Longitudinal Data Analysis: Repeated Measures ANOVA Aaron Jones Duke University BIOSTAT 790 April 7, 2016 Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 1 / 14 Overview 1 Multivariate Models GEE vs. GLMM MANOVA vs. RM ANOVA 2 RM ANOVA Model 3 RM ANOVA Examples: SS & F-Tests 4 Sphericity Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 2 / 14 GEE vs. GLMM Familiar GLM, ANOVA assume independent residuals Correlated outcomes require multivariate extension Generalized Estimating Equations (GEE) Only need mean model and working correlation matrix Neither assumes nor estimates sources of variance Generalized Linear Mixed Model (GLMM) Likelihood-based, need to specify random effects In return, estimates variance due to each source Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 3 / 14 MANOVA vs. RM ANOVA ANOVA: Gaussian linear (mixed) model with categorical predictors How to extend to multivariate/correlated outcomes? Multivariate ANOVA (MANOVA) Compares residual covariance matrix to model covariance Allows multivariate outcomes across different scales No assumptions about covariance except symmetric, pos. def. Cost: More degrees of freedom =⇒ lower power Repeated Meaures ANOVA (RM ANOVA) Compares sums of squares including subject-level random effect Only makes sense for repeated measures of same variable Requires stronger assumptions about covariance matrix Benefit: Greater power than MANOVA when assumptions are met Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 4 / 14 RM ANOVA Model RM ANOVA (Mixed) Model: yij = µij + πij + eij yij : continuous response of subject i = 1, . . . , n at time j = 1, . . . , t µij : fixed population mean at time j for individuals like individual i Includes covariates and (non-subject-specific) time effects πij : random subject effect for subject i at time j E (yij |πij ) = µij + πij eij : normally distributed random error for subject i at time j Crowder and Hand (1990) trichotomy: µij : ”immutable constant of the universe” πij : ”lasting characteristic of the individual” eij : ”fleeting aberration of the moment” Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 5 / 14 RM ANOVA Model Fundamental Assumptions: 2 E (πij ) = 0, Var(πij ) = σπj 2 E (eij ) = 0, Var(eij ) = σej Cov(πij , πi 0 j ) = Cov(πij , πi 0 j 0 ) = 0 Cov(πij , πij 0 ) = σπjj 0 for i 6= i 0 , j 6= j 0 Cov(eij , ei 0 j 0 ) = 0 for i 6= i 0 , j 6= j 0 Cov(πij , ei 0 j 0 ) = 0 for all i, i 0 , j, j 0 2 ), e ∼ N(0, σ 2 ) Normality: πij ∼ N(0, σπj ij ej Common (but Not Necessary) Simplifying Assumptions: 2 = σ 2 for all j σπj π σπjj 0 constant for all j, j 0 2 = σ 2 for all j σej e Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 6 / 14 RM ANOVA Model Covariance: Cov(yij , yi 0 j 0 ) = E [(yij − µij )(yi 0 j 0 − µi 0 j 0 )] = E [(πij + eij )(πi 0 j 0 + ei 0 j 0 )] = E [πij πi 0 j 0 + πij ei 0 j 0 + eij πi 0 j 0 + eij ei 0 j 0 ] = E [πij πi 0 j 0 ] + 0 + 0 + E [eij ei 0 j 0 ] 2 if i = i 0 , j = j 0 ( 2 σπj σej = σπjj 0 if i = i 0 , j 6= j 0 + 0 0 if i 6= i 0 0 0 2 2 σπj + σej if i = i , j = j = σπjj 0 if i = i 0 , j 6= j 0 0 if i 6= i 0 Aaron Jones (BIOSTAT 790) RM ANOVA if i = i 0 , j = j 0 otherwise April 7, 2016 7 / 14 RM ANOVA Model Correlation: Observations are uncorrelated between subjects Within-subject (intraclass) correlation: σπjj 0 Corr(yij , yij 0 ) = 2 )]1/2 2 [(σπjj + σej )(σπj 0 j 0 + σej 0 2 = σ 2 and σ 0 = σ 2 : Under simplifying assumptions that σej πjj e π Corr(yij , yij 0 ) = ρ = Aaron Jones (BIOSTAT 790) RM ANOVA σπ2 σπ2 + σe2 April 7, 2016 8 / 14 One Sample RM ANOVA yij = µ + πi + τj + eij Source SS df Time Subjects Residual SST SSS SSR t −1 n−1 (n − 1)(t − 1) MS E(MS) T MST = SS