Web Course Physical Properties of Glass 1. Properties of Glass

Web Course
Physical Properties of Glass
1. Properties of Glass Melts
2. Thermal Properties of Glasses
Richard K. Brow
Missouri University of Science & Technology
Department of
Materials Science & Engineering
FS08
Richard K. Brow
[email protected]
Melt properties-1
Melt and Glass Properties
•
•
•
•
•
FS08
Viscosity- chapter 9
Surface Tension- chapter 9
Thermal Expansion- chapter 10
Heat Capacity- chapter 11
Thermal Conductivity- chapter 12
Richard K. Brow
[email protected]
Melt properties-2
Supplementary References on Viscosity
• Structure, Dynamics and Properties of Silicate
Melts, Reviews in Mineralogy, Vol. 32 (1995),
ed. JF Stebbins, PF McMillan and DB Dingwell
(Mineralogical Society of America)- several
outstanding reviews of viscosity, relaxation, etc.
• CA Angell, Science, 267, (1995), 1924- concepts
of melt fragility, configurational entropy, etc.
• JH Simmons and C Simmons, Cer Bull 68[11]
1949 (1989)- Non-Newtonian behavior
• HE Hagy in Introduction to Glass Science, ed.
LD Pye, et al Plenum Press (1972)- nice review
of viscosity measurements
FS08
Richard K. Brow
[email protected]
Melt properties-3
Why should we care about melt viscosity?
1. Glass Forming Tendency
a. Nucleation, crystallization, phase separation kinetics
IVHO
3
⎤
⎛
⎞
⎡
k
T
K
σ
⋅
−
⋅
0
⎟ exp ⎢
= NV ⎜⎜
3
2⎥
⎟
⎝ 3π ⋅ a0 ⋅η ⎠
⎣ T ⋅ ΔGv ⎦
2. Melt Fining
Stoke' s Law :
d 2 g ( ρb − ρl )
V=
12η
3. Manufacturing Process Control
4. Annealing Schedules/Permanent Stress
5. What else??
FS08
Richard K. Brow
[email protected]
Melt properties-4
F,V
d
Viscosity ≡ η = Fd
Units:
FS08
AV
σ
= 0
Newtonian Liquids:
σ0
Time
•
ε
(dynes·cm)/(cm2·(cm/s))
= dyne·s/cm2 = Poise or
N·s/m2 = Pa·s
1 Pa·s = 10 P
1 P = 1 dPa·s
Strain (ε)
A
Shear stress (σ)
Viscosity Definitions
Richard K. Brow
[email protected]
ε = σ0
•
η
Time
Melt properties-5
Practical Consequences
FS08
Richard K. Brow
[email protected]
Melt properties-6
Elastic Solid
Newtonian Liquid
Viscoelastic transition
glass
forming
melting
η(T) for SLS melt
FS08
Richard K. Brow
[email protected]
Melt properties-7
FS08
Richard K. Brow
[email protected]
Melt properties-8
Important Manufacturing Viscosities
FS08
Name
η (Pa·s)
Melting pt (Tm)
101
Melting range
100.5-101.5
Working pt (Tw)
103
Working range
102-106
Forming
Liquidus temp (Tl)
~104
No crystallization for T>Tl
Flow point
104
Softening point (TLit)
106.6
Littleton, flow under own weight
Crystallization temp (Tx)
~107
No crystallization for T<Tx
Deformation temp (Td)
1010-1011
Dilatometric: expansion
compensated by viscous flow
Glass transition (Tg)
1011-1012
Annealing pt (Tap)
1012
Internal stresses relieved <15 min
Strain pt (Tsp)
1013.5
Internal stresses relieved <15 hrs
Remarks
Melting, fining
Richard K. Brow
[email protected]
Melt properties-9
Defined Viscosities
log Pa·s
log P
Working Pt
103
104
Littleton
Softening Pt
106.6
107.6
Annealing Pt 1012
1013
Strain Pt
Annealing
Range
1013.5
1014.5
Working
range
η(T) for SLS melt
FS08
Richard K. Brow
[email protected]
Melt properties-10
Viscosity Classifications
• Working Range: Temperatures (ΔT) between ‘working
point’ and ‘softening point’
– Long glasses: large ΔT (shallow η(T) curves)
– Short glasses: small ΔT (steep η(T) curves)
– Hard glasses: Working range at greater temperatures
than for S-L-S glass
• Borosilicates, aluminosilicates, oxynitrides, silica, etc.
