.; Luo, T.-L.; Ren, B.-Z.; Li, J.; Liu, G.-J.; Wang, H.-X., Phase diagram of the quaternary system sodium sulfate + sodium chloride + hydrogen peroxide + water and Its subsystems: experimental data. J. Chem. Eng. Data 2003, 48, (6), 1540-1543. Chenlo, F.; Moreira, R.; Pereira, G.; Ampudia, A., Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes. J. Food Eng. 2002, 54, (4), 347-352. Mironenko, M. V.; Boitnott, G. E.; Grant, S. A.; Sletten, R. S., Experimental determination of the volumetric properties of NaCl solutions to 253 K. J. Phys. Chem. B 2001, 105, (41), 99099912. Zhuo, K.; Wang, J.; Yue, Y.; Wang, H., Volumetric properties for the monosaccharide (d-xylose, d-arabinose, d-glucose, d-galactose)-NaCl-water systems at 298.15 K. Carbohydr. Res. 2000, 328, (3), 383-391. Apelblat, A.; Manzurola, E., Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures fromT = 277.15 K toT = 343.15 K at molalities of (0.1, 0.5, and 1.0)mol·kg - 1. J. Chem. Thermodyn. 1999, 31, (7), 869-893. Xiao, C.; Trentaine, P., Apparent molar volumes of aqueous sodium trifluoromethanesulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. J. Solution Chem. 1997, 26, (3), 277-294. Sharygin, A. V.; Wood, R. H., Volumes and heat capacities of aqueous solutions of ammonium chloride from the temperatures 298.15 K to 623 K and pressures to 28 MPa. J. Chem. Thermodyn. 1996, 28, (8), 851-872. Zhang; Han, Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K. J. Chem. Eng. Data 1996, 41, (3), 516-520. Guetachew, T.; Ye, S.; Mokbel, I.; Jose, J.; Xans, P., Study of NaCl solutions in a mixed solvent H2O-CH3OH: Experimental densities and comparison with calculated values obtained with a modified Pitzer's model. J. Solution Chem. 1996, 25, (9), 895-903. Patel, S. G.; Kishore, N., Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55°C. J. Solution Chem. 1995, 24, (1), 25-38. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. Manohar, S.; Puchalska, D.; Atkinson, G., Pressure-volume-temperature properties of aqueous mixed electrolyte solutions: sodium chloride + barium chloride from 25 to 140.degree.C. J. Chem. Eng. Data 1994, 39, (1), 150-154. Crovetto, R.; Lvov, S. N.; Wood, R. H., Vapor pressures and densities of NaCl(aq) and KCl(aq) at the temperature 623 K and CaCl2(aq) at the temperatures 623 K and 643 K. J. Chem. Thermodyn. 1993, 25, (1), 127-138. Majer, V.; Hui, L.; Crovetto, R.; Wood, R. H., Volumetric properties of aqueous 1-1 electrolyte solutions near and above the critical temperature of water I. Densities and apparent molar volumes of NaCl(aq) from 0.0025 mol·kg-1 to 3.1 mol·kg-1, 604.4 K to 725.5 K, and 18.5 MPa to 38.0 MPa. J. Chem. Thermodyn. 1991, 23, (3), 213-229. Majer, V.; Crovetto, R.; Wood, R. H., A new version of vibrating-tube flow densitometer for measurements at temperatures up to 730 K. J. Chem. Thermodyn. 1991, 23, (4), 333-344. Oakes, C. S.; Simonson, J. M.; Bodnar, R. J., The system sodium chloride-calcium chloridewater. 