Web Course Physical Properties of Glass 1. Properties of Glass Melts 2. Thermal Properties of Glasses Richard K. Brow Missouri University of Science & Technology Department of Materials Science & Engineering FS08 Richard K. Brow [email protected] Melt properties-1 Melt and Glass Properties • • • • • FS08 Viscosity- chapter 9 Surface Tension- chapter 9 Thermal Expansion- chapter 10 Heat Capacity- chapter 11 Thermal Conductivity- chapter 12 Richard K. Brow [email protected] Melt properties-2 Supplementary References on Viscosity • Structure, Dynamics and Properties of Silicate Melts, Reviews in Mineralogy, Vol. 32 (1995), ed. JF Stebbins, PF McMillan and DB Dingwell (Mineralogical Society of America)- several outstanding reviews of viscosity, relaxation, etc. • CA Angell, Science, 267, (1995), 1924- concepts of melt fragility, configurational entropy, etc. • JH Simmons and C Simmons, Cer Bull 68[11] 1949 (1989)- Non-Newtonian behavior • HE Hagy in Introduction to Glass Science, ed. LD Pye, et al Plenum Press (1972)- nice review of viscosity measurements FS08 Richard K. Brow [email protected] Melt properties-3 Why should we care about melt viscosity? 1. Glass Forming Tendency a. Nucleation, crystallization, phase separation kinetics IVHO 3 ⎤ ⎛ ⎞ ⎡ k T K σ ⋅ − ⋅ 0 ⎟ exp ⎢ = NV ⎜⎜ 3 2⎥ ⎟ ⎝ 3π ⋅ a0 ⋅η ⎠ ⎣ T ⋅ ΔGv ⎦ 2. Melt Fining Stoke' s Law : d 2 g ( ρb − ρl ) V= 12η 3. Manufacturing Process Control 4. Annealing Schedules/Permanent Stress 5. What else?? FS08 Richard K. Brow [email protected] Melt properties-4 F,V d Viscosity ≡ η = Fd Units: FS08 AV σ = 0 Newtonian Liquids: σ0 Time • ε (dynes·cm)/(cm2·(cm/s)) = dyne·s/cm2 = Poise or N·s/m2 = Pa·s 1 Pa·s = 10 P 1 P = 1 dPa·s Strain (ε) A Shear stress (σ) Viscosity Definitions Richard K. Brow [email protected] ε = σ0 • η Time Melt properties-5 Practical Consequences FS08 Richard K. Brow [email protected] Melt properties-6 Elastic Solid Newtonian Liquid Viscoelastic transition glass forming melting η(T) for SLS melt FS08 Richard K. Brow [email protected] Melt properties-7 FS08 Richard K. Brow [email protected] Melt properties-8 Important Manufacturing Viscosities FS08 Name η (Pa·s) Melting pt (Tm) 101 Melting range 100.5-101.5 Working pt (Tw) 103 Working range 102-106 Forming Liquidus temp (Tl) ~104 No crystallization for T>Tl Flow point 104 Softening point (TLit) 106.6 Littleton, flow under own weight Crystallization temp (Tx) ~107 No crystallization for T<Tx Deformation temp (Td) 1010-1011 Dilatometric: expansion compensated by viscous flow Glass transition (Tg) 1011-1012 Annealing pt (Tap) 1012 Internal stresses relieved <15 min Strain pt (Tsp) 1013.5 Internal stresses relieved <15 hrs Remarks Melting, fining Richard K. Brow [email protected] Melt properties-9 Defined Viscosities log Pa·s log P Working Pt 103 104 Littleton Softening Pt 106.6 107.6 Annealing Pt 1012 1013 Strain Pt Annealing Range 1013.5 1014.5 Working range η(T) for SLS melt FS08 Richard K. Brow [email protected] Melt properties-10 Viscosity Classifications • Working Range: Temperatures (ΔT) between ‘working point’ and ‘softening point’ – Long glasses: large ΔT (shallow η(T) curves) – Short glasses: small ΔT (steep η(T) curves) – Hard glasses: Working range at greater temperatures than for S-L-S glass • Borosilicates, aluminosilicates, oxynitrides, silica, etc. • Sometimes defined as CTE<6x10-6/°C – Soft glasses: Working range at lower temperatures than for S-L-S glass • Soda-lime silicate, Pb-silicates • Sometimes defined as CTE>6x10-6/°C FS08 Richard K. Brow [email protected] Melt properties-11 From Seward and Varshneya (2001) Soft glasses Short glass FS08 Hard glasses Long glass Richard K. Brow [email protected] Corning Codes: 8363: High PbO radiation shield 0010: Pb-silicate tube 7070: Borosilicate 0080: SLS lamp glass 7740: Pyrex 1720: Alkaline-earth boroaluminosilicate Melt properties-12 Measurement of Viscosity Range Melting Method Viscosity Values Falling Sphere/Bubble Rise Margules Rotating Cylinder Parallel Plate Softening Penetration Viscometer and Fiber Elongation Annealing Beam Bending Disappearance of Stress FS08 Richard K. Brow [email protected] η<104 Pa-s η<106 Pa-s 105 Pa-s<η< 109 Pa-s 105 Pa-s<η< 109 Pa-s 105 Pa-s<η< 1015.5 Pa-s 107 Pa-s<η< 1012 Pa-s 1011 Pa-s<η< 1014 Pa-s Melt properties-13 Rotating Spindle: 10-106 Pa·s (ASTM C965-96) 1 ⎛1 1 ⎞⎛ Τ ⎞ η= ⎜ 2 − 2 ⎟⎜ ⎟ 4π ⋅ L ⎝ r R ⎠⎝ ω ⎠ r R FS08 Richard K. Brow [email protected] L Τ = torque ω = rotational velocity Melt properties-14 Littleton Softening Point: 106.6 Pa·s (fiber elongation- ASTM C338-93) L⋅F Applied Stress= F/A η= 3 A ⋅ (dL / dt ) Elongation rate=dL/dt Balance of gravitational force (density) and surface tension FS08 2/25/03 Richard K. Brow [email protected] Melt properties-15 Annealing/Strain Points: 1012, 1013.5 Pa·s (fiber elongation: ASTM-C336-69) dL/dt = 2.5x10-6 l/d2 at 1012 Pa·s (anneal pt) Strain pt elongation rate is 0.0316 x annealing pt elongation rate (1.5 log units) FS08 2/25/03 Richard K. Brow [email protected] Melt properties-16 Beam Bending: 108-1013 Pa-s g ⋅ L3 ⎛ M + A ⋅ L ⋅ ρ ⎞ η= ⎜ ⎟ 2.4 I c ⋅ V ⎝ 1.6 ⎠ V=deflection rate FS08 2/25/03 Richard K. Brow [email protected] Melt properties-17 FS08 Richard K. Brow [email protected] Melt properties-18 The temperature dependence of viscosity FS08 Richard K. Brow [email protected] Melt properties-19 σyx layer velocity gradient A vAx B y hole C vBx vCx x Consider the ‘activated’ motion of a hole under the action of a shearing stress FS08 Richard K. Brow [email protected] Melt properties-20 σyx Va 2 V σ yx a 2 Potential energy σ yx ΔG0 ΔG0 Applied shear biases potential energy function Jump frequency (υ0), no shear: • Va is atom volume • Same l-r as r-l • Forward jump frequency (υ+) exceeds • Depends on barrier energy and reverse (υ-) probability of finding suitable hole σ yxVa as neighbor (Ph) ) / k BT ] ⋅ Ph υ + = [k BT / h] exp[−(ΔG0 − υ0 = [k BT / h] exp[−ΔG0 / k BT ] ⋅ Ph υ + = υ0 exp[σ yxVa / 2k BT ] υ − = [k BT / h] exp[−(ΔG0 + υ − = υ 0 exp[−σ yxVa / 2k BT ] FS08 Richard K. Brow [email protected] 2 σ yxVa 2 ) / k BT ] ⋅ Ph Melt properties-21 σyx Va 2 V σ yx a 2 Potential energy σ yx ΔG0 The net ‘forward velocity’ is (vBx − v Ax ) = (υ + − υ − )δx ∂v / ∂y = (υ + − υ − )δx / δy ≈ (υ + − υ − ) ∂v / ∂y = 2υ0 sinh(σ yxVa / 2k BT ) ≅ υ 0σ yxVa / k BT shear strain rate is e&xy = ∂v / ∂y, η = σ yx / [υ0σ yxVa / k BT ] = [h / Va ][exp(ΔG0 / k BT ](Ph )−1 Consider the energy required to create a hole (ΔEh), then Ph can be described by Ph = exp[− ΔEh / k BT ] substituting Ph into the viscosity equation, η = [h / Va ][exp(ΔG0 + ΔEh ) / k BT ] Simplifying as an Arrhenius equation: η = η 0 exp(ΔHη / RT ) FS08 Richard K. Brow [email protected] Melt properties-22 Most glass-forming liquids are non-Arrhenius 2000°C 1500°C 1000°C 500°C SiO2 NTS2 NS3 NS2 Ab=albite An=anorthite Di=diopside Ab B logη = A + T − T0 An Di From P. Richet and Y. Bottinga, in Reviews in Mineralogy, Vol. 32, (1995), p. 67-93 FS08 Richard K. Brow [email protected] Melt properties-23 Log (viscosity in poise) Melt Fragility Strong Fragile From C. A. Angell, Science, 267, (1995), 1924. FS08 Richard K. Brow [email protected] Tg/T Melt properties-24 Why the non-Arrhenius temperature-dependence? 