• Sometimes defined as CTE<6x10-6/°C
– Soft glasses: Working range at lower temperatures
than for S-L-S glass
• Soda-lime silicate, Pb-silicates
• Sometimes defined as CTE>6x10-6/°C
FS08
Richard K. Brow
[email protected]
Melt properties-11
From Seward and
Varshneya (2001)
Soft glasses
Short
glass
FS08
Hard glasses
Long glass
Richard K. Brow
[email protected]
Corning Codes:
8363: High PbO radiation
shield
0010: Pb-silicate tube
7070: Borosilicate
0080: SLS lamp glass
7740: Pyrex
1720: Alkaline-earth boroaluminosilicate
Melt properties-12
Measurement of Viscosity
Range
Melting
Method
Viscosity Values
Falling Sphere/Bubble Rise
Margules Rotating Cylinder
Parallel Plate
Softening Penetration Viscometer
and
Fiber Elongation
Annealing Beam Bending
Disappearance of Stress
FS08
Richard K. Brow
[email protected]
η<104 Pa-s
η<106 Pa-s
105 Pa-s<η< 109 Pa-s
105 Pa-s<η< 109 Pa-s
105 Pa-s<η< 1015.5 Pa-s
107 Pa-s<η< 1012 Pa-s
1011 Pa-s<η< 1014 Pa-s
Melt properties-13
Rotating Spindle: 10-106 Pa·s
(ASTM C965-96)
1 ⎛1
1 ⎞⎛ Τ ⎞
η=
⎜ 2 − 2 ⎟⎜ ⎟
4π ⋅ L ⎝ r
R ⎠⎝ ω ⎠
r
R
FS08
Richard K. Brow
[email protected]
L
Τ = torque
ω = rotational velocity
Melt properties-14
Littleton Softening Point: 106.6 Pa·s
(fiber elongation- ASTM C338-93)
L⋅F
Applied Stress= F/A
η=
3 A ⋅ (dL / dt ) Elongation rate=dL/dt
Balance of gravitational force
(density) and surface tension
FS08
2/25/03
Richard K. Brow
[email protected]
Melt properties-15
Annealing/Strain Points: 1012, 1013.5 Pa·s
(fiber elongation: ASTM-C336-69)
dL/dt = 2.5x10-6 l/d2
at 1012 Pa·s (anneal pt)
Strain pt elongation rate is
0.0316 x annealing pt
elongation rate (1.5 log units)
FS08
2/25/03
Richard K. Brow
[email protected]
Melt properties-16
Beam Bending: 108-1013 Pa-s
g ⋅ L3 ⎛ M + A ⋅ L ⋅ ρ ⎞
η=
⎜
⎟
2.4 I c ⋅ V ⎝
1.6
⎠
V=deflection rate
FS08
2/25/03
Richard K. Brow
[email protected]
Melt properties-17
FS08
Richard K. Brow
[email protected]
Melt properties-18
The temperature dependence of viscosity
FS08
Richard K. Brow
[email protected]
Melt properties-19
σyx
layer
velocity
gradient
A
vAx
B
y
hole
C
vBx
vCx
x
Consider the ‘activated’ motion of a hole under the action of a shearing stress
FS08
Richard K. Brow
[email protected]
Melt properties-20
σyx
Va
2
V
σ yx a
2
Potential energy
σ yx
ΔG0
ΔG0
Applied shear biases potential energy function
Jump frequency (υ0), no shear:
• Va is atom volume
• Same l-r as r-l
• Forward jump frequency (υ+) exceeds
• Depends on barrier energy and
reverse (υ-)
probability of finding suitable hole
σ yxVa
as neighbor (Ph)
) / k BT ] ⋅ Ph
υ + = [k BT / h] exp[−(ΔG0 −
υ0 = [k BT / h] exp[−ΔG0 / k BT ] ⋅ Ph
υ + = υ0 exp[σ yxVa / 2k BT ]
υ − = [k BT / h] exp[−(ΔG0 +