2. Densities for ionic strengths 0.1-19.2 mol·kg-1 at 298.15 and 308.15 and at 0.1 MPa. J. Chem. Eng. Data 1990, 35, (3), 304-309. Kawaizumi, F.; Nakao, F.; Nomura, H., Partial molar volumes and compressibilities of 1-1 type chlorides, bromides, tetraphenylphosphonium chloride, and sodium tetraphenylborate in water-acetone mixtures. J. Chem. Eng. Data 1988, 33, (2), 204-211. Kumar, A., Mixtures of 1-1 electrolytes: Densities and excess volumes of aqueous NaCl-NaBr solutions at 25°C. Monatshefte für Chemie / Chemical Monthly 1988, 119, (11), 1201-1206. Kumar, A., Mixture densities of aqueous potassium chloride with sodium chloride up to ionic strength 4.5 mol·kg-1 and at 298.15 K. J. Chem. Eng. Data 1988, 33, (2), 198-199. Majer, V.; Gates, J. A.; Inglese, A.; Wood, R. H., Volumetric properties of aqueous NaCl solutions from 0.0025 to 5.0 mol·kg-1, 323 to 600 K, and 0.1 to 40 MPa. J. Chem. Thermodyn. 1988, 20, (8), 949-968. Lankford, J. I.; Criss, C. M., Partial molar heat capacities of selected electrolytes and benzene in methanol and dimethylsulfoxide at 25, 40, and 80°C. J. Solution Chem. 1987, 16, (11), 885-906. Kumar, A., Densities and apparent molar volumes of aqueous NaCl–KBr mixtures at 298.15 K. Can. J. Chem. 1985, 63, (11), 3200-3202. Lankford, J. I.; Holladay, W. T.; Criss, C. M., Isentropic compressibilities of univalent electrolytes in methanol at 25°C. J. Solution Chem. 1984, 13, (10), 699-720. Rogers, P. S. Z.; Bradley, D. J.; Pitzer, K. S., Densities of aqueous sodium chloride solutions from 75 to 200.degree.C at 20 bar. J. Chem. Eng. Data 1982, 27, (1), 47-50. Alary, J. F.; Simard, M. A.; Dumont, J.; Jolicoeur, C., Simultaneous flow measurement of specific heats and thermal expansion coefficients of liquids: Aqueous t=BuOH mixtures and neat alkanols and alkanediols at 25°C. J. Solution Chem. 1982, 11, (11), 755-776. Grant-Taylor, D. F., Partial molar volumes of sodium chloride solutions at 200 bar, and temperatures from 175 to 350°C. J. Solution Chem. 1981, 10, (9), 621-630. Simard, M.-A.; Fortier, J.-L., Heat capacity measurements of liquids with a Picker mixing flow microcalorimeter. Can. J. Chem. 1981, 59, (22), 3208-3211. Perron, G.; Roux, A.; Desnoyers, J. E., Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 1981, 59, (21), 3049-3054. Dessauges, G.; Miljevic, N.; Van Hook, W. A., Isotope effects in aqueous systems. 9. Partial molar volumes of sodium chloride/water and sodium chloride/water-d2 solutions at 15, 30, and 45.degree.C. J. Phys. Chem. 1980, 84, (20), 2587-2595. Jelinek, R. M.; Leopold, H., Präzisionsmessung der dichte einiger organischer flüssigkeiten nach der biegeschwingermethode. Monatshefte für Chemie / Chemical Monthly 1978, 109, (2), 387393. Millero, F. J. W., Gary K.; Chetirkin, Peter V. , Relative sound velocities of sea salts at 25°C. The Journal of the Acoustical Society of America, 1977, 61, (6), 1492-1498. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. Millero, F.; Hoff, E.; Kahn, L., The effect of pressure on the ionization of water at various temperatures from molal-volume data1. J. Solution Chem. 1972, 1, (4), 309-327. Millero, F. J., The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem. 1970, 74, (2), 356-362. Ostroff, A. G.; Snowden, B. S.; Woessner, D. E., Viscosities of protonated and deuterated water solutions of alkali metal chlorides. J. Phys. Chem. 1969, 73, (8), 2784-2785. Wirth, H. E.; LoSurdo, A., Temperature dependence of volume changes on mixing electrolyte solutions. J. Chem. Eng. Data 1968, 13, (2), 226-231. Korosi, A.; Fabuss, B. M., Viscosities of binary aqueous solutions of sodium chloride, potassium chloride, sodium sulfate, and magnesium sulfate at concentrations and temperatures of interest in desalination processes. J. Chem. Eng. Data 1968, 13, (4), 548-552. Fabuss, B. M.; Korosi, A.; Hug, A. K. M. S., Densities of binary and ternary aqueous solutions of NaCl, Na2SO4 and MgSO4 of sea waters, and sea water concentrates. J. Chem. Eng. Data 1966, 11, (3), 325-331. Ellis, A. J., Partial molal volumes of alkali chlorides in aqueous solution to 200[degree]. J. Chem. Soc. A: Ino, Phy, Theo. 1966, 1579-1584. Deng, T.; Li, D.; Wang, S., Metastable phase equilibrium in the aqueous ternary system (KCl−CaCl2−H2O) at (288.15 and 308.15) K. J. Chem. Eng. Data 2008, 53, (4), 1007-1011. Venkatesu, P.; Lee, M.