1. Energy for hole formation (ΔEh) is low at high temperatures ΔHη is greater at lower temperatures 2. Free-volume increases with temperature 3. Configurational entropy increases with temperature (Adam-Gibbs description) FS08 Richard K. Brow [email protected] Melt properties-25 What accounts for viscous flow in a silicate melt? What has to happen for flow to occur? FS08 Richard K. Brow [email protected] Melt properties-26 What happens at the molecular-level that affects viscosity? Q2 FS08 At the short timescales, ‘melt structures’ are similar to ‘glass structures’…. • Raman spectroscopy- probing structure on timescales 10-12-10-14 s • Si-O stretching/bending modes remain dominate from room temperature into the melt • Some evidence for some melt speciation reactions: 2Q3 ↔ Q2 + Q4 Richard K. Brow [email protected] Melt properties-27 NMR provides structural information about glasses Q1 Q2 Q3 Q4 Q4 Q3 Q2 Q1 Q0 ni xLi2O (1-x)SiO2 FS08 Richard K. Brow [email protected] Melt properties-28 Chemical exchange in melts: silicate species and viscous flow • NMR exchange frequencies (kHz range) are comparable to the timescales for viscous flow in silicate melts • The ‘lifetimes’ for Si-O bonds in a melt can be determined and compared with timescales associated with viscous flow • At high temperatures, the Q3-Q4 exchange (Si-O bond rupture) is fast compared to the experimental time frame. FS08 Experimental Simulated Spectra 697°C 2 kHz 774°C 10 kHz 800°C 25 kHz 847°C 50 kHz 997°C 500 kHz Richard K. Brow [email protected] Melt properties-29 NMR exchange and viscosity timescales coincide 1. Maxwell relationship: η = τshear · G∞ 2. Assume that τshear ≈ τex 3. Calculate diffusivity (D) from τex : D =d2/6τ, d is ‘jump distance’ 4. Calculate viscosity from η = kBT/(dD) FS08 Richard K. Brow [email protected] Melt properties-30 Stebbins model for viscous flow Si-O bond-rupture through Q3-Q4 site exchange • Conversion of one bridging oxygen to a nonbridging oxygen • ‘Diffusion’ of modifying cation from one silicate unit to another initial Potential energy • Creation of an SiO5 transitional site? transitional ? FS08 transitional initial final final Richard K. Brow [email protected] Melt properties-31 NMR evidence for transitional sites ‘frozen into’ quenched glass structures Q3/Q4 peak SiO5 Na2Si4O9 Fast quench Slow quench FS08 Richard K. Brow [email protected] Cs2Si4O9 Melt properties-32 Effects of composition on viscosity Viscosity is determined by • Molecular attractive forces, especially associated with glass-forming oxides – Si-O vs. Ge-O • Number of non-bridging oxygens in structure – Alkali oxide additions reduce viscosity – Water (-OH) and fluorine reduce viscosity • Coordination number of the cation B[3] vs B[4] FS08 Richard K. Brow [email protected] Melt properties-33 FS08 Richard K. Brow [email protected] Melt properties-34 Reminder: Effect of Modifier Additions on Silicate Glass Networks ⏐ O ⏐ ⎯ ⏐ ⏐ O O ⏐ ⏐ ⏐ R+ O ⏐ O⎯Si ⎯ O ⎯ Si ⎯O ⎯ +R2O → ⎯ O⎯Si ⎯ O- -O ⎯ Si ⏐ ⏐ ⏐ ⏐ R+ O O O O ⏐ ⏐ ⏐ ⎯O ⎯ ⏐ B0 +R2O → 2NBO 2Q4 + R2O → 2Q3 FS08 Richard K. Brow [email protected] Melt properties-35 Increasing the modifier content reduces viscosity • Water is a particularly effective flux Na-K-Zn-Al-silicate (Wu, JNCS, 41 381, 1980) FS08 Richard K. Brow [email protected] Melt properties-36 The effect of water on Tg (η≈1012 Pa·s) of silicate glasses Deubener, et al., JNCS 330, 268 (2003). FS08 Richard K. Brow [email protected] Melt properties-37 The effects of modifier content on melt viscosity FS08 Richard K. Brow H. Rawson, Properties