υ − = υ 0 exp[−σ yxVa / 2k BT ]
FS08
Richard K. Brow
[email protected]
2
σ yxVa
2
) / k BT ] ⋅ Ph
Melt properties-21
σyx
Va
2
V
σ yx a
2
Potential energy
σ yx
ΔG0
The net ‘forward velocity’ is
(vBx − v Ax ) = (υ + − υ − )δx
∂v / ∂y = (υ + − υ − )δx / δy ≈ (υ + − υ − )
∂v / ∂y = 2υ0 sinh(σ yxVa / 2k BT ) ≅ υ 0σ yxVa / k BT
shear strain rate is e&xy = ∂v / ∂y,
η = σ yx / [υ0σ yxVa / k BT ] = [h / Va ][exp(ΔG0 / k BT ](Ph )−1
Consider the energy required to create a hole
(ΔEh), then Ph can be described by
Ph = exp[− ΔEh / k BT ]
substituting Ph into the viscosity equation,
η = [h / Va ][exp(ΔG0 + ΔEh ) / k BT ]
Simplifying as an Arrhenius equation:
η = η 0 exp(ΔHη / RT )
FS08
Richard K. Brow
[email protected]
Melt properties-22
Most glass-forming liquids are non-Arrhenius
2000°C 1500°C
1000°C
500°C
SiO2
NTS2
NS3
NS2
Ab=albite
An=anorthite
Di=diopside
Ab
B
logη = A +
T − T0
An
Di
From P. Richet and Y. Bottinga, in Reviews in Mineralogy, Vol. 32, (1995), p. 67-93
FS08
Richard K. Brow
[email protected]
Melt properties-23
Log (viscosity in poise)
Melt
Fragility
Strong
Fragile
From C. A. Angell, Science, 267, (1995), 1924.
FS08
Richard K. Brow
[email protected]
Tg/T
Melt properties-24
Why the non-Arrhenius
temperature-dependence?
1.
Energy for hole formation (ΔEh) is low at high
temperatures
ƒ ΔHη is greater at lower temperatures
2. Free-volume increases with temperature
3. Configurational entropy increases with temperature
(Adam-Gibbs description)
FS08
Richard K. Brow
[email protected]
Melt properties-25
What accounts for viscous flow in
a silicate melt?
What has to happen for flow to
occur?
FS08
Richard K. Brow
[email protected]
Melt properties-26
What happens at the molecular-level that affects viscosity?
Q2
FS08
At the short timescales, ‘melt structures’ are
similar to ‘glass structures’….
• Raman spectroscopy- probing
structure on timescales 10-12-10-14 s
• Si-O stretching/bending modes remain
dominate from room temperature into the
melt
• Some evidence for some melt
speciation reactions: 2Q3 ↔ Q2 + Q4
Richard K. Brow
[email protected]
Melt properties-27
NMR provides structural information about glasses
Q1
Q2
Q3
Q4
Q4
Q3
Q2
Q1
Q0
ni
xLi2O (1-x)SiO2
FS08
Richard K. Brow
[email protected]
Melt properties-28
Chemical exchange in
melts: silicate species
and viscous flow
• NMR exchange
frequencies (kHz range)
are comparable to the
timescales for viscous flow
in silicate melts
• The ‘lifetimes’ for Si-O
bonds in a melt can be
determined and compared
with timescales associated
with viscous flow
• At high temperatures, the
Q3-Q4 exchange (Si-O
bond rupture) is fast
compared to the
experimental time frame.