-J.; Lin, H.-m., Densities of aqueous solutions containing model compounds of amino acids and ionic salts at T = 298.15 K. J. Chem. Thermodyn. 2007, 39, (8), 1206-1216. Galleguillos, H. R.; Flores, E. K.; Aguirre, C. E., Density and refractive index for boric acid + potassium chloride + water and disodium tetraborate + potassium chloride + water systems at (20, 25, and 30) °C. J. Chem. Eng. Data 2001, 46, (6), 1632-1634. Dedick, E.; Hershey, J.; Sotolongo, S.; Stade, D.; Millero, F., The PVT properties of concentrated aqueous electrolytes IX. The volume properties of KCl and K2SO4 and their mixtures with NaCl and Na2SO4 as a function of temperature. J. Solution Chem. 1990, 19, (4), 353-374. Kumar, A., The mixture densities and volumes of aqueous potassium chloride-magnesium chloride up to ionic strength of 4.5 mol·kg-1 and at 298.15 K. J. Chem. Eng. Data 1989, 34, (1), 87-89. Kumar, A., Densities and excess volumes of aqueous potassium chloride-sodium bromide up to ionic strength of 4 mol·kg-1. J. Chem. Eng. Data 1989, 34, (4), 446-447. Kumar, A., Concentrated mixtures of 1:1 electrolytes: densities and excess volumes of aqueous KBr with KCl and NaBr. Bull. Chem. Soc. Jpn. 1989, 62, (10), 3311-3314. Kumar, A., Densities and apparent molal volumes of aqueous potassium chloride-calcium chloride mixtures at 298.15 K. J. Chem. Eng. Data 1986, 31, (1), 21-23. Millero, F., Relative sound velocities of sea salts at 25°C J. Acoust. Soc. Am. 1977, 61, (6), 14921498. Gucker, F. T.; Stubley, D.; Hill, D. J., The isentropic compressibilities of aqueous solutions of some alkali halides at 298.15 K. J. Chem. Thermodyn. 1975, 7, (9), 865-873. Firth, J. G.; Tyrrell, H. J. V., 381. Diffusion coefficients for aqueous silver nitrate solutions at 25[degree], 35[degree], and 45[degree] from diaphragm-cell measurements. Journal of the Chemical Society (Resumed) 1962, 2042-2047. MacInnes, D. A.; Dayhoff, M. O., The partial molal volumes of potassium chloride, potassium and sodium iodides and of iodine in aqueous solution at 25°C. J. Am. Chem. Soc. 1952, 74, (4), 1017-1020. Halasey, S. M. E., Partial molal volumes of potassium salts of the hofmeister series. J. Phys. Chem. 1941, 45, (8), 1252-1263. Parton, H. N.; Robinson, R. A.; Metson, A. J., Anomalies in aqueous solutions of potassium chloride and lead chloride. Transactions of the Faraday Society 1939, 35, 402-412. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. Jones, G.; Ray, W. A., The surface tension of solutions of electrolytes as a function of the concentration. I. A differential method for measuring relative surface tension. J. Am. Chem. Soc. 1937, 59, (1), 187-198. Lanman, E. H.; Mair, B. J., The compressibility of aqueous solutions. J. Am. Chem. Soc. 1934, 56, (2), 390-393. Jones, G.; Talley, S. K., The viscosity of aqueous solutions as a function of the concentration. II. Potassium bromide and potassium chloride. J. Am. Chem. Soc. 1933, 55, (10), 4124-4125. Jones, G.; Talley, S. K., The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. 