and Applications of Glass, Elsevier, 1980. Melt properties-38 [email protected] Isokom temperatures for mixed alkali melts Log η (Poise) 8 10 12 16 Nemilov (1969) FS08 Richard K. Brow [email protected] Melt properties-39 Reminder: Effect of Alumina Additions on Silicate Glass Networks ⏐ O ⏐ ⎯ ⏐ O R+ ⏐ O⎯Si ⎯ O- -O ⎯ Si ⏐ ⏐ R+ O O ⏐ ⎯O ⎯ 1/2Al2O3 for ⏐ ⏐ O ⏐ ⎯ ⏐ O ⏐ R+ ⏐ O ⏐ O⎯Si ⎯ O ⎯ Al ⎯O ⎯ Si ⎯O ⎯ ⏐ O ⏐ FS08 1/2R2O Richard K. Brow [email protected] ⏐ O ⏐ ⏐ O ⏐ Melt properties-40 Viscosity of alkali aluminosilicate melts is greatest when Al/Na≈1- fully cross-linked networks…. Toplis et al., Geochim. Cosmochim. Acta. 61[13] 2605 (1995) FS08 Richard K. Brow [email protected] Melt properties-41 Reminder: Effect of Alkali Addition on Borate Glass Networks R+ O — B—O — +1/2R2O O [O]/[B]=1.5 — — O B — O O— [O]/[B]=2.0 O— +1/2R2O +1/2R2O R + -O R + -O B — O- R+ B—O— R + -O [O]/[B]=3.0 FS08 R + -O [O]/[B]=2.5 Richard K. Brow [email protected] Melt properties-42 2BØ3 + Na2O → Alkali borate melt viscosity 2(BØ4-Na+) 2(BØ4-·Na+) + Na2O → 2(BØO22-·2Na+) Note the loss of the ‘borate anomaly’ effect at high temperatures (low viscosity) FS08 Richard K. Brow [email protected] Melt properties-43 38.6Li2O·61.4B2O3 glass and melt Raman spectra indicate that the BØ2O- triangles replace BØ4tetrahedra in the melt Cormier et al., JACerS, 89 13 (2006) FS08 Richard K. Brow [email protected] Melt properties-44 Raman spectra indicate that the BØ2O- triangles replace BØ4- tetrahedra in the melt BØ4-Li+ ↔ BØ2O-Li+ Note that B-O bonds are broken, and that such configurational changes will contribute to changes in heat capacity…. Cormier et al., JACerS, 89 13 (2006) FS08 Richard K. Brow [email protected] Melt properties-45 Effects of composition on viscosity Component Alkali oxide Alkaline earths PbO Al2O3 B2O3 OH-/F- Effect on Viscosity Low High Temp Temp + + + + - Glass Softer Shorter Softer Harder Shorter Softer Modifications to soda-lime silicate melt viscosity, after Beerkens, 1997. FS08 Richard K. Brow [email protected] Melt properties-46 Viscosity dependence on temperature and composition • Vogel-Fulcher-Tamman (VFT) Equation B logη = A + T − T0 • Lakatos Method*: empirical additivity factors A = −2.4550 + ∑ ai ⋅ pi B = 5736.4 + ∑ bi ⋅ pi T0 = 198.1 + ∑ ti ⋅ pi For S-L-S melts, T (°C) and η (Pa·s), pi (mole fraction oxide per mole SiO2) *T. Lakatos, et al., Glass Technology, 13 88 (1972) FS08 Richard K. Brow [email protected] Melt properties-47 Lakatos additivity parameters (after Beerkens, 1997) Na2O K2O MgO CaO B2O3 Al2O3 PbO ai bi ti +1.4788 -0.8350 -5.4936 -1.6030 -15.880 +1.5183 +1.3058 -6039.7 -1439.6 +6285.3 -3919.3 +7272.1 +2253.4 -5880.0 -25.07 -321.0 -384.0 +544.3 +521.4 +294.4 -275.5 Valid for the log(viscosity) range 1-12 Pa·s FS08 Richard K. Brow [email protected] Melt properties-48 Not all liquids exhibit Newtonian viscosity behavior Shear Stress (σ) Bingham Plastic Pseudoplastic (decreasing η) Newtonian (constant η) Dilatant (increasing η) Shear Rate FS08 Richard K. Brow [email protected] Melt properties-49 Non-Newtonian Viscosity Shear thinningdecreasing effective viscosity with increasing deformation rates • fiber drawing • press-and-blow Greater problem at higher temperatures Yue & Brückner Glastech. Ber (1996) FS08 Richard K. Brow [email protected] Melt properties-50 Non-Newtonian Viscosity Simmons and Simmons, Cer Bull 68[11] 1949 (1989) η / η 0 = 1 / [1 + (e&xy )η 0 / σ ∞ ] η0 is Newtonian viscosity σ∞ is the cohesive shear strength FS08 Richard K. Brow [email protected] Melt properties-51 Cohesive strength increases with