FS08
Experimental Simulated Spectra
697°C
2 kHz
774°C
10 kHz
800°C
25 kHz
847°C
50 kHz
997°C
500 kHz
Richard K. Brow
[email protected]
Melt properties-29
NMR exchange and viscosity timescales coincide
1. Maxwell relationship: η = τshear · G∞
2. Assume that τshear ≈ τex
3. Calculate diffusivity (D) from τex : D =d2/6τ, d is ‘jump distance’
4. Calculate viscosity from η = kBT/(dD)
FS08
Richard K. Brow
[email protected]
Melt properties-30
Stebbins model for viscous flow
Si-O bond-rupture through Q3-Q4
site exchange
• Conversion of one bridging
oxygen to a nonbridging oxygen
• ‘Diffusion’ of modifying cation
from one silicate unit to another
initial
Potential energy
• Creation of an SiO5 transitional
site?
transitional
?
FS08
transitional
initial
final
final
Richard K. Brow
[email protected]
Melt properties-31
NMR evidence for
transitional sites
‘frozen into’ quenched
glass structures
Q3/Q4 peak
SiO5
Na2Si4O9
Fast
quench
Slow
quench
FS08
Richard K. Brow
[email protected]
Cs2Si4O9
Melt properties-32
Effects of composition on viscosity
Viscosity is determined by
• Molecular attractive forces, especially
associated with glass-forming oxides
– Si-O vs. Ge-O
• Number of non-bridging oxygens in
structure
– Alkali oxide additions reduce viscosity
– Water (-OH) and fluorine reduce
viscosity
• Coordination number of the cation
B[3] vs B[4]
FS08
Richard K. Brow
[email protected]
Melt properties-33
FS08
Richard K. Brow
[email protected]
Melt properties-34
Reminder: Effect of Modifier Additions on
Silicate Glass Networks
⏐
O
⏐
⎯
⏐
⏐
O
O
⏐
⏐
⏐
R+
O
⏐
O⎯Si ⎯ O ⎯ Si ⎯O ⎯ +R2O → ⎯ O⎯Si ⎯ O- -O ⎯ Si
⏐
⏐
⏐
⏐
R+
O
O
O
O
⏐
⏐
⏐
⎯O ⎯
⏐
B0 +R2O → 2NBO
2Q4 + R2O → 2Q3
FS08
Richard K. Brow
[email protected]
Melt properties-35
Increasing the modifier
content reduces viscosity
• Water is a particularly effective
flux
Na-K-Zn-Al-silicate
(Wu, JNCS, 41 381, 1980)
FS08
Richard K. Brow
[email protected]
Melt properties-36
The effect of
water on Tg
(η≈1012 Pa·s) of
silicate glasses
Deubener, et al., JNCS 330, 268 (2003).
FS08
Richard K. Brow
[email protected]
Melt properties-37
The effects of modifier
content on melt viscosity
FS08
Richard K. Brow
H. Rawson,
Properties and Applications of Glass, Elsevier,
1980.
Melt properties-38
[email protected]
Isokom temperatures for mixed alkali melts
Log η (Poise)
8
10
12
16
Nemilov (1969)
FS08
Richard K. Brow
[email protected]
Melt properties-39
Reminder: Effect of Alumina Additions on Silicate Glass
Networks
⏐
O
⏐
⎯
⏐
O
R+
⏐
O⎯Si ⎯ O- -O ⎯ Si
⏐
⏐
R+
O
O
⏐
⎯O ⎯
1/2Al2O3 for
⏐
⏐
O
⏐
⎯
⏐
O
⏐
R+
⏐
O
⏐
O⎯Si ⎯ O ⎯ Al ⎯O ⎯ Si ⎯O ⎯
⏐
O
⏐
FS08
1/2R2O
Richard K. Brow
[email protected]
⏐
O
⏐
⏐
O
⏐
Melt properties-40
Viscosity of alkali aluminosilicate melts is greatest when
Al/Na≈1- fully cross-linked
networks….
Toplis et al., Geochim.
Cosmochim. Acta.