1933, 55, (2), 624-642. Harrison, W. R.; Perman, E. P., Vapour pressure and heat of dilution of aqueous solutions. Transactions of the Faraday Society 1927, 23, 1-22. Ruby, C. E.; Kawai, J., the densities, equivalent conductances and relative viscosities at 25°C of solutions of hydrochloric acid, potassium chloride and sodium chloride, and the binary and ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 1926, 48, (5), 1119-1128. Haigh, F. L., Certain physical properties of the alkali nitrates and chlorides. J. Am. Chem. Soc. 1912, 34, (9), 1137-1159. Peña, M. P.; Vercher, E.; Martínez-Andreu, A., Apparent molar volumes of strontium chloride in ethanol + water at 298.15 K. J. Chem. Eng. Data 1997, 42, (1), 187-189. Kumar, A., Densities of aqueous strontium chloride solutions up to 200.degree.C and at 20 bar. J. Chem. Eng. Data 1986, 31, (3), 347-349. Rard, J. A.; Miller, D. G., Mutual diffusion coefficients of SrCl2-H2O and CsCl-H2O at 25 [degree]C from Rayleigh interferometry. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1982, 78, (3), 887-896. Perron, G.; Desnoyers, J. E.; Millero, F. J., Apparent molal volumes and heat capacities of alkaline earth chlorides in water at 25°C. Can. J. Chem. 1974, 52, (22), 3738-3741. Bateman, R. L., The apparent molal volume of strontium chloride in ethanol—water mixtures. J. Am. Chem. Soc. 1949, 71, (7), 2291-2293. Shedlovsky, T.; Brown, A. S., The electrolytic conductivity of alkaline earth chlorides in water at 25°C. J. Am. Chem. Soc. 1934, 56, (5), 1066-1071. Puchalska, D.; Atkinson, G., Densities and apparent molal volumes of aqueous BaCl2 solutions from 15 to 140 .degree.C and from 1 to 200 bar. J. Chem. Eng. Data 1991, 36, (4), 449-452. Dunn, L. A., Apparent molar volumes of electrolytes. Part 1.-Some 1-1, 1-2, 2-1, 3-1 electrolytes in aqueous solution at 25[degree]C. Transactions of the Faraday Society 1966, 62, 2348-2354. Bateman, R. L., The apparent molal volume of barium chloride in ethanol—water mixtures. J. Am. Chem. Soc. 1952, 74, (21), 5516-5516. Jones, G.; Ray, W. A., The surface tension of solutions of electrolytes as a function of the concentration II*. J. Am. Chem. Soc. 1941, 63, (1), 288-294. Kidokoro, M., The interfacial tension between hexane and aqueous salt solutions. Bull. Chem. Soc. Jpn. 1932, 7, (8), 280-286. Jones, G.; Dole, M., The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 1929, 51, (10), 2950-2964. Jones, G.; Dole, M., The electrical conductance of aqueous solutions of barium chloride as a function of the concentration. J. Am. Chem. Soc. 1930, 52, (6), 2245-2256. Abdulagatov, I. M.; Azizov, N. D., Densities and apparent molar volumes of concentrated aqueous LiCl solutions at high temperatures and high pressures. Chem. Geol. 2006, 230, (1-2), 22-41. Vercher, E.; Solsona, S.; Isabel Vázquez, M.; Martínez-Andreu, A., Apparent molar volumes of lithium chloride in 1-propanol + water in the temperature range from 288.15 to 318.15 K. Fluid Phase Equilib. 2003, 209, (1), 95-111. 118. Gruszkiewicz, M. S.; Wood, R. H., Conductance of dilute LiCl, NaCl, NaBr, and CsBr solutions in supercritical water using a flow conductance cell. J. Phys. Chem. 1997, 101, (33), 6549-6559. 119. Palaiologou, M. M.; Molinou, I. E.; Tsierkezos, N. G., Viscosity studies on lithium bromide in water + dimethyl sulfoxide mixtures at 278.15 K and 293.15 K. J. Chem. Eng. Data 2002, 47, (5), 1285-1289. 