viscosity •Viscosity becomes nonlinear at high shearing rates •Shear stress builds up if stress relaxation rate is sufficiently low •If shear stress>σ∞, then ‘liquid fracture’ can occur FS08 Richard K. Brow [email protected] Simmons and Simmons, Cer Bull 68[11] 1949 (1989) Melt properties-52 Consequences of Non-Newtonian Viscosity • High-speed glass processing – Fiber attenuation – Container processing • Source for glass inhomogeneities – Induced phase separation or crystallization in high shear regions FS08 Richard K. Brow [email protected] Melt properties-53 • Fibers heated below Tx • Stress in ‘bent’ regions reduces ‘effective’ viscosity • Examine differences in crystallization behavior FS08 Richard K. Brow [email protected] Melt properties-54 FS08 Richard K. Brow [email protected] Melt properties-55 Another example • Melts prepared in micro-gravity have greater glass-forming tendencies than melts on earth at comparable quench rates – Hypothesis*: gravity-driven fluid-flow increases overall strain rate within melt • Reduced ‘local’ viscosity through shear thinning • Increased ‘local’ crystallization rates *CS Ray et al, Trans. Indian Inst. Met. 60[2] 143 (2007) FS08 Richard K. Brow [email protected] Melt properties-56 Wall shear stress (Pa) Maximum strain rate (s-1) Calculated for LS2 melts at 1400°C and a 5°C temperature gradient Normalized acceleration due to gravity Trans. Indian Inst. Met. 60[2] 143 (2007) FS08 Richard K. Brow [email protected] Melt properties-57 Normalized acceleration due to gravity Shear-thinning behavior is reduced when gravitational effects are reduced. FS08 Richard K. Brow [email protected] Melt properties-58 From J. H. Simmons, in Experimental Techniques of Glass Science, (1993), p. 383-432. Phase separation affects viscosity FS08 Richard K. Brow [email protected] Melt properties-59 Crystallization affects viscosity • Example: crystallizable sealing glass From H. E. Hagy, in Introduction to Glass Science, (1972), p. 343371 FS08 Richard K. Brow [email protected] Melt properties-60 Viscosity Summary • Viscosity is the most important melt property – Critical for processing, from melting through annealing • Compositional dependence can be understood in terms of melt/glass structure – Stronger networks = greater viscosity • Fraction of NBO’s on silicate tetrahedra • Aluminosilicate networks • Borate ‘anomaly’- tetrahedral sites – Viscosity is sensitive to changes in melt structure • Temperature dependence is non-Arrhenian – VFT equation is a useful empirical description – Fragile/strong classification can be related to configurational changes • Shear-thinning has processing consequences FS08 Richard K. Brow [email protected] Melt properties-61 Glass formation is ‘crystallization avoidance’ ⎡ ⎛ 0.3ΔH ATm Tc ≈ ⋅ exp(− 0.212 B ) ⋅ ⎢1 − exp⎜⎜ − η (at 0.77Tm ) ⎝ RTm ⎣ • 2 Free energy Nucleation driving force barrier Reduce critical cooling rate η(Tm) Tm(°C) to improve glass formation BeF2 540 >106 P • Lower Tm B2O3 460 105 P • Increase η at Tm GeO2 1150 107 P If Tg (η=1013 P) is near Tm, 107 P SiO2 1710 then η(Tm) will be high ⎞⎤ ⎟⎟⎥ ⎠⎦ 3/ 4 Kinetic barrier Glass formation expected when Tg/Tm>2/3 FS08 LiCl 613 0.02 P Zn 420 0.03 Fe 1535 0.07 Richard K. Brow [email protected] Good glass formers Poor glass formers Melt properties-62 Eutectic compositions are good glass-formers W. Vogel, Chemistry of Glass, 1985 From Dingwell in Rev. Mineral. 32 (1995) G=U-1 Tg(°C) ΔTg~30°C Mole% Na2O ΔTliq~800°C Tg/Tliq is a maximum (~0.7) at the eutectic FS08 Richard K. Brow [email protected] Melt properties-63
© Copyright 2026 Paperzz