t−1 SSS MSS = n−1 SSR MSR = (n−1)(t−1) σe2 + nστ2 σe2 + tσπ2 σe2 Pt Pt 2 2 i=1 j=1 (ȳ.j − ȳ.. ) = n j=1 (ȳ.j − ȳ.. ) Pn Pt P SSS = i=1 j=1 (ȳi. − ȳ.. )2 = t ni=1 (ȳi. − ȳ.. )2 P P SSR = ni=1 tj=1 (yij − ȳi. − ȳ.j + ȳ.. )2 T F = MS MSR ∼ Ft−1,(n−1)(t−1) under H0 : τj = 0 ∀ j and SST = Pn Aaron Jones (BIOSTAT 790) RM ANOVA sphericity April 7, 2016 9 / 14 Multiple Sample (Hierarchical) RM ANOVA yij = µ + γh + τj + (γτ )hj + πi(h) + ehij Source SS Group Subjects(Group) Time Group × Time Residual SSG SSS(G ) SST SSGT SSR DG = DT = nt s−1 ns t−1 DGT = df s −1 n−s t −1 (s − 1)(t − 1) (n − s)(t − 1) E(MS) σe2 + tσπ2 + DG σe2 + tσπ2 σe2 + DT σe2 + DGT σe2 Ps 2 h=1 γh Pt 2 j=1 τj P Pt s n 2 h=1 j=1 (γτ )hj (s−1)(t−1) Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 10 / 14 Multiple Sample (Hierarchical) RM ANOVA Pnh Pt Ps 2 2 h=1 nh (ȳh.. − ȳ... ) h=1 j=1 (ȳh.. − ȳ... ) = t i=1 P P h Pt Ps Pnh 2 2 SSS(G ) = sh=1 ni=1 j=1 (ȳhi. − ȳh.. ) = t h=1 i=1 (ȳhi. − ȳh.. ) P P h Pt Pt 2 2 SST = sh=1 ni=1 j=1 (ȳ..j − ȳ... ) = n j=1 (ȳ..j − ȳ... ) Ps Pnh Pt SSGT = h=1 i=1 j=1 (yh.j − ȳh.. − ȳ..j + ȳ... )2 P P h Pt 2 SSR = sh=1 ni=1 j=1 (yhij − ȳh.j − ȳhi. + ȳh.. ) SSG = Ps MSG F = MS ∼ Fs−1,n−s under H0 : γh = (γτ )hj = 0 ∀ h, j S(G ) and within-group covariance matrices equal T F = MS MSR ∼ Ft−1,(n−s)(t−1) under H0 : τj = (γτ )hj = 0 ∀ h, j and within-group covariance matrices equal, and sphericity GT F = MS MSR ∼ F(s−1)(t−1),(n−s)(t−1) under H0 : (γτ )hj = 0 ∀ h, j and within-group covariance matrices equal, and sphericity Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 11 / 14 Sphericity Assumption needed for F statistic to have F distribution with right df Multiple ways to express sphericity: 1 Var(yij − yij 0 ) is constant for all j, j 0 2 2 3 2 t (σ̄ii −σ̄ P ..2) 2 2 = 1, where = (t−1)(S−2t σ̄i. +t σ̄.. ) σ̄ii is the mean of the entries on the main diagonal of Σ σ̄.. is the mean of all the elements of Σ σ̄i. is the mean of the entries in row i of Σ S is the sum of the squares of the elements of Σ Keselman, Algina & Kowalchuk: C 0 ΣC = λIt−1 , where C is a normalized matrix of t − 1 orthogonal contrasts among t times λ is a scalar Mauchly test of sphericity: sensitive to sample size, non-normality Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 12 / 14 Sphericity vs. Compound Symmetry Compound symmetry =⇒ sphericity, but they are not equivalent Var(yij ) = Var(yij 0 ) for all j, j 0 + sphericity =⇒ compound symmetry Though mathematically possible, hard to imagine Var(yij ) 6= Var(yij 0 ) but covariances all happen to work out to sphericity Conclusion: Compound symmetry not theoretically necessary for sphericity and valid F tests, but practically it may as well be Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 13 / 14 Lack of Sphericity How to proceed when sphericity does not hold? MANOVA Sphericity replaced by equal within-group covariance matrices Test whether the means of t − 1 differences are equal across groups Four different test statistics summarize covariance matrix different ways More degrees of freedom =⇒ lower power Adjust degrees of freedom: F ≈ F(t−1),(t−1)(n−1) Greenhouse & Geisser: Plug in MLE ˆ estimated from sample covariance matrix S n(t−1)ˆ Huynh & Feldt: Plug in ˜ = min 1, (t−1)(n−1−(t−1)ˆ ) GG can be too conservative, especially for > 0.75 and n < 2t HF is less biased than GG, performs better when > 0.75 Go back to (G)LMM More flexibility to specify different covariance structures So why try RM ANOVA at all? Adjusting df for valid F -test with near-sphericity may still be more powerful than GLMM with more df Aaron Jones (BIOSTAT 790) RM ANOVA April 7, 2016 14 / 14
© Copyright 2026 Paperzz