120. Rohman, N.; Dass, N. N.; Mahiuddin, S., Isentropic compressibility, effective pressure, classical sound absorption and shear relaxation time of aqueous lithium bromide, sodium bromide and potassium bromide solutions. J. Mol. Liq. 2002, 100, (3), 265-290. 121. Esteso, M. A.; Esparza, M.; Grandoso, D. M.; Gonzalez-Diaz, O. M., Transference number measurements in aqueous solutions at 25.degree.C. 3. Lithium bromide. J. Chem. Eng. Data 1987, 32, (4), 474-476. 122. Fried, I.; Segal, M., Electrical conductivity of concentrated lithium bromide aqueous solutions. J. Chem. Eng. Data 1983, 28, (1), 127-130. 123. Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C., Apparent molal volumes of alkali halides in water at 25.deg.. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 1969, 73, (10), 3346-3351. 124. Sanmamed, Y. A.; González-Salgado, D.; Troncoso, J.; Cerdeiriña, C. A.; Romaní, L., Viscosityinduced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 2007, 252, (1-2), 96-102. 125. Sanmamed, Y. A.; Dopazo-Paz, A.; González-Salgado, D.; Troncoso, J.; Romaní, L., An accurate calibration method for high pressure vibrating tube densimeters in the density interval (700 to 1600) kg · m-3. J. Chem. Thermodyn. 2009, 41, (9), 1060-1068. 126. Yang, L.; Zhuo, K.; Zhao, Y.; Wang, J., Thermodynamics of the Interaction between electrolyte (CaCl2, NaCl, NaBr, NaI) and monosaccharide (D-mannose, D-ribose) in water at 298.15 K. Z. Phys. Chem. 2004, 218, (3-2004), 349-362. 127. Nikam, P. S.; Shewale, R. P.; Sawant, A. B.; Hasan, M., Limiting ionic partial molar volumes and viscosities of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I-, and BPh4- in aqueous acetone at 308.15 K. J. Chem. Eng. Data 2005, 50, (2), 487-491. 128. Nikam, P. S.; Hasan, M.; Shewale, R. P.; Sawant, A. B., Limiting ionic partial molar volumes and viscosities of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I-, and BPh4- in aqueous acetone at 308.15 K. J. Solution Chem. 2003, 32, (11), 987-995. 129. Hakin, A. W.; Liu, J. L.; Marriott, R. A., An investigation of the volumetric properties of -alanine and sodium bromide in water at elevated temperatures and pressures. J. Chem. Thermodyn. 2000, 32, (10), 1355-1380. 130. Majer, V.; Hui, L.; Crovetto, R.; Wood, R. H., Volumetric properties of aqueous 1-1 electrolyte solutions near and above the critical temperature of water II. Densities and apparent molar volumes of LiCl(aq) and NaBr(aq) at molalities from 0.0025 mol·kg-1 to 3.0 mol·kg-1, temperatures from 604.4 K to 725.5 K, and pressures from 18.5 MPa to 38.0 MPa. J. Chem. Thermodyn. 1991, 23, (4), 365-378. 131. Majer, V.; Inglese, A.; Wood, R. H., Volumetric properties of NaBr(aq, m = 0.05 to 3.0 mol·kg-1, T = 322 to 550 K, p = 0.8 to 32.6 MPa). J. Chem. Thermodyn. 1989, 21, (4), 397-406. 132. Grzybkowski, W.; Atkinson, G., Thermodynamics of concentrated electrolyte mixtures. Part 8. Apparent molal volumes, adiabatic compressibilities, and hydration numbers of aqueous zinc bromide, calcium bromide, and sodium bromide at 25.degree.C. J. Chem. Eng. Data 1986, 31, (3), 309-312. 133. Sacco, A.; de Giglio, A.; Dell'atti, A.; Petrella, M., Ionic B coefficients in water at 30, 40 and 50 [degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1981, 77, (11), 2693-2699. 