61[13] 2605 (1995)
FS08
Richard K. Brow
[email protected]
Melt properties-41
Reminder: Effect of Alkali Addition on Borate Glass Networks
R+
O
—
B—O —
+1/2R2O
O
[O]/[B]=1.5
—
—
O
B
—
O
O—
[O]/[B]=2.0
O—
+1/2R2O
+1/2R2O
R + -O
R + -O
B — O- R+
B—O—
R + -O
[O]/[B]=3.0
FS08
R + -O
[O]/[B]=2.5
Richard K. Brow
[email protected]
Melt properties-42
2BØ3 + Na2O →
Alkali borate melt viscosity
2(BØ4-Na+)
2(BØ4-·Na+) + Na2O → 2(BØO22-·2Na+)
Note the loss of the ‘borate
anomaly’ effect at high
temperatures (low viscosity)
FS08
Richard K. Brow
[email protected]
Melt properties-43
38.6Li2O·61.4B2O3 glass and melt
Raman spectra indicate that the
BØ2O- triangles replace BØ4tetrahedra in the melt
Cormier et al., JACerS, 89 13 (2006)
FS08
Richard K. Brow
[email protected]
Melt properties-44
Raman spectra indicate that
the BØ2O- triangles replace
BØ4- tetrahedra in the melt
BØ4-Li+ ↔ BØ2O-Li+
Note that B-O bonds are
broken, and that such
configurational changes will
contribute to changes in
heat capacity….
Cormier et al., JACerS, 89 13 (2006)
FS08
Richard K. Brow
[email protected]
Melt properties-45
Effects of composition on viscosity
Component
Alkali oxide
Alkaline earths
PbO
Al2O3
B2O3
OH-/F-
Effect on Viscosity
Low
High
Temp
Temp
+
+
+
+
-
Glass
Softer
Shorter
Softer
Harder
Shorter
Softer
Modifications to soda-lime silicate melt viscosity, after Beerkens, 1997.
FS08
Richard K. Brow
[email protected]
Melt properties-46
Viscosity dependence on
temperature and composition
• Vogel-Fulcher-Tamman (VFT) Equation
B
logη = A +
T − T0
• Lakatos Method*: empirical additivity factors
A = −2.4550 + ∑ ai ⋅ pi
B = 5736.4 + ∑ bi ⋅ pi
T0 = 198.1 + ∑ ti ⋅ pi
For S-L-S melts, T (°C) and
η (Pa·s), pi (mole fraction
oxide per mole SiO2)
*T. Lakatos, et al., Glass Technology, 13 88 (1972)
FS08
Richard K. Brow
[email protected]
Melt properties-47
Lakatos additivity parameters (after Beerkens, 1997)
Na2O
K2O
MgO
CaO
B2O3
Al2O3
PbO
ai
bi
ti
+1.4788
-0.8350
-5.4936
-1.6030
-15.880
+1.5183
+1.3058
-6039.7
-1439.6
+6285.3
-3919.3
+7272.1
+2253.4
-5880.0
-25.07
-321.0
-384.0
+544.3
+521.4
+294.4
-275.5
Valid for the log(viscosity) range 1-12 Pa·s
FS08
Richard K. Brow
[email protected]
Melt properties-48
Not all liquids exhibit Newtonian viscosity behavior
Shear Stress (σ)
Bingham Plastic
Pseudoplastic (decreasing η)
Newtonian (constant η)
Dilatant (increasing η)
Shear Rate
FS08
Richard K. Brow
[email protected]
Melt properties-49
Non-Newtonian Viscosity
Shear thinningdecreasing effective
viscosity with increasing
deformation rates
• fiber drawing
• press-and-blow
Greater problem at
higher temperatures
Yue & Brückner
Glastech. Ber (1996)
FS08
Richard K. Brow
[email protected]
Melt properties-50
Non-Newtonian Viscosity
Simmons and Simmons, Cer Bull
68[11] 1949 (1989)
η / η 0 = 1 / [1 + (e&xy )η 0 / σ ∞ ]
η0 is Newtonian viscosity
σ∞ is the cohesive shear strength
FS08
Richard K. Brow
[email protected]
Melt properties-51
Cohesive strength increases with viscosity
•Viscosity becomes nonlinear at high shearing rates
•Shear stress builds up if stress relaxation rate is sufficiently low
•If shear stress>σ∞, then ‘liquid fracture’ can occur
FS08
Richard K. Brow
[email protected]
Simmons and Simmons, Cer Bull
68[11] 1949 (1989) Melt properties-52