134. Quist, A. S.; Marshall, W. L., Electrical conductances of aqueous sodium bromide solutions from 0 to 800.deg. and at pressures to 4000 bars. J. Phys. Chem. 1968, 72, (6), 2100-2105. 135. Abdulagatov, I. M.; Azizov, N. D., Densities, apparent and partial molar volumes of aqueous KBr solutions at high temperatures and high pressures. Fluid Phase Equilib. 2006, 246, (1-2), 96-110. 136. Nikam, P. S.; Sawant, A. B., Viscosity of potassium halides and symmetrical tetraalkylammonium bromides in acetonitrile + water mixtures at 298.15 K. J. Chem. Eng. Data 1997, 42, (6), 1151-1156. 137. Mulcahy, D. E.; Steel, B. J., Relative viscosity and density data for some alkali halides in aqueous 20% sucrose solution at 25.degree.C. J. Chem. Eng. Data 1985, 30, (2), 191-194. 138. Dunn, L. A., Apparent molar volumes of electrolytes. Part 2.-Some 1-1 electrolytes in aqueous solution at 25[degree]C. Transactions of the Faraday Society 1968, 64, 1898-1903. 139. Jones, G.; Stauffer, R. E., The viscosity of solutions of electrolytes as a function of the concentration. VI. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 1940, 62, (2), 335-337. 140. Wirth, H. E., The partial molal volumes of potassium chloride, potassium bromide and potassium sulfate in sodium chloride solutions. J. Am. Chem. Soc. 1937, 59, (12), 2549-2554. 141. Jones, G.; Bickford, C. F., The conductance of aqueous solutions as a function of the concentration. I. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 1934, 56, (3), 602-611. 142. Rakowsky, F., Low-temperature electrolytes. J. Electrochem. Soc. 1954, 101, (3), 117. 143. Pedersen, T.; Dethlefsen, C.; Hvidt, A., Volumetric properties of aqueous solutions of alkali halides. Carlsberg Research Communications 1984, 49, (3), 445-455. 144. Majer, V.; Obšil, M.; Hefter, G.; Grolier, J.-P., Volumetric behavior of aqueous NaF and KF solutions up to 350 °C and 30 MPa. J. Solution Chem. 1997, 26, (9), 847-875. 145. Buchner, R.; Hefter, G. T.; Barthel, J., Dielectric relaxation of aqueous NaF and KF solutions. J. Chem. Soc., Faraday Trans. 1994, 90, (17), 2475-2479. 146. Payne, J. H., The solubility of lithium and sodium fluorides. J. Am. Chem. Soc. 1937, 59, (5), 947-947. 147. Safarov, J., (p, ρ, T) and (ps, ρs, Ts) properties, and apparent molar volumes VØ of LiI (aq) at T = 298.15 to 398.15 K and at pressures up to p = 60 MPa. J. Mol. Liq. 2006, 123, (2-3), 139145. 148. Abdulagatov, I. M.; Azizov, N. D., Densities and apparent molar volumes of aqueous LiI solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa. J. Chem. Thermodyn. 2004, 36, (10), 829-843. 149. Salavera, D.; Esteve, X.; Patil, K. R.; Mainar, A. M.; Coronas, A., Solubility, heat capacity, and density of lithium bromide + lithium iodide + lithium nitrate + lithium chloride aqueous solutions at several compositions and temperatures. J. Chem. Eng. Data 2004, 49, (3), 613619. 150. Zhuo, K.; Wang, J.; Zheng, H.; Xuan, X.; Zhao, Y., Volumetric parameters of Interaction of monosaccharides (D-xylose, D-arabinose, D-glucose, D-galactose) with NaI in water at 298.15 K. J. Solution Chem. 2005, 34, (2), 155-170. 151. Kacperska, A.; Taniewska-Osinska, S.; Bald, A.; Szejgis, A., Influence of ionic association on the B coefficient of the Jones-Dole equation for NaI in water-t-butyl alcohol mixtures at 26 [degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1989, 85, (12), 4147-4155. 152. Nowicka, B.; Kacperska, A.; Barczynska, J.; Bald, A.; Taniewska-Osinska, S., Viscosity of solutions of NaI and CaCl2 in water-ethanol and of Nai in water-tetrahydrofuran mixtures. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1988, 84, (11), 3877-3884. 153. Dunn, L. A.; Marshall, W. L., Electrical conductances of aqueous sodium iodide and the comparative thermodynamic behavior of aqueous sodium halide solutions to 800.deg. and 4000 bars. J. Phys. Chem. 1969, 73, (3), 723-728. 154. R. E. Robertson, S. E. S., R. Tse, C.-Y. Wu, E solvent isotope effect and the partial molar volume of ions. Can. J. Chem. 1966, 44, (4), 487-494. 155. Lasselle, P. A.; Aston, J. G., The conductivity of sodium iodide solutions at 25°C and the limiting conductance of the iodide ion. J. Am. Chem. Soc. 1933, 55, (8), 3067-3071. 156. Hervello, M. F.; Sánchez, A., Densities of (lithium, magnesium, or copper(II)) sulfates in ethanol−water solutions. J. Chem. Eng. Data 2007, 52, (3), 906-909. 157. Carton, A.; Sobron, F.; Bolado, S.; Gerboles, J. I., Density, viscosity, and electrical conductivity of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 1995, 40, (4), 987-991. 158. Pearce, J. N.; Eckstrom, H. C., Vapor pressures and partial molal volumes of aqueous solutions of the alkali sulfates at 25°C. J. Am. Chem. Soc. 1937, 59, (12), 2689-2691. 159. Banipal, P. K.; Dhanjun, H. S.; Sharma, S.; Hundal, H.; Banipal, T. S., Effect of sodium sulphate on the volumetric, rheological and refractometric properties of some disaccharides in aqueous solutions at different temperatures. Z. Phys. Chem. 2008, 222, (1), 177-204. 160. Zhuo, K.; Chen, Y.; Wang, W.; Wang, J., Volumetric and viscosity properties of MgSO4/CuSO4 in sucrose + water solutions at 298.15 K. J. Chem. Eng. Data 2008, 53, (9), 2022-2028. 161. Hervello, M. F.; Sánchez, A., Densities of univalent cation sulfates in ethanol + water solutions. J. Chem. Eng. Data 2007, 52, (3), 752-756. 162. Obšil, M.; Majer, V.; Hefter, G. T.; Hynek, V., Densities and apparent molar volumes of Na2SO4(aq) and K2SO4(aq) at temperatures from 298 K to 573 K and at pressures up to 30 MPa. J. Chem. Eng. Data 1997, 42, (1), 137-142. 163. Sanchez, M. M.; Dominguez, B.; Raposo, R. R.; Vivo, A., Densities and molar volumes of Na2SO4 and MgSO4 in ethanol + water mixtures at 15, 25, and 35 .degree.C. J. Chem. Eng. Data 1994, 39, (3), 453-456. 164. Phutela, R. C.; Pitzer, K. S., Densities and apparent molar volumes of aqueous magnesium sulfate and sodium sulfate to 473 K and 100 bar. J. Chem. Eng. Data 1986, 31, (3), 320-327. 165. Millero, F. J.; Connaughton, L. M.; Vinokurova, F.; Chetirkin, P. V., PVT properties of concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts at I=1.0 and 3.0 at 25°C. J. Solution Chem. 1985, 14, (12), 837-851. 166. Rogers, P. S. Z.; Pitzer, K. S., High-temperature thermodynamic properties of aqueous sodium sulfate solutions. J. Phys. Chem. 1981, 85, (20), 2886-2895. 167. Fleischmann, W.; Mersmann, A., Solubility, density and viscosity for sodium sulfate-methanolwater systems. J. Chem. Eng. Data 1984, 29, (4), 452-456. 168. Quintana, C.; Llorente, M. L.; Sanchez, M.; Vivo, A., Viscosity of Na2SO4 and MgSO4 solutions in ethanol-water mixtures at 15, 25 and 35 [degree]C. J. Chem. Soc., Faraday Trans. 1: Phy Chem in Cond Phas 1986, 82, (11), 3307-3314. 169. Frank J. Millero, G. K. W., and Peter V. Chetirkin, Relative sound velocities of sea salts at 25°C J. Acoust. Soc. Am. 1977, 61, (6), 1492-1498 170. Garran, R. R., The ternary system sodium thiosulfate - sodium sulfate - water. J. Chem. Soc. 1926, 848-855. 171. Trimble, H. M., The solubility of potassium permanganate in solutions of potassium sulfate and of sodium, sulfate. J. Am. Chem. Soc. 1922, 44, (3), 451-460. 172. Taboada, M. E.; Véliz, D. M.; Galleguillos, H. R.; Graber, T. A., Solubilities, densities, viscosities, electrical conductivities, and refractive indices of saturated solutions of potassium sulfate in water + 1-propanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 2002, 47, (5), 11931196. 173. Jones, G.; Colvin, J. H., The viscosity of solutions of electrolytes as a function of the concentration. VII. Silver nitrate, potassium sulfate and potassium chromate. J. Am. Chem. Soc. 1940, 62, (2), 338-340. 174. Adams, L. H., Equilibrium in binary systems under pressure. II. The system, K2SO4-H2O, at 25°C. J. Am. Chem. Soc. 1932, 54, (6), 2229-2243. 175. Phutela, R. C.; Pitzer, K. S., Heat capacity and other thermodynamic properties of aqueous magnesium sulfate to 473 K. J. Phys. Chem. 1986, 90, (5), 895-901. 176. Millero, F.; Gombar, F.; Oster, J., The partial molal volume and compressibility change for the formation of the calcium sulfate ion pair at 25°C. J. Solution Chem. 1977, 6, (4), 269-280. 177. Madgin, W. M.; Swales, D. A., 37. Specific conductivity measurements directly related to solubilities with special reference to calcium sulphate (anhydrite) solutions. Journal of the Chemical Society (Resumed) 1956, 196-200. 178. Hamm, R. E.; Thompson, T. G., Specific gravities and electrical conductances of some calcium sulfate solutions and mixtures of sodium chloride and calcium sulfate. J. Am. Chem. Soc. 1941, 63, (5), 1418-1422. 179. Miller, D. G.; Sartorio, R.; Paduano, L.; Rard, J. A.; Albright, J. G., Effects of different sized concentration differences across free diffusion boundaries and comparison of Gouy and Rrayleigh diffusion measurements using NaCl−KCl−H2O. J. Solution Chem. 1996, 25, (12), 11851211. 180. Millero, F. J.; Sotolongo, S., PVT properties of concentrated aqueous electrolytes. 7. The volumes of mixing of the reciprocal salt pairs potassium chloride, potassium sulfate, sodium chloride, and sodium sulfate at 25.degree.C and I = 1.5 M. J. Chem. Eng. Data 1986, 31, (4), 470-472. 181. Goldsack, D. E.; Franchetto, A. A., The viscosity of concentrated electrolyte solutions__III. A mixture law. Electrochim. Acta 1977, 22, (11), 1287-1294. 182. Fabuss, B. M.; Korosi, A.; Othmer, D. F., Viscosities of aqueous solutions of several electrolytes present in sea water. J. Chem. Eng. Data 1969, 14, (2), 192-197. 183. Kumar, A.; Sanghavi, R.; Mohandas, V. P., Solubility pattern of CaSO4·2H2O in the system NaCl + CaCl2 + H2O and solution densities at 35 °C: non-ideality and ion pairing. J. Chem. Eng. Data 2007, 52, (3), 902-905. 184. Leaist, D. G.; Al-Dhaher, F. F., Predicting the diffusion coefficients of concentrated mixed electrolyte solutions from binary solution data. NaCl + MgCl2 + H2O and NaCl + SrCl2 + H2O at 25°C. J. Chem. Eng. Data 2000, 45, (2), 308-314. 185. Deng, T.; Yin, H.; Li, D., Metastable phase equilibrium in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at 348.15 K. J. Chem. Eng. Data 2008, 54, (2), 498-501. 186. Sulston, W. J., The temperature variation of the viscosity of aqueous solutions of strong electrolytes Proceedings of the Physical Society 1935, 47, (4), 657.
© Copyright 2026 Paperzz