Consequences of Non-Newtonian Viscosity
• High-speed glass processing
– Fiber attenuation
– Container processing
• Source for glass inhomogeneities
– Induced phase separation or crystallization in high
shear regions
FS08
Richard K. Brow
[email protected]
Melt properties-53
• Fibers heated below Tx
• Stress in ‘bent’ regions
reduces ‘effective’ viscosity
• Examine differences in
crystallization behavior
FS08
Richard K. Brow
[email protected]
Melt properties-54
FS08
Richard K. Brow
[email protected]
Melt properties-55
Another example
• Melts prepared in micro-gravity have
greater glass-forming tendencies than
melts on earth at comparable quench
rates
– Hypothesis*: gravity-driven fluid-flow
increases overall strain rate within melt
• Reduced ‘local’ viscosity through shear thinning
• Increased ‘local’ crystallization rates
*CS Ray et al, Trans. Indian Inst. Met. 60[2] 143 (2007)
FS08
Richard K. Brow
[email protected]
Melt properties-56
Wall shear stress (Pa)
Maximum strain rate (s-1)
Calculated for LS2 melts at 1400°C and a 5°C temperature gradient
Normalized acceleration due to gravity
Trans. Indian Inst. Met. 60[2] 143 (2007)
FS08
Richard K. Brow
[email protected]
Melt properties-57
Normalized acceleration due to gravity
Shear-thinning
behavior is reduced
when gravitational
effects are reduced.
FS08
Richard K. Brow
[email protected]
Melt properties-58
From J. H. Simmons, in Experimental Techniques
of Glass Science, (1993), p. 383-432.
Phase separation
affects viscosity
FS08
Richard K. Brow
[email protected]
Melt properties-59
Crystallization affects
viscosity
• Example: crystallizable
sealing glass
From H. E. Hagy, in Introduction
to Glass Science, (1972), p. 343371
FS08
Richard K. Brow
[email protected]
Melt properties-60
Viscosity Summary
• Viscosity is the most important melt property
– Critical for processing, from melting through annealing
• Compositional dependence can be understood in terms
of melt/glass structure
– Stronger networks = greater viscosity
• Fraction of NBO’s on silicate tetrahedra
• Aluminosilicate networks
• Borate ‘anomaly’- tetrahedral sites
– Viscosity is sensitive to changes in melt structure
• Temperature dependence is non-Arrhenian
– VFT equation is a useful empirical description
– Fragile/strong classification can be related to configurational
changes
• Shear-thinning has processing consequences
FS08
Richard K. Brow
[email protected]
Melt properties-61
Glass formation is ‘crystallization avoidance’
⎡
⎛ 0.3ΔH
ATm
Tc ≈
⋅ exp(− 0.212 B ) ⋅ ⎢1 − exp⎜⎜ −
η (at 0.77Tm )
⎝ RTm
⎣
•
2
Free energy
Nucleation
driving force
barrier
Reduce critical cooling rate
η(Tm)
Tm(°C)
to improve glass formation
BeF2
540
>106 P
• Lower Tm
B2O3
460
105 P
• Increase η at Tm
GeO2
1150
107 P
If Tg (η=1013 P) is near Tm,
107 P
SiO2
1710
then η(Tm) will be high
⎞⎤
⎟⎟⎥
⎠⎦
3/ 4
Kinetic
barrier
Glass formation expected
when Tg/Tm>2/3
FS08
LiCl
613
0.02 P
Zn
420
0.03
Fe
1535
0.07
Richard K. Brow
[email protected]
Good
glass
formers
Poor
glass
formers
Melt properties-62
Eutectic compositions are good glass-formers
W. Vogel, Chemistry of Glass, 1985
From Dingwell in Rev. Mineral.
32 (1995)
G=U-1
Tg(°C)
ΔTg~30°C
Mole% Na2O
ΔTliq~800°C
Tg/Tliq is a maximum (~0.7) at the eutectic
FS08
Richard K. Brow
[email protected]
Melt properties-63